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A B S T R A C T

Approximate methods of computing the concerted electronic and nuclear fluxes associated with electronically
adiabatic processes are developed and applied to the prototypal system, namely aligned +H2 vibrating in its
electronic ground state +( Σ )g

2 , the only realistic system for which highly accurate (exact) electronic (EPD) and
nuclear (NPD) probability densities, electronic (EFD) and nuclear (NFD) flux densities, as well as corresponding
fluxes, are available. Alternative formulas for the electronic flux, Fe,EPD and Fe,EFD, based on either the EPD or the
EFD, are derived from the continuity equation. The results of Born-Oppenheimer approximation (BOA) and of an
ordered sequence of Born-Huang expansions (BHE) are presented. The BOA and first-order BHE are in excellent
agreement with the exact for both the NPD and NFD, as well as for the EPD and Fe,EPD up to about 1ps. Higher-
order BHE are necessary to achieve similar accuracy at longer times. In contrast, the BOA and first-order BHE
yield zero EFD and therefore also zero Fe,EFD. Although the higher-order BHE give non-zero values for these
properties, they disagree flagrantly with their exact correlates. The error is traceable to numerical ill-con-
ditioning of the working expression for the EFD. In summary, the BOA is adequate to compute accurate NPD,
NFD, EPD and Fe,EPD for times corresponding to several dozens of vibrational periods; the higher-order BHE is
required for longer times. But neither the BOA nor the BHE can provide reliable estimates of the EFD and Fe,EFD.

1. Introduction

This article concerns the quantum-mechanical description of such
fundamental processes as vibration and dissociation of isolated mole-
cules. Traditionally, a molecular process is characterized only by a time
sequence of maps of the population density (PD) of the fundamental
particles (electrons and nuclei) that constitute the system together with
their time derivatives and the corresponding (reaction) rates [1,2]. The
map, which comprises the number densities ρ tx( , ) at points of ob-
servation x, tells us where the particles are likely to be at time t, but
gives us no information on how they get there (i.e., on the mechanism
of the process).

The mechanism of a molecular process is minutely revealed by a
time sequence of maps of the population flux density (FD) tj x( , ) of
particles (i.e., the number of particles per unit area passing per unit
time in a specific direction at point of observation x at time t). The maps
of tj x( , ) indicate the expected pathways followed by the particles. Less

detailed information on the mechanism is afforded by the flux F t( ) of
particles between two regions (I and II) of the system separated by a
prescribed surface of observation S (i.e., the flux is the number of
particles crossing S per unit time at time t). The flux of particles from
region I to region II is equal to the negative of the rate of change of the
number of particles in region I, which can be expressed in terms of the
PD as

∫= − ∂ ∂F t d ρ t tx x( ) ( , )/
VPD (1.1)

where V denotes the volume of region I. From the continuity equation
∂ ∂ − ∇ =ρ t t tx j x[ ( , )/ · ( , ) 0]x we derive the alternative expression in
terms of the FD

∫=F t d tS j x( ) · ( , )
SFD (1.2)

where =d dSS n and n is the outwardly directed normal to the element
of area dS at point x on S. Judicious choices of S can yield insight into
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the mechanisms of flow of the particles.
The principal goal of this work is to develop reliable approximate

methods of computing the concerted electronic and nuclear fluxes as-
sociated with electronically adiabatic processes. We focus below on the
ideal prototypal system, namely aligned +H2 vibrating in its electronic
ground state +( Σ )g

2 , because it is the only realistic system that allows
highly accurate (exact) calculations of all the relevant quantities, in-
cluding the electronic and nuclear PDs, electronic and nuclear FDs, as
well as corresponding fluxes [3–7]. The exact results are benchmarks
for assessing the reliability of the approximate methods. An ancillary
goal of this investigation is to provide guidance on the approximate
methods that counterbalance the level accuracy desired with the com-
putational cost. Before turning to the specific application to the pro-
totype, we continue the development for the generic system.

A special challenge is to calculate the flow of electrons that ac-
company the process. Invoking the equivalence of the Ne electrons in
the system, we derive formulas for the electron population density
(EPD)

∫ ∫= ′ =ρ t N d d tx R r r R( , ) |Ψ( , , )|r xe e 1
2

1 (1.3a)

and the electronic flux density (EFD)

∫ ∫= ′ ∇ − ∇∗ ∗
=[ ( ) ( ) ( ) ( )]

t
N
m i

d d t t t t

j x

R r r R r R r R r R

( , )
ℏ

2
Ψ , , Ψ , , Ψ , , Ψ , ,r r r x

e

e

e
1 1 1 1

(1.3b)

where the wave function Ψ obeys the Schrödinger equation
∂ ∂ =i t Hℏ Ψ/ Ψ, r and R stand for configurations of electrons and nuclei,

respectively, and ∫ ′dr1 signifies integrations over the coordinates of all
electrons except the “first.”

Henceforward in this article we constrain our attention to electro-
nically adiabatic processes (i.e., processes during which transitions
among electronic states do not occur). We emphasize that the notion of
adiabaticity depends implicitly upon separation of the electronic and
nuclear motions, as postulated by the Born-Oppenheimer approxima-
tion (BOA) [6]. (In the application to the prototype, adiabaticity is
ensured by specification of an initial state having mean energy well
below the threshold for dissociation.) The total Hamiltonian can be cast
as = +H H Te n, where He refers to the electrons in the field of the
nuclei andTn is the kinetic energy of relative (internal) nuclear motions.
In the BOA an adiabatic wave function is expressed as a simple product

= ϕ χr R r R RΨ ( , ) ( ; ) ( )nν n nv
BOA BOA (1.4)

where ϕ r R( ; )n is a real eigenfunction of He with the nuclei fixed in the
configuration R, and χ R( )nv

BOA is a vibrational-rotational eigenfunction
of the nuclear Hamiltonian (i.e., + =T V χ E χR R R[ ( )] ( ) ( )n nv nv nvn

BOA BOA BOA ,
whereV R( )n , the eigenvalue of He, serves as the potential energy). Thus,
within the framework of the BOA, ϕ χr R R( ; ) ( )n nv

BOA is the approximate
adiabatic eigenfunction of H and Env

BOA is the approximate eigenvalue.
The time-dependent BOA wave function governing a particular

electronically adiabatic process is given by

∑= = −t ϕ χ t c iE t

ϕ χ

r R r R R

r R R

Φ ( , , ) ( ; ) ( , ) exp(

/ℏ) ( ; ) ( )

n n
ν

nν nν

n nν

BOA BOA BOA BOA

BOA (1.5)

where the constants cnν
BOA depend on the initial wave function

r RΦ( , , 0). Plugging the BOA wave function into the general formula for
tj x( , )e (Eq. (1.3b)), we get

∫ ∫= ′ ∇ ==[ ( ) ( )]t N
m

d χ t d ϕ ϕj x R R r r R r R 0( , ) ℏ Im{ | ( , )| ; ; }n n nr r xe
BOA e

e

BOA 2
1 1 1

(1.6)

The mathematical reason that je
BOA vanishes is that ϕ r R( ; )n is real

[8]. We conclude that the BOA wave function always yields a vanishing
EFD. The rationale for this anti-intuitive result goes as follows. In the
BOA the electrons adjust instantaneously to the movement of the nuclei.

They are not dynamically coupled to the nuclei and therefore remain
permanently in a stationary state described by a real wave function
ϕ r R( ; ).n But a stationary state has no associated flux [8]. In contrast, the
nuclei respond dynamically to the changing spatial distribution of the
electrons. They are in a non-stationary state in which their relative
motion is governed by a complex wave packetχ tR( , ).n

BOA A calculation
of the nuclear flux density, by means of a formula analogous to Eq.
(1.3b), indeed yields a non-zero result.

The correction of this failure of the BOA (i.e., zero EFD) necessitates
accounting somehow for the dynamical coupling between electrons and
nuclei. A number of approaches have been proffered [3–7,9–16]. Here
we present the results of a computational study utilizing the so-called
Born-Huang expansion (BHE) [17,18], which appears to provide a
systematic way of increasing the degree of electronic-nuclear coupling.
Thus, we replace the simple product (Eq. (1.4)) with

∑=
=

−

ϕ χr R r R RΨ ( , ) ( ; ) ( )ν
N

n

N

n nν
NBH( )

0

1
s

s
s

(1.7)

where we refer to the total number of states Ns included in the BHE as
the order. In the limit of infinite order Ψν

BH satisfy the eigenvalue
equation =H EΨ Ψν ν ν

BH BH BH exactly. The BHE (Eq. (1.7)) leads to a set of
coupled differential equations for the Ns expansion coefficients χ R( )nν

Ns ,
which depend upon the order and manifest the coupling among elec-
tronic states induced by the nuclear motion. Fixing the order yields a set
of approximate eigenfunctions Ψν

NBH( )s and corresponding eigenvalues
Eν

NBH( )s . One of course expects these to converge to their exact coun-
terparts as Ns increases. Throughout the article we refer to highly ac-
curate quantities (e.g., the wave function that obeys the Schrödinger
equation with arbitrarily high precision, or at least the highest precision
attainable in practice by the available numerical method) as “exact.”

Instead of the BOA wave function (Eq. (1.5)) we have the analogue

∑= −t b iE tr R r RΦ ( , , ) exp( /ℏ)Ψ ( , )N

ν
ν
N

ν
N

ν
NBH( ) BH( )s s s s

(1.8)

represented in terms of the approximate BH(Ns) eigenstates of H. Sub-
stituting the BHE(Ns) wave function into Eq. (1.3a), we obtain the
following expression for the EPD

∑ ∑= −
′

′ ′
′ρ t b b E E t ρx x( , ) cos[( ) /ℏ] ( )N

ν ν
ν
N

ν
N

ν
N

ν
N

N
νν

e
BH( )

e,BH( )
s s s s s

s (1.9)

where

∫ ∫≡ ′′ ∞
′ =[ ( ) ( )]ρ d dx r R r R r R( ) Ψ , Ψ ,N

νν
ν

N
ν

N
r xe,BH( ) 1 0

BH( ) BH( )
s

s s
1 (1.10)

In like manner, we get

∑ ∑= −
′

′ ′
′t b b E E tj x J x( , ) sin[( ) /ℏ] ( )N

ν ν
ν
N

ν
N

ν
N

ν
N

N
νν

e
BH( )

e,BH( )
s s s s s

s
(1.11)

where

∫ ∫≡ ′

∇ − ∇

′

∞

′ ′ =[ ( ) ( ) ( ) ( )]
μ

d d

J x

r R

r R r R r R r R

( )
ℏ

2

Ψ , Ψ , Ψ , Ψ ,

N
νν

ν
N

ν
N

ν
N

ν
N

r r r x

e,BH( )

e
1 0

BH( ) BH( ) BH( ) BH( )

s

s
1

s s
1

s
1

(1.12)

and μe is the reduced mass of the electron with respect to the nuclei. It

is interesting that the auxiliary quantity
′J x( )N

νν
e,BH( )s has dimensions of

flux density, as well as a form reminiscent of that of the EFD (see Eq.
(1.3b)), except that it involves two (approximate) stationary eigenstates
of H. Hence, we refer to

′J x( )N
νν
e,BH( )s loosely as the stationary electronic

transition flux density. We note that it is the analogue of the “transition
current density” defined by Nafie [19]. We emphasize that, although
the process under consideration is electronically adiabatic, its descrip-
tion nevertheless in principle requires the participation of all electronic
states. Otherwise, the quantity of principal interest, the EFD, may
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vanish. If, for example, only a single electronic state is involved, as in
the case of either the BOA or first-order BHE, then the EFD is zero. Only
for orders ⩾N 2s does the BHE yield non-zero EFD (see Fig. 3 below).
The working hypothesis is, of course, that as Ns increases, tj x( , )N

e
BH( )s

should converge to the exact EFD, in parallel with the expected con-
vergence of the eigenfunctions Ψν

NBH( )s and corresponding eigenvalues
Eν

NBH( )s .
Plugging Eqs. (1.9) and (1.11) into Eqs. (1.1) and (1.2) respectively,

we get the following specific BHE expressions for the electronic flux:

∫= − ∂ ∂F t d ρ t tx x( ) ( , )/N
V

N
e,EPD
BH( )

e
BH( )s s

(1.13a)

∫=F t d tS j x( ) · ( , )N
S

N
e,EFD
BH( )

e
BH( )s s

(1.13b)

Either formula can be employed to compute the flux. The precision to
which the two accord depends on the accuracy of the wave function
used to compute the EPD and EFD. We expect the exact wave function
to lead to the best agreement. The alternative formulas are likely to be
discrepant for less accurate EPDs and EFDs generated by the BOA and
BHE approximations. The discrepancy serves as a rough measure of the
accuracy of the wave function.

2. Theory and computational methods

2.1. Description of the model system

We take the +H2 to be so placed and oriented that the nuclear center
of mass (NCM) is located at the origin of the laboratory coordinate
frame, one proton (a) is at = RR e /2a z and the other proton (b) at

= −RR e /2b z (see Fig. 1). The position of the electron is denoted by r
and the distance between the nuclei by = −R R R| |a b . The total in-
ternal Hamiltonian (exclusive of the total center of mass contribution)
is

= − ∂
∂

+
∈

− ∇ −
∈

−
∈

= − ∂
∂

+

H
μ R

e
π R μ

e
π r

e
π r

μ R
H R

ℏ
2 4

ℏ
2 4 4

ℏ
2

( )

a b
r

2

n

2

2

2

0

2

e

2
2

0

2

0
2

n

2

2 e
(2.1)

where the second line implicitly defines the electronic Hamiltonian
H R( )e , which depends parametrically on R. The symbols appearing in
Eq. (2.1) are defined as follows: = +μ m M m M/( )ab abe e e ,

=μ M M M/a b abn , = +M M Mab a b, = =M M Ma b p, and
=M m/ 1836.15267245p e ; ∈0 is the permittivity of vacuum; ℏ is the re-

duced Planck constant. The distance of the electron from proton α is
= −r r R| |α α , where =α a b, .
Since the potential energy is cylindrically symmetric, we can write

the complete (internal) eigenfunction of H in the form

=R r θ R i ϕ πrΨ ( , ) Ψ( , , )exp( Λ )/ 2C (2.2)

where r θ ϕ( , , ) are spherical coordinates of the electron and Λℏ is the z-
component of the electronic angular momentum (i.e., i ϕ πexp( Λ )/ 2 is
the normalized eigenfunction of = − ∂ ∂L i ϕℏ /z ). Here we are concerned
only with states of +H2 having +Σg

2 symmetry, for which =Λ 0.
Therefore, to describe these eigenfunctions we require only the co-
ordinates r θ R, , and . Using the multipole expansion [20]

∑
−

=
=

∞
<

>
+

r
r

P θ
r R

1
| |

(cos )
α l

α
l

α
l l α

0
1 (2.3)

we can cast the (constrained) Hamiltonian in terms of these coordinates
as

∑ ∑

= − ∂
∂

+
∈

− ⎡
⎣⎢

∂
∂

⎛
⎝

∂
∂

⎞
⎠

+ ∂
∂

⎛
⎝

∂
∂

⎞
⎠

⎤
⎦⎥

−
∈ = =

∞
<

>
+

H
μ R

e
π R μ r r

r
r r θ θ

θ
θ

e
π

r
r

P θ

ℏ
2 4

ℏ
2

1 1
sin

sin

4
(cos )

α a b l

α
l

α
l l α

2

n

2

2

2

0

2

e
2

2
2

2

0 , 0
1

(2.4)

Here P θ(cos )l α is the Legendre polynomial; =θ θcos cosa and
= −θ θcos cosb ; =<r r Rmin( , )α α and =>r r Rmax( , ).α α

2.2. Eigenstates of the complete Hamiltonian

2.2.1. “Exact” eigenstates
In Appendix A of the Supplementary Information (SI) we outline our

method of determination of highly accurate (henceforth for con-
venience referred to as “exact”) eigenstates of the complete Hamilto-
nian H. The properties computed from wave functions based on these
serve as benchmarks for judging the quality of results obtained through
alternative approximations (see Sections 2.2.2 and 2.2.3). The exact
eigenfunctions are expressed as [4]

∑ ∑ ∑=
= =

∗

=

−r θ R c r B r χ θ B RΨ ( , , ) ( ) (cos ) ( )λ
i

N

l

l

j

N

ilj
λ

i l j
1 0 1

1
e max n

(2.5)

where the constant coefficients cilj
λ and eigenvalues Eλ are found as

described in Appendix A. Here χl, the normalized eigenfunction of the
electronic angular momentum L2, is given by

= +χ θ l P θ(cos ) (2 1)/2 (cos )l l in terms of P θ(cos )l , the Legendre
polynomial of degree l; B r( )i and B R( )j are B-spline functions [21,22];
Ne and Nn are the numbers of B-splines describing the electronic and
nuclear motion, respectively. Note that the electronic and nuclear B-
spline functions depend on Ne and Nn, respectively, but to simplify the
notation, we do not explicitly indicate this dependence henceforth. The

+Σg symmetry of the system implies that the summation on l is restricted
to even numbers = …l l0, 2, max. This restriction is indicated by the as-
terisk (henceforth, for the sake of notational simplicity, the asterisk is
suppressed). The upper limit lmax (equivalent to the maximum elec-
tronic angular momentum, according to the relation = +L χ l l χ( 1)ℏl l

2 2 )
is related to the number Nl of eigenfunctions χl by = +N l /2 1l max . We
take the eigenfunctions Ψλ to be real and orthonormal, i.e.

∫ ∫ ∫ =
∞ ∞

−
′ ′dR dr r d θ r θ R r θ R δ(cos ) Ψ ( , , )Ψ ( , , )λ λ λλ0 0

2
1

1

(2.6)

2.2.2. The Born-Huang expansion (BHE)
The alternative method of determining eigenstates of H proceeds viaFig. 1. Schematic diagram of aligned +H2 showing coordinates.
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the Born-Huang expansion (BHE) [18]

∑=r θ R ϕ r θ R χ RΨ ( , , ) ( , ; ) ( )ν
n

n nν
BH

(2.7)

where, in principle, the summation on n runs over the complete (in-
finite) set of electronic energy eigenfunctions ϕn, which satisfy the ei-
genvalue equation

=H R ϕ r θ R V R ϕ r θ R( ) ( , ; ) ( ) ( , ; )n n ne (2.8)

(The numerical solution of Eq. (2.8) is detailed in Appendix B (see Eq.
(B.6))). In practice, we truncate the summation on n in Eq. (2.7) to

−N 1s terms, where Ns denotes the total number of electronic states
(the ground state is designated as 0). Retaining the terminology in-
troduced in Section 1, we refer henceforward to Ns as the “order” of the
BHE. Thus, the Ns -order wave function corresponding to the exact (i.e.,
infinite-order) one in Eq. (2.7), is written

∑=
=

−

r θ R ϕ r θ R χ RΨ ( , , ) ( , ; ) ( )ν
N

n

N

n nν
NBH( )

0

1
s

s
s

(2.9)

where the superscript Ns on χnν
Ns emphasizes the dependence of χnν

Ns on
the order.

We determine the Ns-order BHE eigenstates of H by a procedure
analogous to that employed to find the “exact” eigenstates. Thus, we
suppose that the nuclear wave functions χnν

Ns can be expanded in terms
of B-splines

∑=
=

χ R c B R( ) ( )nν
N

j

N

nj
ν N

j
1

,
n

s s

(2.10)

so that the BHE eigenfunctions can be represented as

∑ ∑=
=

−

=

r θ R c ϕ r θ R B RΨ ( , , ) ( , ; ) ( )ν
N

n

N

j

N

nj
ν N

n j
BH( )

0

1

1

,s
s n

s

(2.11)

The constant coefficients cnj
ν N, s and eigenvalues Eν

NBH( )s are then
found in the manner detailed in Appendix B of the SI. We take the
Ψν

NBH( )s to be real and orthonormal.

2.2.3. The Born-Oppenheimer Approximation (BOA)
The standard BOA wave function for the electronic ground state is

expressed as a simple product

=r θ R ϕ r θ R χ RΨ ( , , ) ( , ; ) ( )ν ν
BOA

0 0
BOA (2.12)

where the nuclear wave functions χ R( )ν0
BOA are real and orthonormal.

By analogy with Eq. (2.10) we expand the latter in B-splines as

∑=
=

χ R c B R( ) ( )ν
j

N

j
ν

j0
BOA

1
0

,BOA
n

(2.13)

thereby obtaining from Eq. (2.12)

∑=
=

r θ R c ϕ r θ R B RΨ ( , , ) ( , ; ) ( )ν
j

N

j
ν

j
BOA

1
0

,BOA
0

n

(2.14)

where the constant coefficients c j
ν
0

,BOA and energy eigenvalues E ν0
BOA are

determined as outlined in Appendix C of the SI. That the χ R( )ν0
BOA are

real and orthonormal implies that the Ψν
BOA are likewise.

For the sake of consistency in comparing Ns-order BHE (Section
2.2.2) and BOA (Section 2.2.3) results with the exact results, we employ
the same parameters for which the latter converge: =N 80e , =N 13l ,

=N 100n , =r a10max 0 and =R a20max 0. (See Appendix A of the SI.)

2.3. Time evolution of the system and its dynamical properties

2.3.1. Wave functions
Since the exact eigenfunctions {Ψ }λ constitute a complete ortho-

normal set of basis functions on the full electronic-nuclear space, we
can express any wave function that satisfies the Schrödinger equation

by

∑= −r θ R t a iE t r θ RΦ( , , , ) exp( /ℏ)Ψ ( , , )
λ

λ λ λ
(2.15a)

where the constant coefficients (amplitudes) are given by

∫ ∫ ∫=
∞ ∞

−
a dR dr r d θ r θ R r θ R(cos )Ψ ( , , )Φ( , , , 0)λ λ0 0

2
1

1

(2.15b)

in terms of the initial ( =t 0) wave function. For the approximate Ns-
order BHE and the BOA we have the analogues of the exact expressions
(Eq. (2.15)):

∑= −r θ R t b iE t r θ RΦ ( , , , ) exp( /ℏ)Ψ ( , , )N

ν
ν
N

ν
N

ν
NBH( ) BH( )s s s s

(2.16a)

∫ ∫ ∫=
∞ ∞

−
b dR dr r d θ r θ R r θ R(cos ) Ψ ( , , ) Φ( , , , 0)ν

N
ν

N
0 0

2
1

1 BH( )s s

(2.16b)

and

∑= −r θ R t c iE t r θ RΦ ( , , , ) exp( /ℏ)Ψ ( , , )
ν

ν ν ν
BOA BOA BOA BOA

(2.17a)

∫ ∫ ∫=
∞ ∞

−
c dR dr r d θ r θ R r θ R(cos ) Ψ ( , , )Φ( , , , 0)ν ν

BOA
0 0

2
1

1 BOA

(2.17b)

We note that the exact expansion (2.15a) solves the Schrödinger
equation exactly, whereas the Ns-order BHE (Eq. (2.16a)) and BOA (Eq.
(2.17a)) expansions solve it only approximately.

2.3.2. Initial state
We envision the initial state of the +H2 to be prepared by photo-

ionization of the aligned H2 molecule in the vibrational ground state
=ν 0 ( )χ00

H2 of the electronic ground state [ ( )]ϕ Rr r, ;0
H

1 22 , as depicted in
Fig. 2. We take χ00

H2 from Ref. [23]. We approximate the probability
amplitudes of the initial vibrational states of the +H2 in the BOA by the
Franck-Condon factors

∫≡
∞

f dRχ R χ R( ) ( )ν ν0 0
BOA

00
H2

(2.18)

where χ R( )ν0
BOA denotes the νth vibrational excited-state eigenfunction

of the electronic ground state of +H2 (see Eq. (C.2) of Appendix C of the
SI). The initial wave function of the +H2 is taken to be

Fig. 2. Five lowest potential curves for + +H ( Σ )g2
2 with (BOA) vibrational levels

embedded in ground-state potential curve. Solid lines correspond to present
method with Ne= 80 electronic B-splines and Nl=13 Legendre polynomials
(see Eq. (B.6) of Appendix B of the SI); dots correspond to results obtained by
exact method of Ref. [25]. Also shown is a schematic depiction of preparation of
initial state by photo-ionization of +H ( Σ )g2

1 in Franck-Condon approximation.
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∑= =
=

r θ R ϕ r θ R f χ R ϕ r θ R χ RΦ( , , , 0) ( , ; ) ( ) ( , ; ) ( , 0)
ν

N

ν ν0
0

0
BOA

0 0
BOA

0

(2.19)

In Eq. (2.19) + =N 1 180 is the number of vibrational states of +H2 in the
electronic ground state in the BOA; χ R( , 0)0

BOA denotes the initial nu-
clear wave packet of +H2 . We note that ∑ == f 0.98ν

N
ν0
20 We therefore re-

normalize the nuclear wave packet by the factor ∑ = f1/ ν
N

ν0
20 . From a

physical point of view, this adjustment is equivalent to neglecting the
small probability (=0.02) of dissociation of +H2 during photo-ionization
of H2. From a mathematical point of view, it is necessary because the
vibrational bound states χ ν0

BOA are not complete (i.e., the continuum
states are neglected). The amplitudes, given formally by expressions in
Eqs. (2.15b), (2.16b) and (2.17b), are worked out in terms of the ex-
pansion coefficients in Appendix D of the SI.

2.3.3. Dynamical observables
We characterize the dynamics of the +H2 by the following

observables: nuclear probability density (NPD),
′ = 〈 ′ − 〉ρ R t t δ R R t( , ) Φ( )| ( )|Φ( )n ; nuclear flux density (NFD),
′ = 〈 ′ − 〉j R t t δ R R R t( , ) Φ( )| ( ) ̇ |Φ( )n ; electronic probability density

(EPD), ′ = 〈 ′ − 〉ρ t t δ tr r r( , ) Φ( )| ( )|Φ( )e ; and electronic flux density
(EFD), ′ = 〈 ′ − 〉t t δ tj r r r r( , ) Φ( )| ( ) ̇ |Φ( )e . In these formulas ′R and ′r
stand for points of observation in the NCM frame. Using the specific
expressions for the exact wave function (Eq. (2.15a)), we have [6]

∫ ∫∑

∑

′ = ′

′ = ′

′
′ ′

∞

−

′
′

′ ′
′
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(2.20a)
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∂
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∫

∫

∑ ∑

∑ ∑

∑ ∑ ∑ ∑

′ ′

= ∇

=

∂
∂

+ ∂
∂

= ′ ′ = ′ ′

′
′ ′

∞
′ = ′ = ′

′
′ ′

∞

′ = ′ = ′

′
′ ′

′

′>
′

r θ t

a a ω t dR r θ R
μ

r θ R

a a ω t dR

r θ R
μ r r θ

r θ R

a a ω t r θ r θ t

j

e e

j j

( , , )

sin( ) [Ψ ( , , ) ℏ Ψ ( , , )]

sin( )

[Ψ ( , , ) ℏ [ 1 ]Ψ ( , , )]

sin( ) ( , ) ( , , )

λ λ
λ λ λλ λ λ r r θ θ

λ λ
λ λ λλ

λ r θ λ r r θ θ

λ λ
λ λ λλ

λλ

λ λ λ
e λλ

r

e

0 e
,

0

e
,

e ,
(2.20d)

where = −′ ′ω E E( )/ℏλλ λ λ and, for the purpose of simplifying the nota-
tion, the stationary quantities ′ρλλ and ′jλλ are implicitly defined (e.g.,

∫′ ′ ≡ ⎡⎣ + ⎤⎦
′ ∞ ∂

∂
∂

∂ ′ = ′ = ′r θ dR r θ R r θ Rj e e( , ) [Ψ ( , , ) Ψ ( , , )]λλ
λ μ r r r θ θ λ r r θ θe 0

ℏ 1
,

e
).

Likewise, for later convenience we introduce the auxiliary quantity
′ ′ ≡ ′ ′ − ′ ′′ ′ ′

′ ′r θ t a a ω t r θ r θj j j( , , ) sin( )[ ( , ) ( , )]e λλ λ λ λλ
λλ λ λ

, e e . The same ex-
pressions hold for the Ns-order BHE wave function (see Eq. (2.16a)),
except a is replaced by bNs, λ by v, and ′ωλλ by

= −′ ′ω E E( )/ℏνν
N

ν
N

ν
NBH( ) BH( ) BH( )s s s ; likewise for the BOA wave function (see

Eq. (2.17a)) with a replaced by cBOA, λ by v, and ′ωλλ by
= −′ ′ω E E( )/ℏνν ν ν

BOA BOA BOA . Appendix E of the SI derives detailed ex-
pressions for the stationary quantities in terms of the expansion coef-
ficients.

2.3.4. The electronic flux
We also compute the electronic flux from a ball of radius r centred on

the NCM, F r t( , )e . From the continuity equation for the electrons we
have

∫ ∫= ∇ = − ∂
∂

F r t dV t
t

dVρ tj r r( , ) · ( , ) ( , )
V Ve e e (2.21)

where V is the volume of the ball. Using the divergence theorem, we
recast Eq. (2.21) as

∫ ∫− ∂
∂

=
t

dVρ t d tr S j r( , ) · ( , )
V Se e (2.22)

where S is the surface of the ball and dS is the directed element of
surface area. In terms of spherical coordinates =d r θdθdϕS esin r

2 and
=dV r dr θdθdϕsin2 . We therefore have the explicit relation

∫ ∫ ∫− ′ ′ ∂ ′ ∂ =
− −

dr r d θ ρ r θ t t r d θ j r θ t(cos ) ( , , )/ (cos ) ( , , )
r

r0
2

1

1
e

2
1

1
e

(2.23)

where j re is the radial component of the EFD. We may use either
member of Eq. (2.23) to compute the desired flux. For future reference,
we call the expression on the LHS F r t( , )e,EPD and the one on the RHS
F r t( , )e,EFD . That is, the formula on the LHS utilizes the EPD, while the
one on the RHS uses the EFD. The degree to which the two members of
Eq. (2.23) agree numerically depends on the accuracy of the wave
function. Being the most accurate, the exact wave function (Eq. (2.15a))
should satisfy the relation =F r t F r t( , ) ( , )e,EPD e,EFD with the greatest
precision. Indeed we find that it does so (see Section 3.4). However, the
less accurate wave functions generated by the BHE and BOA techniques
are not expected to obey Eq. (2.23) as precisely. We assume the dis-
crepancy between the two members of Eq. (2.23) can be taken as a
measure of the accuracy of the wave function.

Explicit expressions F r t( , )e,EPD and F r t( , )e,EFD in terms of ampli-
tudes and expansion coefficients are worked out in Appendix F of the SI.

2.3.5. Complementary observables
Three additional observables that enter the discussion in Section 3

are the autocorrelation of the wave function, the mean total energy of
the system, and the mean internuclear separation. According to Eq.
(2.15a), the exact autocorrelation function is given by

∑〈 〉 = −t a iE t hΦ(0)| Φ( ) exp( / )
λ

λ λ
2

(2.24)

The exact mean total energy is

∑〈 〉 =t H t a EΦ( )| |Φ( )
λ

λ λ
2

(2.25a)

From Eqs. (2.16a) and (2.17a) we get the Ns-order BHE and BOA
expressions

∑〈 〉 ≡ 〈 〉 = ( )H t t H t b E( ) Φ ( )| |Φ ( )N
N N

ν
ν
N

ν
N

BH( )
BH( ) BH( ) 2

s
s s s s

(2.25b)

∑〈 〉 ≡ 〈 〉 =H t t H t c E( ) Φ ( )| |Φ ( ) ( )
ν

ν νBOA
BOA BOA BOA 2 BOA

(2.25c)

where we assume that Ψν
NBH( )s and Ψν

BOA are (approximate) eigenvectors
of H.

The exact expected value of the internuclear separation is given by

∑ ∑〈 〉 = 〈 〉 =
′

′ ′ ′R t t R t a a ω t R( ) Φ( )| |Φ( ) cos( )
λ λ

λ λ λλ λλ
(2.26)

where

∫ ∫ ∫=′
∞ ∞

−
′R dR dr r d θ r θ R R r θ R(cos )Ψ ( , , ) Ψ ( , , )λλ λ λ0 0

2
1

1

(2.27)

The explicit expression for ′Rλλ in terms of the expansion coefficients is
given in Appendix G of the SI.
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3. Results and discussion

We restrict our attention to aligned + +H ( Σ )g2
2 vibrating in the elec-

tronic ground state, because it is the only realistic system for which
highly accurate numerical (referred to as “exact”) results for the re-
levant dynamic properties (i.e., concerted nuclear and electronically
adiabatic fluxes) are available. It serves as a touchstone by which we
judge the viability of the approximate methods described in Section 2
(i.e., the BOA and the sequence of BHE(Ns) of increasing order Ns). Our
hope is to develop criteria that yield sufficient accuracy at affordable
computational cost.

We remind the reader that such common terms as “adiabatic” and
“ground electronic state” implicitly assume a separation of nuclear and
electronic degrees of freedom characteristic of the BOA. This separation
is also valid for the lowest order BHE, namely =N 1s , but not so for the
higher orders >N 1s on account of the coupling of electronic states
through the nuclear kinetic energy operator. Of course, the notion of
separation of nuclear and electronic motion is totally meaningless in the
“exact” case, where all particles are treated on the same footing.
Nevertheless, it is convenient for purposes of analysis to retain the BOA-
based terminology. We emphasize that we consistently use the term
“exact” to refer to the highly numerically accurate treatment summar-
ized in Section 2.2.1, which of course is in fact approximate. The
“exact” description approaches the true one in the limit of infinite bases.
Below we have occasion to distinguish “exact” from “true.”

We note a peculiarity due to the alignment of the nuclei of the
+ +H ( Σ )g2

2 . Since the nuclei are constrained to vibrate in one physical
dimension, the NFD is equal to the nuclear flux. Both have dimensions
of 1/time. In contrast, the EFD, a vector field in three-dimensional
space, has dimensions of ×1/time (length)2. However, the electronic
flux, which results from the integration of the EFD over the surface of a
ball (see Eq. (2.22)), has dimensions of 1/time.

We find that the convergence of the approximate results to the exact
ones varies from rapid to poor, depending on the particular quantity.
Some insight into the variable rate of convergence is afforded by ex-
amining the working expressions in Eqs (2.20) and (E.1) of Appendix E
of the SI for the NPD, NFD, EPD, and EFD and in eqs (2.21)–(2.23) (plus
Eqs. (F.1) and (F.2) of Appendix F of the SI) for the electronic flux. We
observe that all of these expressions consist of summations of products
of expansion coefficients of the initial wave function (Eqs.
(2.15)–(2.17)) times temporal and spatial factors. The (sinusoidal)
temporal factors depend on transition frequencies, which in turn de-
pend on differences between eigenenergies. The spatial factors depend
on the coefficients of the basis functions in terms of which the

corresponding eigenfunctions are expanded (see Eqs. (2.5), (2.11), and
(2.14)). The noted factorizations suggest that we begin our presentation
with a systematic examination of the convergence of the approximate
eigenenergies to the exact values.

3.1. Eigenenergies, mean energies, and potential energy curves

Table 1 compares the approximate eigenenergies with the exact
eigenenergies for the lowest 18 bound states. The BOA energies are also
shown in Fig. 2 embedded in the potential-energy curve of the elec-
tronic ground state. It is interesting that the BOA yields energies that
would appear to be “better” than the exact ones because they are lower
than the latter. The difference between the BOA and exact energy de-
creases uniformly from 0.000 055 Eh to 0.000 046 Eh as the vibrational
energy eigenvalue v increases from v=0 to v=17. In fact, it can be
shown that the BOA eigenvalue, which results from use of an approx-
imate Hamiltonian, is actually a lower bound on the true energy [24].
The one-term BHE ( =N 1s ), which includes electron-nuclear coupling
through the non-adiabatic coupling term (NACT)T R( )00

(2) (see Eq. (B.10)
of Appendix B of the SI), yields eigenenergies that lie above their exact
counterparts. As indicated in Table 1 quantitatively, and in Fig. 3
schematically, as the order of the BHE(Ns) increases, the approximate
eigenenergies decrease monotonically toward the exact correlates. In
fact, the eigenenergies =Eν

NBH( 5)s agree with the exact ones already to a

Fig. 3. Schematic depicting dependence of the convergence of lowest eigen-
energy of + +H ( Σ )g2

2 to the exact energy on the order Ns of the BHE. Vertical
dashed line separates methods that yield zero (left of line) and non-zero elec-
tronic flux density.

Table 1
Lowest 18 eigenenergies of aligned + +H ( Σ )g2

2 calculated by BOA, BHE(Ns = 1, 2, …5) and highly accurate (exact) methods. All procedures employ Ne= 80 electronic
B-splines, Nl=13 Legendre polynomials and Nn= 100 nuclear B-splines.

ν BO Ns= 1 Ns= 2 Ns=3 Ns= 4 Ns= 5 Accurate

0 −0.59694012 −0.59688449 −0.59688468 −0.59688471 −0.59688475 −0.59688476 −0.59688495
1 −0.58695337 −0.58689833 −0.58689886 −0.58689889 −0.58689908 −0.58689912 −0.58689971
2 −0.57758198 −0.57752749 −0.57752832 −0.57752855 −0.57752870 −0.57752877 −0.57752971
3 −0.56871710 −0.56866308 −0.56866416 −0.56866452 −0.56866471 −0.56866482 −0.56866604
4 −0.56042953 −0.56037584 −0.56037714 −0.56037764 −0.56037788 −0.56037802 −0.56037949
5 −0.55264538 −0.55259195 −0.55259343 −0.55259409 −0.55259436 −0.55259453 −0.55259619
6 −0.54541767 −0.54536445 −0.54536610 −0.54536691 −0.54536721 −0.54536741 −0.54536923
7 −0.53866639 −0.53861332 −0.53861510 −0.53861607 −0.53861639 −0.53861662 −0.53861852
8 −0.53245691 −0.53240398 −0.53240585 −0.53240697 −0.53240731 −0.53240755 −0.53240954
9 −0.52672019 −0.52666736 −0.52666944 −0.52667055 −0.52667089 −0.52667113 −0.52667318
10 −0.52151827 −0.52146557 −0.52146774 −0.52146896 −0.52146930 −0.52146956 −0.52147153
11 −0.51679932 −0.51674679 −0.51674909 −0.51675024 −0.51675057 −0.51675082 −0.51675278
12 −0.51262439 −0.51257211 −0.51257440 −0.51257556 −0.51257587 −0.51257612 −0.51257799
13 −0.50895459 −0.50890266 −0.50890493 −0.50890604 −0.50890633 −0.50890656 −0.50890824
14 −0.50584304 −0.50579163 −0.50579380 −0.50579479 −0.50579504 −0.50579525 −0.50579679
15 −0.50328729 −0.50323662 −0.50323853 −0.50323936 −0.50323957 −0.50323975 −0.50324109
16 −0.50128780 −0.50123807 −0.50123964 −0.50124033 −0.50124049 −0.50124064 −0.50124171
17 −0.49977479 −0.49972585 −0.49972724 −0.49972784 −0.49972798 −0.49972811 −0.49972904
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precision of less than 10−6Eh. Nevertheless, close inspection of Table 1
shows that the convergence of the BHE(Ns) is actually extremely slow.
A rough estimate is that to increase the accuracy of the BHE(Ns) en-
ergies by one order of magnitude, one must increase the order Ns of the
BHE by at least 10.

The deviation of the approximate (BOA and BHE(Ns)) eigenenergies
from the exact ones engenders a corresponding deviation in the dif-
ference between pairs of eigenvalues and therefore in the transition
frequencies ω that enter the expressions for the dynamical quantities
(see, e.g., Eq. (2.20)). To assess the impact of the deviation, we con-
sider, for example, the transition between states 2 and 3, for which the
exact energy gap = −E E EΔ 3 2 corresponds to a frequency

= = −ω EΔ /ℏ 0.365fs 1 and, in the harmonic approximation, a corre-
sponding period of 17.2fs. Our choice of this particular pair of states is
motivated by our observation that the approximate period of oscillation
of the nuclear wave packet, as indicated by the plots of the absolute
square of the autocorrelation of the wave function (see Eq. (2.24)) and
the expected value of the internuclear separation (see Eq. (2.26)), is
about 17.8fs (see Fig. 4).

Examination of Table 1 reveals that the approximate gaps between
these eigenenergies are slightly larger than the exact gap. Hence, the
vibrational periods (in the harmonic approximation) are slightly shorter
than the exact periods, namely by 2.34as, 1.44as, 0.70as and 0.62as for
the BOA and BHE(1), BHE(3) and BHE(5), respectively. These small
deviations, all less than 3as, may appear to be negligible, but their in-
fluence on the dynamical quantities becomes significant at long time.
The longer the time the greater the number of vibrational periods and
the greater the impact. For example, by t=5000fs the vibration has
undergone about =5000/17.2 291 periods. Hence, in the case of the
BOA, the small deviations of 2.34as per period accumulate to a total of

× =291 2.34as 0.68fs, which corresponds to a fraction =0.68/17.2 .04
(or 0.25 rad) of the vibrational period. For the several lowest orders of
the BHE(Ns), namely Ns = 1, 3, 5 the deviations that accumulate over
5ps are, respectively, 0.42fs, 0.20fs, and 0.18fs, which respectively
correspond to 2.4%, 1.2% and 1%. We conclude that though the tem-
poral factors in the expressions for the concerted flux densities and
fluxes are accurate for all approximations at short times, the accumu-
lation of deviations leads to phase shifts in the temporal factors that
render the associated dynamical quantities increasingly unreliable at
sufficiently long times, first for the BOA and then also for the BHE(Ns)
with increasing Ns .

The exact mean energy is, according to Eq. (2.25),
〈 〉 = −H t( ) 0.5588757Eh, whereas the approximate mean energies are,
respectively, − 0.5589378Eh, − 0.5588752Eh, − 0.5588745Eh, and
− 0.5588751Eh for the BOA and BHE orders 1, 3 and 5. We note that the

BOA mean energy lies below the exact mean energy by 0.000062Eh. The
suppression results from two effects. First, all the BOA eigenenergies lie
below the corresponding exact ones by 0.000056 Eh to 0.000 045 Eh for
the reason discussed above. Hence, the mean BOA energy is less than
the exact mean energy by a similar shift of, say 0.000050 Eh, which
accounts for about 80% of the lowering. Second, even though the exact
wave function is represented by a huge basis set, that basis set is
nevertheless incomplete. This accounts for the additional 20%.

It is perhaps surprising that the BHE(Ns) mean energies do not
converge monotonically to the exact mean energy. In fact, the best
agreement is obtained for Ns = 1, closely followed by Ns = 5, whereas
the agreement is worse for Ns = 3 than for Ns= 1 or 5. The non-
monotonous convergence means that the few low-order mean energies
cannot be used to extrapolate reliably to higher-order ones. In light of
the above observation of monotonic convergence of the eigenenergies,
this result seems contradictory. Some insight into the apparent con-
tradiction is afforded by examination of the expression in Eq. (2.25),
which indicates that 〈 〉H t( ) involves not only the eigenenergies, but
also the expansion coefficients bν

Ns. We then recall that whereas the
quality of the eigenenergies is effectively constrained by a variation
principle (i.e., they must lie above the true eigenenergies), the corre-
sponding eigenfunctions (or expansion coefficients) do not profit from
analogous constraints.

The non-monotonous convergence of the expansion coefficients of
the eigenfunctions, and of the properties that depend on them, may be
rationalized by an examination of the representation of the BHE(Ns)
eigenfunction given by Eq. (2.9). We emphasize that all BHE(Ns) ei-
genfunctions, and the BOA eigenfunction as well (see Eq. (2.12)), use
the same electronic energy eigenfunctions ϕn, but different nuclear
wave packets (χnν

Ns or χ ν0
BOA). The ϕn are solutions of the electronic ei-

genvalue equation (Eq. (2.8)) (see Appendix B of the SI). The corre-
sponding electronic eigenergies = …V R n( ), 1, 2, 5n are shown in
Fig. 2, where they are compared with the results of the “exact” solutions
of Hadinger et al. [25]. The essentially perfect agreement suggests that
the present representation of the electronic wavefunctions in terms of
Ne= 80 electronic B-splines and =N 13l Legendre polynomials is reli-
able. Thus, the non-monotonous convergence of the BHE(Ns) must be
due to a similar non-monotonous character of the representation of the
χnν

Ns. We note that with increasing order Ns of the BHE(Ns), not only the
number of ϕn (which do not depend on Ns) but also the number of χnν

Ns

(which depend on Ns) increases. Since we aim for a fair comparison of
all approximate techniques, we use the same basis sets for all, in par-
ticular the same set of nuclear B-splines. The price of this “fair com-
parison” is that as the order Ns increases, the fixed number (Nn= 100)
of nuclear B-splines must be shared by an ever increasing number of
χnν

Ns. This sharing leads to antagonistic effects. On one hand, the quality
of the representation of the total wave eigenfunction improves with
increasing Ns. On the other hand, the quality of the numerical re-
presentation of the individual components of the χnν

Ns may decrease.
Hence it is quite possible that low-order results may be closer to the
exact result than higher-order results.

3.2. Nuclear probability and flux densities

Fig. 5 compares ρ R t( , )n (NPD) and j R t( , )n (NFD) for the BOA and
BHE(Ns) with their exact correlates at three widely separated times. At
t=10fs all approximations are in essentially perfect agreement with
the exact (i.e., the discrepancies are less than the width of the line on
the scale of the plots). The second panel of Fig. 5 (t=1ps) indicates
that after more than (1000/18=) 55 periods, deviations of the ap-
proximate curves from the exact are still scarcely perceptible. Only at
the longest time examined (t=5ps or∼ 277 periods) do we see sig-
nificant discrepancies. The quality of the agreement with the exact plot
appears to increase in the order BOA, Ns= 1, Ns = 2, Ns = 3. It is re-
markable, however, that the BOA does very well over durations
( =t ps1 ) much longer than those typically required to describe

Fig. 4. Time evolution of mean internuclear distance 〈 〉R t( ) and squared
modulus of autocorrelation of the wave function 〈 〉t| Φ(0)| Φ( ) |2. Corresponding
vibrational periods are approximately 18.4fs and 17.3fs, respectively.
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electronic dynamics. Nevertheless, the plots show that eventually the
BOA breaks down. Hence, one should take care in the treatment of the
NPD and NFD for slower processes (e.g., chemical reactions) by the
BOA. Reliable quantum simulations of the NPD and NFD for long times
call for the BHE(Ns) approach, albeit at significantly higher computa-
tional expense compared with the BOA.

3.3. Electronic probability and flux density

Exploiting the cylindrical symmetry of aligned + +H ( Σ )g2
2 , Fig. 6 shows

colour-coded contours of the exact EPD in the x-z plane at 8fs, 10fs, 1ps,
and 5ps. These plots are indistinguishable from the BOA or BHE
(Ns = 1,3,5) plots. A quantitative comparison is provided by Fig. 7,
which shows the 1D EPD (ρ r t( , )e ) derived by integration of the 3D EPD
over the surface of a sphere of radius r centred on the NCM. The BOA,
BHE(Ns= 1,3,5) and exact results nearly coincide on the given scale.
We conclude that the BOA is good enough for calculations of the EPD,
even for times up to 5ps. The robustness of the EPD compared with the
NPD, as computed by the BOA, is due to the smoother shape of the EPD
compared with the NPD, which is quite wavy (Fig. 5). This is traceable
to the huge disparity in mass between electron and proton.

Both the BOA and BHE(Ns= 1) wave functions consist of the simple
product of the real ground-state electronic eigenfunction ϕ0 and a
complex nuclear wave packet ( =χ N

0
1s or χ0

BOA) (see Eqs. (2.12) and
(2.9)). Both wave functions describe processes in which the electron
remains in a stationary state. It has been known since the advent of
quantum mechanics that the flux density associated with a stationary
state vanishes [8]. Hence, both the BOA (see Eq. (1.6)) and first-order
BHE(Ns= 1) yield zero EFD. In the present work we circumvent the

problem by going to higher-order BHE. For example, Fig. 6 compares
the BHE ( =N 5s ) EFD with the exact EFD, displaying “arrow” plots in
the x-z plane at t=8fs and for the same three times (t=10fs, 1ps, and
5ps) at which the NFD is examined in Section 3.2. On first glance,

== r θ tj ( , , 8ps)N
e

1s appears to agree reasonably well with the exact
=r θ tj ( , , 8ps)e , but we are saddened to draw the reader’s attention to

the fact that the BHE(Ns = 5) plot is multiplied by a factor of 5 in order
to render it visible on the scale of the exact plot. Aside from this obvious
strong discrepancy revealed in the scaling, scrutiny of the plots at later
times indicates that BHE(Ns = 5) and exact EFDs differ in both
direction and magnitude. Moreover, the discrepancy is not uniform
over any quadrant (by symmetry − = −j x z t j x z t( , , ) ( , , )x xe e ;

− =j x z t j x z t( , , ) ( , , )x xe e ; − =j x z t j x z t( , , ) ( , , )z ze e ; − =j x z t( , , )ze
−j x z t( , , )ze ).

Some understanding of the catastrophic failure of the BHE(Ns = 5)
may be acquired by analysing in depth the expression for the EFD given
by Eq. (2.20d). For the sake of convenience we focus on the EFD on the
internuclear (positive z) axis, where =θ 0 and the polar component
vanishes by symmetry. We focus further on the lowest radial cross-term
of Eq. (2.20d) that contributes to the EFD:

∫
=

=

∂
∂

− ∂
∂

= −

∞

=

j r θ t

a a ω t dR
μ

r θ R
r

r θ R r θ R
r

r θ R

a a ω t j r j r

( , 0, )

sin( ) ℏ

[Ψ ( , , ) Ψ ( , , ) Ψ ( , , ) Ψ ( , , ) ]

sin( )[ ( , 0) ( , 0)]

r

θ

r r

e ,01

0 1 01 0 e

0 1 1 0 0

0 1 01 e
01

e
10 (3.1)

Plots of a a j r( , 0)r0 1 e
01 and − a a j r( , 0)r0 1 e

10 versus r in Fig. 8 show that
j r( , 0)re
10 and j r( , 0)re

10 are nearly identical. The difference

Fig. 5. Nuclear probability density (ρ R( )n ) and nuclear flux density ( j R( )n ) versus R for aligned + +H ( Σ )g2
2 at times t=10fs, 1ps, and 5ps. BOA (red dashed lines), BHE

(Ns = 1) (blue dashed lines), BHE(Ns = 3) (orange dashed lines), BHE(Ns= 5) (green dashed lines) and exact (solid black lines). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

D.J. Diestler et al. Chemical Physics 514 (2018) 67–77

74



−j r j r( , 0) ( , 0)r re
01

e
10 is therefore very small, as indicated in the lower

panel of Fig. 8 (Note that the scales in the two panels differ by a factor
of 4). Analogous results hold for the other cross-terms in Eq. (2.20d).
We conclude that the EFD is the result of a summation of pairs of terms
which are of opposite sign but of approximately the same magnitude.
As a consequence, the expression (Eq. (2.20d)) is numerically ill-con-
ditioned. This same sort of ill-conditioned behavior is exhibited by BHE
(Ns = 5), indicated by Fig. 8. The agreement of the BHE(Ns= 5)

auxiliary functions =j r( , 0)er
N

,01
5s and =j r( , 0)r

N
e ,10

5s with their exact coun-
terparts appears to be perfect. But the plot of the BHE(Ns= 5) differ-
ence disagrees markedly with that of the exact difference (Fig. 8).
Though the shape of the BHE(Ns = 5) difference plot is similar to that of
exact difference plot, the absolute values of the former are about an
order of magnitude smaller than those of the latter. Hence, in order to
compare the BHE(Ns = 5) arrow plot with the exact plot in Fig. 6, we
scale the former by a factor of 5.

Fig. 6. Electronic probability density (EPD) (grey contours) ( −a0
3) and electronic flux density (EFD) ( − −a fs0

2 1) in x-z plane for aligned + +H ( Σ )g2
2 at times t=8fs, 10fs, 1ps

and 5ps. BHE(Ns = 5), blue arrows; exact, red arrows. Magnitude of EFD indicated at upper left of each panel. Length of blue arrows multiplied by 5. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Radial electronic probability density (left panels) and radial electronic flux (right panels) for aligned + +H ( Σ )g2
2 at t=10fs, 1ps, and 5ps. Exact results (solid

black lines) are compared with BOA (red dashed lines) and BHE(Ns = 1) (blue dashed lines), BHE(Ns = 3) (orange dashed lines), BHE(Ns = 5) (green dashed lines).
Horizontal dotted lines in right panels indicate zero-valued Fe,EFD for BOA and BHE(Ns = 1). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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We anticipate analogous failures of the BHE(Ns) at higher order and
reluctantly conclude that the BHE(Ns) approach to the EFD is ill-con-
ditioned and that we must therefore seek alternative methods for
computing the electronic flux density.

3.4. Electronic flux

Plots of the radial electronic flux in aligned + +H ( Σ )g2
2 based on the

alternative formulas given by Eq. (2.23) are displayed in Fig. 7 for the
BOA and BHE(Ns = 1,3,5) approximations, as well as for the exact, at
the three widely separated times. In principle, the numerically com-
puted value of F r t( , )e,EPD should agree with that of F r t( , )e,EFD . As an-
ticipated by the discussion in Section 2.3.4, this agreement in evident in
the exact plots. Close examination reveals that the Fe,EPD based on the
approximate methods agrees reasonably well with the exact Fe,EPD, at
least for times up to 1ps. Only at 5ps do we see significant deviations
that indicate non-monotonic convergence. Fe,EPD for BHE(Ns = 5) is in
best agreement with the exact, followed closely by BHE(Ns = 1). In
slightly worse agreement than BHE(Ns = 1) is the BOA. The worst ap-
proximation is the BHE(Ns = 3). The order of the agreement of the
various approximations is remarkably similar to that found for the
mean energy (see Section 3.1), which suggests that the non-mono-
tonous convergence of the approximate Fe,EPD is due to the same effects
discussed in Section 3.1.

In sharp contrast to the behavior of the approximate Fe,EPD, the
approximate Fe,EFD disagrees grossly with the exact Fe,EFD at all times.
Since the EFD vanishes identically for both the BOA and the first-order
BHE, it is not surprising that the corresponding electronic fluxes vanish,
as indicated by the horizontal dotted lines in Fig. 7. The poor results for
the BHE(Ns = 3,5) reflect the ill-conditioned character of the EFD itself,
as detailed in Section 3.3.

We conclude that the Fe,EPD yields very good approximations to the
exact electronic flux, whereas the Fe,EFD is totally useless. Further, the
BOA approximation is already adequate for times ( ⩽t 1ps) over which
most electronic processes take place. The minor improvement brought

by the BHE does not justify that additional computational cost.

4. Conclusion

Our main purpose in this work is to develop and test approximate
methods for computing concerted electronic and nuclear fluxes asso-
ciated with the aligned +H2 ion vibrating in the electronic ground state

+Σg
2 . This system is the only one for which highly accurate numerical
(exact) results for the relevant dynamic properties are available. The
present exact results function as benchmarks by which the viability of
the approximation, namely the BOA or Ns-order BHE, is evaluated. We
find that the convergence of an approximate property to its exact cor-
relate depends strongly on the particular property.

The BHE eigenenergies decrease monotonously to their exact
counterparts as the order increases. Indeed, by fifth order =Eν

NBH( 5)s

already agrees with the exact eigenenergies to a precision of −10 E6
h. We

note, however, that the rate of convergence is extremely slow. A crude
estimate is that an increase of the order by 10 leads to an increase in the
accuracy of =Eν

NBH( 5)s by only an order of magnitude. Differences be-
tween pairs of energies, or corresponding transition frequencies, have a
critical impact on dynamical properties, which are expressed as sum-
mations of products of sinusoidal temporal factors involving the tran-
sition frequencies multiplied by spatial factors. Hence, deviations of
approximate energies from the exact ones gives rise to corresponding
deviations in the transition frequencies, which in turn lead to deviations
in the phase shifts of the sinusoidal temporal factors and consequently
to errors in the dynamical properties. We find that the BOA and first-
order BHE yield excellent results for both NPD and NFD, as well as for
EPD and Fe,EPD up to about 1ps. At longer times the higher-order BHE is
substantially more reliable, but their computation is more expensive.
Even for tiny differences between approximate and exact energies, the
errors in the phase accumulate over many periods of the vibration so
that as time increases all approximations eventually break down.

The BOA and also the first-order BHE yield zero EFD and therefore
also zero Fe,EFD. We find that although the BHE(Ns =3,5) yield non-zero
values for these properties, they are unfortunately in gross disagree-
ment with their exact correlates. We assume that in principle the BHE
must converge to the exact in the limit of infinite order, but our analysis
shows that the BHE expression for the EFD is numerically ill-condi-
tioned. The convergence is consequently non-monotonic, so that one
cannot extrapolate low-order BHE results. We recommend use of the
alternative formula Fe,EPD for the calculation of the electronic flux.

We emphasize that the development of reliable approximate nu-
merical techniques for calculating the EFD remains a major challenge.
Various approaches have been proposed [7,9–16], but to the best of our
knowledge, only two of them [7,11] have been tested against bench-
marks for realistic model systems.

We close by drawing attention to a mathematical (philosophical?)
conundrum. We repeatedly point out above that Fe,EFD vanishes in the
BOA, and that the F N

e,EFD
BH( )s should approach the true value of the elec-

tronic flux in infinite order. Then how is it possible that the BOA Fe,EPD
agrees so well with the exact flux, at least for short times? It would
appear that the BOA Fe,EPD somehow “magically” brings in the character
of the very high-order BHE that we assume would yield a high-order
F N

e,EFD
BH( )s in good agreement with the exact flux. Are we then justified in

making the apparently self-contradictory claim that the BOA in Fe,EPD
actually goes beyond the BOA, and even beyond the BHE(Ns), in Fe,EFD ?
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