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ABSTRACT
We discover a surprising property of an important class of molecular rotors. These rotors have one
(e.g. a methyl group) or two (e.g. the planar boron rotor B−

11) moieties that consist of identical nuclei
rotating in cyclic model potential energy surfaces with htot equivalent potential wells (e.g. htot = 3
for CH3, htot = 18 for B−

11). The familiar semiclassical picture of this contorsion assumes that the
potential wells support htot equivalent global minimum structures with corresponding localised
wave functions being embedded in the individual potential wells. In contrast, we show that thewave
functions of these rotors can never be squeezed into a single potential well, and hence, global mini-
mumstructures donot exist. Our quantummechanical derivationdescribes the rotors in the frameof
the proper cyclic molecular symmetry group Chtot(M) and makes use of the spin-statistics theorem
and the hypothesis of nuclear spin isomers. We show that if the identical nuclei have zero spins,
then a hypothetical localised state would violate the spin-statistic theorem. Otherwise, the hypo-
thetical localised state is ruled out as unphysical superposition of different nuclear spin isomers of
the molecular rotors.
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1. Introduction: whymolecular rotors call for
quantum descriptions

The relationship of chemistry and quantum theory is
a difficult one. Even almost a hundred years after the
foundation of quantum theory, chemistry is dominated
by a semiclassical understanding, and the question if
chemistry can be reduced to quantum theory is far from
being answered [1–11]. We add a further facet to this
debate by showing that in certain cases the motions of
molecules must be treated fully quantum mechanically.
For molecular rotors with a cyclic potential, semiclassical
simulations are physically incorrect.

Molecular rotors are molecules that show inter-
nal motions with large amplitude, ‘contorsions’, in the
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form of intramolecular rotations, such as torsions or
pseudo-rotations. In classic references [12,13], these
rotors are treated as semiclassical objects: the motion
of the nuclei is described classically, evolving on a spe-
cific potential energy surface provided by the electrons.
A necessary condition for this description is that the
Born–Oppenheimer approximation is correct [1,14,15].

One typical example for such molecular rotors is the
combined rotation and pseudo-rotation of planar boron
rotors B−

11, B
+
13, B

+
15, B

−
19, which consist of inner molec-

ular ‘wheels’ that rotate against pseudo-rotating outer
‘bearings’ [16–23]. For B−

11, for example, the inner ‘wheel’
and the outer ‘bearing’ consist of 2 and 9 boron atoms,
respectively. In the frame of the Born-Oppenheimer

© 2018 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/00268976.2018.1473651&domain=pdf
mailto:thomas.grohmann@fu-berlin.de


MOLECULAR PHYSICS 2539

approximation, the electronic ground state potential for
the contorsional motion is cyclic with htot = 2· 9 = 18
equivalent potential wells. A semiclassical description
associates the corresponding htot potential minima with
htot equilibrium structures, also called global minimum
structures, of the molecular rotors. We show that these
structures do not exist.

It is well known, of course, that quantum effects, such
as tunnelling, zero-point energy, interferences or dis-
persion [24], compromise this simplistic semiclassical
approach to chemistry in general, and tomolecular rotors
in particular. But there are more deeply rooted problems
with molecular structures. Theoreticians and philoso-
phers of chemistry have shown that quantum theory,
rigorously applied, forbids molecules to have a structure
[1,4,7–9,11,14,15,25–31]. A defined molecular structure
not only premises the Born–Oppenheimer approxima-
tion to be exact. It rejects that molecules and their envi-
ronment are entangled by Einstein–Podolsky–Rosen cor-
relations; it neglects tunnelling of nuclei between differ-
ent minima of the electronic potential energy surface; it
cannot represent a molecular eigenstate; it violates the
indistinguishability of identical nuclei that is reflected by
the permutation symmetry of the molecular Hamilto-
nian and it ignores that molecules must have spherical
shapes due to the isotropy of space. Moreover, molecu-
lar structures do not emerge automatically from quan-
tum theory; we have to put them into a calculation
of molecular eigenstates. It is possible to calculate the
eigenenergies of a molecule directly, without employing
the Born–Oppenheimer approximation [4,29–31]. But
the results from these methods cannot be interpreted in
terms of molecular structures [29,30].

Although these arguments are correct, proponents of
the semiclassical theory may not find them very con-
vincing: True, the Born–Oppenheimer approximation
fails more often than the pioneers of quantum chemistry
expected [32–34]. Yet, inmany cases, it provides an excel-
lent approximation, at least if themolecule remains in the
electronic ground state; semiclassical extensions to prop-
agations on several potential energy surfaces with surface
hopping are able to account for non-Born–Oppenheimer
effects. Moreover, the isotropy of space can be broken.
Properly designed laser fields [35–37], for example, are
able to create those directed rotational states that are
necessary to speak of a molecular structure. And as
the theory of molecular symmetry (MS) groups shows
[38–42], not all permutations of identical nuclei are fea-
sible. Permutations and permutation-inversions that do
not lead to an observable tunnelling splitting in the
molecular spectrum may be neglected. The reduced set
of permutations and permutation-inversions of identi-
cal nuclei often forms a group that is isomorphic to

a molecular point group [41], which, in turn, makes
it possible to define a molecular structure. Yes, struc-
tures are contingent rather than intrinsic properties of
molecules [1,15,27]. But for most scenarios that are rel-
evant in chemistry, the Born–Oppenheimer approxima-
tion allows for defining molecular structures in terms of
the nuclear configuration.

One might object that some molecules are known
for not having a molecular structure even within the
Born–Oppenheimer framework. Here, however, we can
prepare a quantum analogue of an equilibrium structure
in the form of transiently localised states. Consider, for
example, ammonia with its double well potential for the
umbrella inversion mode [41]. Its eigenstates are delo-
calised in both potential wells. Nevertheless, ammonia
can tunnel periodically between states that are transiently
localised in opposite wells. These states are superposi-
tions of the tunnelling doublet states. Hence, this example
suggests that we might define analogous states that are
localised in one of the potential wells formolecular rotors
with cyclic potentials, such as B−

11.
This conclusion, however, is wrong. We show that if

the contorting nuclei are identical and the potential of
the contorsion is cyclic, molecular rotors can never be
prepared in localised states that represent global min-
imum structures. Even time-dependent states that are
squeezed temporarily to (hypothetical) localised wave
packets in a single potential well must be ruled out
as physical description of such molecular rotors. This
surprising property is markedly different from famil-
iar molecular model systems with non-cyclic double
or multi-well potentials. An analysis based on the MS
groups [38–42] of themolecular rotors, the spin-statistics
theorem [41,42] and the nuclear spin hypothesis [43]
shows that localised states are unphysical. Depending
on the nuclear spin of the contorting nuclei, such states
either violate the spin-statistics theorem, or they are
superpositions of states belonging to different nuclear
spin isomers. The consequences of this result for the
molecular dynamics and spectroscopy of molecular
rotors are enormous. Molecular dynamics simulations
are rendered inadequate, because they necessarily start
out from initial conditions that mimic global minimum
structures.

Central to our derivation is the assumption that
molecules exist in the form of nuclear spin iso-
mers. For homonuclear diatomic molecules, this is an
accepted premise. Since the beginnings of quantum
mechanics, it is well known that molecular hydro-
gen, H2, exists as two nuclear spin isomers, ortho-
and para-hydrogen. Although they are interconverted
by intramolecular nuclear spin dependent interactions,
this process usually takes very long [44], much longer
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than the scenarios of laser controlled chemistry. Hence,
they can be understood as different molecular species,
which is also supported by their different properties.
Only recently, experimental studies demonstrated that
the sense of rotational motions of diatomic molecules
can be steered nuclear spin selectively [45–47]. Other
examples supporting the hypothesis that nuclear spin
isomers are stable molecular species with potentially
very different properties include the alignment of poly-
atomic molecules [48,49], the conformation dynam-
ics of molecules with observable torsions [50–54] and
the quantum dynamics through conical intersections
[55–60].

To show that localised states are unphysical repre-
sentations of molecular rotors with cyclic potentials, it
is necessary to derive their MS groups. For this pur-
pose, we determine the set of feasible permutations
of identical contorting nuclei employing simple mod-
els that facilitate the derivation, while accounting for
the essential properties of the molecular rotors. We
exemplify our derivations for two molecular rotors: the
familiar aligned methyl group and the aligned B−

11.
Their MS groups turn out to be the cyclic groups
Chtot(M). Using their irreducible representations, the
spin-statistics theorem and the nuclear spin hypothe-
sis, we identify the nuclear spin isomers of the molec-
ular rotors. Ultimately, this allows us to show that
hypothetical localised global minimum structures rep-
resented by localised wave functions would either vio-
late the spin-statistics theorem, or they would be coher-
ent superpositions of nuclear spin isomers with differ-
ent symmetries that cannot be prepared on the time
scale of contorsional periods. This leads us to the con-
clusion that semiclassical simulations are inadequate.
Molecular rotors with cyclic potentials call for quantum
descriptions.

2. How to characterise the nuclear spin isomers
of molecular rotors with cyclic potentials

To followour argument it is important to understandwhy
molecular rotors, i.e. polyatomic molecules with observ-
able internal motions with large amplitude, exist in the
form of nuclear spin isomers. Many textbooks present
the two nuclear spin isomers of homonuclear, diatomic
molecules with non-zero nuclear spin, usually called para
and ortho. Because the overall molecular wave func-
tion must be either symmetric or anti-symmetric if both
nuclei are exchanged, we can form two distinct combi-
nations of rotational and nuclear spin wave functions.
The most prominent example is molecular hydrogen,
H2. Here, the para and ortho versions combine states

with even rotational quantum numbers J with an anti-
symmetric nuclear spin function, and rotational states
with odd J with a symmetric nuclear spin wave function,
respectively. These combinations directly follow from the
spin-statistics theorem. Hence, for diatomic molecules,
different nuclear spin isomers are characterised by differ-
ent rotational energies, which are also the reason for their
distinct properties.

For molecular rotors, finding their nuclear spin iso-
mers is more involved than for diatomic molecules.
Although they again follow from the spin-statistics
theorem, the complex structure of the molecular eigen-
states, even within a zero-order treatment, and the non-
trivial symmetry of these molecules make identifying
their nuclear spin isomers challenging. Here, at least at
low temperatures, different nuclear spin isomers are char-
acterised by different symmetry combinations of rota-
tional–contorsional (rocontorsional) states and nuclear
spin states. If we consider scenarios in which electronic
transitions take place, identifying the nuclear spin iso-
mers of the molecule becomes even more complex.

To simplify the problem, we employ models in which
the contorsion, i.e. the large amplitude internal motion,
is approximately decoupled from the other molecular
motions. For this purpose, we introduce an effective
Hamiltonian, derived from the non-relativisticmolecular
Hamiltonian (Appendix 1). The nuclear spin isomers of
the molecule are then identified by different contorsional
states.

Characterising the symmetry of the eigenstates of our
model Hamiltonian requires the use of specific sym-
metry groups, commonly known as MS groups. These
are subgroups of the full nuclear permutation–inversion
group, which contain all feasible operations. Molecular
point groups, the symmetry groups that are predomi-
nantly used in molecular theory, are not suitable. First,
their operations only act on vibronic coordinates but
leave rotational and nuclear spin coordinates unaffected
[41,42]. Second, they cannot be used to classify the con-
torsional eigenstates of molecules [40]. Only permuta-
tion–inversion groups allow for classifying the symmetry
of all types of molecular states, be it the wave functions
describing electronic motions, rotations, vibrations, con-
torsions or nuclear spins [41,42]. Here, we focus on the
general structure of the MS groups for systems with fea-
sible torsions and pseudo-rotations. We show that the
relevant subgroup of the MS group for identifying the
contorsional eigenfunctions of the nuclear spin isomers
is a cyclic group. This allows us to identify the nuclear
spin isomers of the model systems in a straightforward
manner. The approach is illustrated by two illuminating
examples, an alignedmethyl group and the aligned boron
rotor B−

11.
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2.1. Origins of nuclear spin isomers: spin-statistics
theorem and nuclear spin hypothesis

Why molecules exist in the form of nuclear spin isomers
can be understood with the help of two theoretical con-
cepts, the spin-statistics theorem and the nuclear spin
hypothesis.

The spin-statistics theorem requires that molecular
states�mol transform under a permutation P of identical
nuclei according to

P�mol =

⎧⎪⎪⎨
⎪⎪⎩

−1·�mol, ifP permutes an even
number of fermions,

+1·�mol, else.

(1)

Depending on the spin of the nuclei,�mol thereforemust
transform according to the totally symmetric representa-
tion �ts or the totally antisymmetric representation �as

of the complete nuclear permutation group GCNP [41].
This molecular representation we denote as �mol.

The nuclear spin hypothesis [43] states that we can
write every molecular eigenstate �mol as

�mol = �rcve·�nu.sp, (2)

where�rcve denote the eigenfunctions for the rotational–
contorsional–vibrational–electronic [roconvibronic]
motions of the molecule and �nu.sp the wave function
describing its nuclear spins. As the nuclear spins and the
spatial motions of a molecule are coupled, Equation (2)
is not strictly valid; nuclear spin isomers are intercon-
verted by nuclear spin-dependent intramolecular inter-
actions. Thus, like enantiomers, nuclear spin isomers
are only approximate molecular species. Normally, how-
ever, nuclear spin conversion takes much longer time
than roconvibronic motions. Consequently, Equation (2)
is a good approximation for describing the eigenstates
of a molecule, and nuclear spin isomers can be consid-
ered as stable species on the time scales of roconvibronic
motions.

Taking into account the separability of nuclear spin
states and roconvibronic states (Equation 2), and the
conditions that follow from the spin-statistics theorem
(Equation 1), we can identify the nuclear spin isomers of
any given molecule by solving the equation:

�mol ⊆ �rcve ⊗ �nu.sp. (3)

It reflects that the direct product of the irreducible rep-
resentations, also called ‘symmetries’, �rcve and �nu.sp

generated by the eigenfunctions�rcve and�nu.sp, respec-
tively, must contain the irreducible representation �mol.
Different nuclear spin isomers of a molecule are thus
characterised by different combinations of �rcve and

�nu.sp; we denote them as �rcve[�nu.sp]. These combina-
tions are unambiguous; once �rcve or �nu.sp is defined,
there exist only one �nu.sp and �rcve, respectively, such
that Equation (3) is fulfilled [61].

Although we do not study this case here, it is worth
mentioning that Equation (3) does not imply that every
molecular state being in accordance with the spin-
statistics theorem is a product of one roconvibronic state
and one nuclear spin state. For degenerate roconvibronic
and nuclear spin states, the correct molecular wave func-
tions are, in general, linear combinations of degenerate
products of the type (Equation 2) [69].

2.2. On theMS groups ofmolecules with cyclic
contorsional motions

Using the complete nuclear permutation group GCNP, we
can identify all nuclear spin isomers of a given molecule.
Yet, it has been shown that not all permutations contained
in the complete nuclear permutation groupGCNP are ‘fea-
sible’ [38–42]. To identify the distinguishable nuclear spin
isomers of amolecule in field-free space, it suffices to con-
sider the elements of the permutation subgroup GPSMS of
the MS group GMS [41,42].

In our model, however, we do not investigate molecu-
les in field-free space. In particular, we assume that the
molecules are perfectly aligned or oriented in space, for
example by using non-resonant laser pulses or attaching
them to a surface. These manipulations generally lead to
a reduction of feasible symmetry operations [41,62,63],
so that we cannot simply use the MS group to analyse
the symmetry of the eigenfunctions of our model Hamil-
tonian. Under these circumstances, the correct group
is the permutation subgroup GPSFD of the field-dressed
symmetry group GFD [63]. Deducing the field-dressed
symmetry groupGFD is difficult and requires an elaborate
discussion, because this group contains symmetry oper-
ations that are not only permutations or permutations-
inversions [62]. However, since we are only interested in
the pure permutation subgroup GPSFD of the group GFD,
we do not need to know the explicit structure of the field-
dressed symmetry group. All we have to do is to identify
those permutations in the MS groups that remain feasi-
ble when the molecule interacts with the aligning field
[49,51,52,63].

To find the group GPSFD of the molecular rotors, it is
necessary to identify the permutation subgroup of the
MS group of the molecule in field-free space first. For
moleculeswith observable torsions, the first class of cyclic
contorsional motions we consider, we can construct the
MS group using a systematic approach [64]. Here, theMS
group can be written as

GMS
tor = GT �GF, (4)
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where GT is the torsional subgroup, GF is the frame sub-
group and � denotes the semi-direct product of the two
subgroups. Both groups can be obtained in a systematic
fashion [64].

We are interested in molecules with only one (con-)
torsional degree of freedom. Considering this particular
case, the torsional subgroup can be written as [65,66]

GT = G(1)
T ⊗ G(2)

T , (5)

whereG(1)
T andG(2)

T denote the permutation groups of the
two moieties that rotate against each other. Both groups
are cyclic and therefore generated by a single permuta-
tion. For simplicity, let us only consider cases in which
one of the moieties does not possess any permutation
symmetry, or its motion is hindered and the symme-
try operations associated with its torsion are therefore
unfeasible. An example for the first instance is the tor-
sion in methanol; the second scenario can be realised by
attaching a molecule with feasible torsion to a surface.

Using the MS group (Equation 4), we can iden-
tify the feasible permutations of the group in the case
where we align the molecule along the torsional axis.
We consider the operations of the frame subgroup
GF first. They are either unfeasible permutations or
permutation-inversions, which are irrelevant for identi-
fying the nuclear spin isomers of the molecule [65,66].
Hence, the only permutations that remain feasible for an
aligned molecule are the operations of the torsional sub-
group [51,52,63]. The proper symmetry group for finding
the nuclear spin isomers therefore is

GPSFD
tor = G(1)

T ≡ Chtot(M). (6)

This group is cyclic and generated by the permutation

g = (12 . . . htot). (7)

Thus

Chtot(M) = 〈g | ghtot = E〉, (8)

where htot specifies the permutation symmetry of the
moiety that rotates against the frozen rest of themolecule.
The example we explicitly consider here, the torsion of a
methyl group (htot = 3), is illustrated in Figure 1.

Our second example is the concerted rotation and
pseudo-rotation of planar boron rotors [23]. The MS
groups for these systems in particular, and for pseudo-
rotations in general, have not been analysed systemati-
cally so far. In Appendix 2, we show that

GX = Geq ⊗ Cin ⊗ Cout X = B−
11, B

+
13, B

+
15, B

−
19,
(9)

for the example B−
11. In Equation (9), Geq is the MS

group of the equilibrium structure of the rigid cluster at

Figure 1. Torsion of an aligned CH3 group with torsion angle ξ

with (123)ξ = ξ + 2π/3.

one global minimum of the potential energy surface. The
presentations of the groups Cin and Cout are

Cin = 〈Pin | Phin
in = E〉, (10a)

Cout = 〈Pout | Phout
out = E〉, (10b)

where hin and hout correspond to the number of boron
nuclei that shape the inner wheel and the outer bearing,
respectively. Both groups are cyclic, hence they can be
generated by the permutations

Pin = (12), (11a)

Pout = (a e i d h c g b f), (11b)

where we choose the generators such that the product
Pin·Pout interconverts two neighbouring global minima
[23]. The direct product group

Cin ⊗ Cout ≡ Chtot(M), (12)

with order htot = hin· hout, is cyclic as well, because the
orders of Cin and Cout are coprime [67] for all boron clus-
ters B−

11, B
+
13, B

+
15 and B−

19 (e.g. hin = 2 and hout = 9 for
B−
11). It is generated by the operation

g = Pout·Pin, (13)

cf. Equation .1.
In case we align the boron rotors to freeze their

rotations, the permutation subgroup of the MS group
(Equation 9) reduces to

GPSFD
X = Chtot(M), (14)

i.e. the only permutations that remain feasible are the
combined elements of the cyclic groups (Equations 10a
and 10b). For example, the symmetry group we have to
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use to find the nuclear spin isomers of B−
11 with frozen

rotations, but feasible contorsional motion, is the cyclic
group Chtot(M) with order htot = 2· 9 = 18.

Hence, for both examples, the relevant symmetry
group for identifying the nuclear spin isomers is the
cyclic group Chtot(M). Finding the irreducible represen-
tations �n of Chtot(M) is straightforward [41,42,67,68].
For cyclic groups, only one-dimensional irreducible rep-
resentations exist, and therefore a cyclic group of order
htot has in total htot irreducible representations �n, n =
0, 1, 2, . . . , htot − 1. The corresponding characters ζ�n

are

ζ�n[gz] = (
ζ�n[g]

)z ≡ ηn·zhtot
, z = 1, . . . , htot, (15)

where g for the torsion and the boron clusters is defined
in Equations (7) and (13), respectively. Accordingly, the
irreducible representations �n of the group Chtot(M)

are completely determined by the character ζ�n of the
generator g. In Appendix 2, we specify ηhtot and the
nomenclature for the irreducible representations of the
groups C3(M) and C18(M). Equation (15) also facilitates
analysing the symmetry of the contorsional states �con

and the nuclear spin states�nu.sp to find the proper sym-
metry combinations �con[�nu.sp], as we shall see in the
following.

2.3. Amodel Hamiltonian for cyclic contorsions and
its symmetry

In our model, we consider the contorsion along the
coordinate ξ to be decoupled from other motions. The
effective Hamiltonian for the pure contorsion reads

Ĥcon = − �2

2Ieff

∂2

∂ξ 2
+ Vb

2
(1 + cos(htotξ)). (16)

Here, Ieff is an effective moment of inertia, and Vb is the
barrier height of the potential energy surface V(ξ). Both
Vb and Ieff can be obtained from quantum chemical cal-
culations. The symmetry number htot is dependent on
the permutation symmetry of the potential, i.e. on the
number of symmetry-equivalent minima of the poten-
tial energy surface that are converted into each other by
the motion along ξ . The Hamiltonian equation (16) has
been shown to be a good approximation for describing
both molecular torsions [50,51,55,69] and the pseudo-
rotations in boron-clusters such as B−

11, B
+
13, B

+
15, or

B−
19 [23].
The contorsional eigenfunctions �nξ and eigenen-

ergies Enξ are the solution of the time-independent

Schrodinger equation:

Ĥcon�nξ (ξ) = Enξ �nξ (ξ). (17)

Using the variational ansatz

�nξ (ξ) =
∑
k

Cnξ ,kφk(ξ) (18)

with the basis functions

φk(ξ) = 1√
2π

exp(ikξ), (18a)

the expansion coefficientsCn,k are obtained by diagonali-
sing the matrix representation Hcon of the Hamiltonian
Ĥcon (Equation 16) in the basis equation (18a). The
elements ofHcon read as

Hcon
k,k′ = �2

2Ieff
k2δk,k′ + Vb

2
δk,k′ + Vb

4
δk,k′+htot

+ Vb

4
δk,k′−htot . (19)

To exactly represent�nξ in terms of the functions φk, the
basis must be infinite. In practice, however, the matrix
Hcon is diagonalised numerically using a truncated, finite
basis set.

The contorsional Hamiltonian Ĥcon is invariant under
the operations of the group Chtot(M). Hence, we can clas-
sify its eigenfunctions �nξ according to the irreducible
representations �n of Chtot(M). To identify the symme-
try of the eigenfunctions �nξ in Equation (18), we use
the following theorem. Any eigenfunction with symme-
try �n in theMS group can be expanded in terms of basis
functions of the same symmetry alone [68]. Conversely,
we can deduce the symmetry of the eigenfunctions from
the symmetry of the basis functions in Equation (18a).
Using

gξ = ξ + 2π
htot

(20a)

and [68]

gφk(ξ) = φk(g−1ξ), (20b)

we obtain

gφk = ηkhtotφk. (21)

Here, g is the generator of the group Chtot(M), see Equa-
tions (7) and (13), and ηhtot is defined by Equation (15)
and specified in Appendix 3. It follows that [68,70]

φk ∼ �n with kmod htot = n. (22)

According to Equation (22), every irreducible represen-
tation of the symmetry group Chtot(M) occurs in the
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Table 1. The irreducible representations �n = �con of the con-
torsional basis functionsφk in the symmetry group Chtot(M) for an
aligned CH3 group (top) and for an aligned B

−
11 cluster (bottom).

Group �n �con Conditions for k in Equation (21)

C3(M) �0 A kmod 3 = 0
�1 E1 kmod 3 = 1
�2 E2 kmod 3 = 2

C18(M) �0 �0,A kmod 9 = 0 ∧ kmod 2 = 0
�1 �1,B kmod 9 = 1 ∧ kmod 2 = 1
�2 �2,A kmod 9 = 2 ∧ kmod 2 = 0
...

...
�8 �8,A kmod 9 = 8 ∧ kmod 2 = 0
�9 �0,B kmod 9 = 0 ∧ kmod 2 = 1
�10 �1,A kmod 9 = 1 ∧ kmod 2 = 0
...

...
�16 �7,A kmod 9 = 7 ∧ kmod 2 = 0
�17 �8,B kmod 9 = 8 ∧ kmod 2 = 1

The nomenclature of the irreducible representations is explained in
Appendix 3.

(reducible) representation spanned by the basis func-
tions φk. Consequently, the matrix representation Hcon

of the operator Ĥcon in Equation (16), written in the basis
equation (18), decomposes according to

Hcon = H0 ⊕ H1 ⊕ · · · ⊕ Hhtot−1. (23)

To exemplify these general results, we summarise the
symmetries�con of an alignedCH3 group and the aligned
B−
11 cluster in Table 1. Apparently, all irreducible repre-

sentations of the group Chtot are realised in the reducible
representation �con. With the symmetries �con at hand,
we are now able to identify the nuclear spin isomers for
our model systems.

2.4. The nuclear spin isomers of ourmodel systems

Within our model, Equation (3) reduces to

�mol ⊆ �con ⊗ �nu.sp, (24)

becausewe obtain the effectiveHamiltonian Ĥcon by inte-
grating the molecular Hamiltonian over the electronic,
vibrational and rotational degrees of freedom. Then, dif-
ferent nuclear spin isomers are characterised by differ-
ent combinations of contorsional states and nuclear spin
states, �con[�nu.sp].

Following the procedure we described in Section 2.1,
we use the spin-statistics theorem (Equation 1) to find the
correct combinations �con[�nu.sp]. Consider B−

11 as an
example. For boron, two stable isotopes exist,10B and11B,
which have nuclear spin quantum numbers

I10B = 3 with natural abundance of 19.9% (25a)

I11B = 3
2

with natural abundance of 80.1%. (25b)

From Equation (1), we find

�mol =
⎧⎨
⎩

�0,A, if B ≡ 10B,

�0,B, if B ≡ 11B.
(26)

Therefore, for B−
11 composed of11B,

�nu.sp = �n,A ⇔ �con = �9−n,B (27a)

�nu.sp = �n,B ⇔ �con = �9−n,A, (27b)

where we have used that for the irreducible representa-
tions of C9(M)

�n ⊗ �∗
n = �0 (28a)

�∗
n = �9−n (28b)

�9 ≡ �0. (28c)

Having identified the symmetries of the eigenfunc-
tions �con in Section 2.3, cf. Table 1, we still need to
find the symmetries �nu.sp spanned by the nuclear spin
eigenfunctions in the group Chtot(M). Here, we only give
the main results; the detailed derivations are given in
Appendix 4 [41]. Taking into account the direct product
structure of Chtot(M) (see Equation 14), we can deter-
mine the symmetry of the nuclear spin states for the
groups Cin and Cout separately. Hence,

�
nu.sp
Cin

= 10A ⊕ 6 B (29a)

�
nu.sp
Cout

= 29144�0 ⊕ 29120 (�1 ⊕ �2 ⊕ �4 ⊕ �5

⊕ �7 ⊕ �8) ⊕ 29140 (�3 ⊕ �6). (29b)

Equations (29a) and (29b) show that all nuclear spin
symmetries are realised in C18(M). Consequently, the
aligned cluster B−

11 occurs in the form of 18 nuclear spin
isomers �con[�nu.sp], namely

�0,A[�0,B],�0,B[�0,A], . . . ,�8,A[�1,B],�8,B[�1,B].
(30)

For our second example, the aligned CH3 group with
H ≡ 1H,

I1H = 1
2
. (31)

Hence, the nuclear spin states span the representation
[41,69]

�nu.sp = 4A ⊕ 2E1 ⊕ 2E2, (32)

and, as a consequence, the aligned CH3 group exists as
the three nuclear spin isomers

A[A], E1[E2], E2[E1]. (33)

Thus, for both examples, �nu.sp contains every irre-
ducible representation of Chtot(M), and, as a conse-
quence, every symmetry combination that is allowed
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by the spin-statistics theorem is realised. We show in
Section 3.2 that this result is not a coincidence, but it
holds for all molecular rotors that are composed of nuclei
with non-zero spin.

3. Localised states as superposition states of
different nuclear spin isomers

To show that a hypothetical localised state is always a
superposition of states belonging to different nuclear spin
isomers, we have to discuss two aspects in detail: what is
the symmetry of a localised state and which nuclear spin
isomers of molecular rotors exist in general. Addressing
the first question, we show that a localised state in a cyclic
potential can only be formed by superimposing contor-
sional states of different symmetries. In a second step, we
then show that for systems with non-zero nuclear spin,
each of the contorsional symmetries in Chtot indeed rep-
resents different nuclear spin isomers. Both arguments
are the basis for our conclusion that localised states of
contorsional motions are unphysical, which we discuss in
detail in Section 4.

3.1. Localised states in cyclic potentials

We begin with showing that every localised contorsional
state is a linear combination of contorsional eigenfunc-
tions that belong to different symmetries, considering the
torsion of the aligned model CH3 group as an example.
We examine three states � loc

1 , � loc
2 and � loc

3 , which are
localised in the vicinity of the minima of the potential at
ξ = π/3, ξ = π and ξ = 5π/3, respectively; see Figure 2
for a graphical representation of � loc

1 and � loc
2 . We can

systematically test if these states are symmetry-adapted
by applying the projection operators [67,68]

P̂�n = 1
htot

htot∑
z=1

(ζ�n[gz])∗gz (34)

to any of the localised states � loc
m , m = 1, 2, 3. If for an

arbitrary function �

P̂�n� = const·� const �= 0, (35)

then � transforms according to the irreducible �n of the
group Chtot(M). Yet, for any of the irreducible represen-
tations �n of C3(M), we obtain

P̂�n� loc
m �= const·� loc

m for m = 1, 2, 3 and

�n = A, E1, E2. (36)

Here, we have taken into account Equation (20b), from
which follows

g� loc
1 (ξ) = � loc

1 (ξ + 4π/3) ≡ � loc
2 (ξ) (37a)

Figure 2. Illustration of two localised states for a potential with
htot = 3 and Vb· Ieff/�

2 = 50. The first state, � loc
1 , is localised in

theminimumat ξ = π/3, the second,� loc
2 at ξ = π . Applying the

operation (123) to� loc
1 yields the state� loc

2 .

g2� loc
1 (ξ) = � loc

1 (ξ + 2π/3) ≡ � loc
3 (ξ) (37b)

with g = (1 2 3) (Figure 2). Hence, localised states do
not transform according to any irreducible representa-
tion ofC3(M); localised states are not symmetry adapted.

We can, however, use the projection operators P̂�n to
construct three symmetry-adapted functions ��n out of
the three localised states � loc

m . For C3(M), htot = 3 and

(ζ�n[gz])∗ = (ηn·z3 )∗ with η3 = exp
(

−2π i
3

)
(38)

in Equation (34), see also Appendix 3. Applying P̂�n to
�loc

1 and taking into account Equation (20b) yields

�A = 1√
3
(� loc

1 + � loc
2 + � loc

3 ) (39a)

�E1 = 1√
3
(� loc

1 + η∗
3�

loc
2 + η3�

loc
3 ) (39b)

�E2 = 1√
3
(� loc

1 + η3�
loc
2 + η∗

3�
loc
3 ). (39c)

Hence, the symmetry-adapted wave functions are linear
combinations of localised wave functions, which can be
formally expressed as

��n−1 =
3∑

m=1
Tnm·� loc

m , n = 1, 2, 3, (40)

with �0 = A, �1 = E1, �2 = E2, and

|Tnm| = 1√
3
, (40a)

see Equation (39).
Introducing the matrix T allows us to formalise these

results. If we write the set of localised functions as
the vector � loc with components (� loc)m = � loc

m and
the set of symmetry-adapted functions as the vector
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�sym with components (�sym)n = ��n , we can use the
transformation

�sym = T ·� loc (41a)

to construct a set of symmetry-adapted wave functions
��n out of the localised wave functions � loc

m . For the
group C3(M), T reads

T = 1√
3

⎛
⎜⎜⎝
1 1 1

1 η∗
3 η3

1 η3 η∗
3

⎞
⎟⎟⎠ . (41b)

Since T is unitary, i.e. T † = T −1, we are able to write

� loc = T †·�sym. (42)

Thus for the localised state �mol
1

� loc
1 = 1√

3
(�A + �E1 + �E2). (43)

Consequently, the localised state � loc
1 is a linear combi-

nation of the symmetry-adapted states ��n , and so are
the localised states � loc

2 and � loc
3 . Moreover, every irre-

ducible representation of the groupC3(M) occurs exactly
once with equal weight in each of the localised states; see
Equation (39) for an example.

Let us generalise our results from C3(M) to Chtot(M).
In general, there are htot localised states, � loc

1 , . . . , � loc
htot

,
of which � loc

1 is localised in the minimum of the poten-
tialV(ξ) at ξ = π/htot,� loc

2 at theminimumat ξ = 3π/htot,
and so on. As forhtot = 3, we canwrite the set of localised
and symmetry-adapted wave functions in form of the
vectors � loc and � loc, respectively. Again, the transfor-
mationmatrixT can be constructed systematically using
the projection operators for the irreducible representa-
tions �n, cf. Equation (34)

T = 1√
htot

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1

1 η
(htot−1)
htot

η
2(htot−1)
htot

. . . η
(htot−1)(htot−1)
htot

1 η
(htot−2)
htot

η
2(htot−2)
htot

. . . η
(htot−1)(htot−2)
htot

...
. . .

...

1 ηhtot η2htot . . . η
htot−1
htot

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(44)
where

ηhtot = exp
(

−2π i
htot

)
; (45)

see also Equation (15). For the group Chtot(M), T is
unitary, too, and

|Tnm| = 1√
htot

. (46)

Thus each localised state � loc
m contains all symmetry-

adapted function ��i exactly once and with the same
weight 1/htot, also in the general case.

Treating localised and symmetry-adapted wave func-
tions within a matrix-vector approach also allows us to
use an alternative method to show that localised states
are superpositions of symmetry-adapted wave functions.
Therefore, we make use of the regular representation
�reg, a key concept in the representation theory of groups
[67,68]. The characters of this representation are

ζ�reg
[E] = htot (47a)

ζ�reg
[g] = 0 ∀ g �= E. (47b)

Within this representation, every d�-dimensional irre-
ducible representation of the group occurs just d� times.
Hence, for a cyclic group, the regular representation con-
tains all irreducible representations of the group exactly
once. Conversely, if the representation that is spanned by
the set of all localised states, �loc, contains or is identi-
cal to the regular representation �reg, each contorsional
symmetry that is possible in Chtot(M) does indeed occur.
Consequently, if the functions� loc

m form a basis for a rep-
resentation that contains�reg, the localised states� loc

m are
superpositions of symmetry-adapted states ��n .

First, we show that the set of all localised functions
forms a basis for a reducible representation of the group
Chtot . From

g� loc = g

⎛
⎜⎜⎜⎜⎜⎜⎝

� loc
1

� loc
2

...

� loc
htot

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

� loc
2

� loc
3

...

� loc
1

⎞
⎟⎟⎟⎟⎟⎟⎠
, (48)

we first deduce that g is represented by the matrix

D�loc
[g] =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0

0 0 1 . . . 0
...

. . .
...

1 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎠
. (49)

Here, we used again Equation (20b). Analogously, we
can find the matrices representing g2, . . . , ghtot = E and
show that they form indeed a representation �loc with
dimension d�loc = htot.
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Once we have calculated all matrices of �loc, we can
determine its character system. We find

Chtot(M) E g g2 . . . ghtot−1

ζ�loc
htot 0 0 . . . 0

(50)

which is exactly the definition of the regular represen-
tation (Equation 47). Consequently, all spatial symme-
tries that are possible in Chtot are contained in �loc; they
occur exactly once. Furthermore, since the labelling of
the localised states is arbitrary, every localised state is
a superposition of symmetry-adapted wave functions in
such a manner as every irreducible representation � of
the symmetry group Chtot(M) occurs exactly once.

3.2. On the symmetries of nuclear spin states for
systemswith cyclic contorsional motions

Next, we discuss the symmetry of the nuclear spin states
of the molecular rotors. In the simplest case, all nuclei
carry zero spin, i.e. nuclear spin quantum numbers are
Ii = 0. Then, there is just one total nuclear spin state with
total spin quantum numbers I = 0,mI = 0. As the cor-
responding nuclear spin function�

nu.sp
0,0 does not change

if any of the operations of Chtot(M) are applied, its irre-
ducible representation is the total symmetric representa-
tion, �nu.sp = �0.

In general, the individual nuclei have identical non-
zero spins, Ii �= 0, with magnetic quantum numbers
−Ii ≤ mIi ≤ Ii. Here, the set of all nuclear spin func-
tions span the reducible representation �nu.sp. We show
in the following that �nu.sp contains every irreducible
representation of Chtot(M), or, in other words,

�nu.sp ⊃ �reg, (51)

i.e. the representation �nu.sp contains the regular repre-
sentation �reg (Equation 47). For the moment, we limit
our considerations to molecules of which only one of the
contorting parts has a permutation symmetry, like for
our example of the aligned CH3 group. If both parts of
the molecule have a permutation symmetry, as it is the
case for B−

11, our argument has to be slightly modified,
see below.

To verify Equation (51), it suffices to find a subset of
nuclear spin functions that spans �reg. Therefore, con-
sider a subset of nuclear spin states with the same total
spin projection quantum number

mI =
htot∑
i=1

mIi . (52)

Assume furthermore that

mI �= mmax
Imax with Imax = htotIi (53a)

mI �= mmin
Imax = −mmax

Imax . (53b)

One example that fulfils Equation (53) is when one
nucleus has quantum number ma and all remaining
nuclei have quantum number mb �= ma. Then, the total
nuclear spin projection quantum number is

mI = ma + (htot − 1)mb, (54)

in accordance with Equation (53).
There exist htot nuclear spin functions that fulfil

Equation (54); they span a reducible representation�
nu.sp
sub

of the group Chtot(M) [41]. One representative of this
subset of basis functions is

�1
mI ≡ �ma(�1)·�mb(�2)· . . . ·�mb(�htot). (55)

To find the subset of matrices that form the representa-
tion�

nu.sp
sub , we apply the operation g (Equation 7) to�1

mI
and obtain

g�1
mI = �mb(�1)·�ma(�2)· . . . ·�mb(�htot) ≡ �2

mI .
(56)

Likewise, g is applied to all other basis functions
�2

mI , . . . , �
htot
mI . Subsequently, we can define a vector

�
nu.sp
sub with components (�

nu.sp
sub )i = �i

mI , analogously
to the localised states in Section 3.1. The matrix repre-
sentation of the generator g is then

D�
nu.sp
sub [g] =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0

0 0 1 . . . 0
...

. . .
...

1 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎠
. (57)

Following the same line of reasoning as for the repre-
sentation �loc (see Section 3.1), we obtain the matrices
for g2, . . . , ghtot = E and show that they form indeed the
representation �

nu.sp
sub . These matrices have the character

system

Chtot(M) E g g2 ghtot−1

ζ�
nu.sp
sub htot 0 0 . . . 0

(58)

Thus the representation �
nu.sp
sub is identical to the regular

representation �red, containing each irreducible repre-
sentation of Chtot(M) exactly once. This completes the
proof of Equation (51).
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We would like to stress that our result is always valid,
because the only constraint we impose in our proof is that
the projection quantum number of (at least) one nucleus
has to be different from the others, cf. Equations (53)
and (54). As this constraint can be always fulfilled if Ii �=
0, our conclusion is valid for all nuclei with non-zero spin.

Let us illustrate our result that �nu.sp necessarily con-
tains the regular representation if Ii �= 0 for the case of
C3(M) and Ii = 1/2, i.e. for the torsion of an aligned
methyl group. Here, the conditions (53) and (54) are ful-
filled by the nuclear spin states withmI = ±1/2; we only
consider states withmI = +1/2. The three product func-
tions corresponding to this projection quantum number
are

α(�1)·α(�2)·β(�3) α(�1)·β(�2)·α(�3)

β(�1)·α(�2)·α(�3). (59)

They generate the representation

D�
nu.sp
sub [E] =

⎛
⎜⎝
1 0 0

0 1 0

0 0 1

⎞
⎟⎠

D�
nu.sp
sub [(123)] =

⎛
⎜⎝
0 1 0

0 0 1

1 0 0

⎞
⎟⎠

D�
nu.sp
sub [(132)] =

⎛
⎜⎝
0 0 1

1 0 0

0 1 0

⎞
⎟⎠ (60)

with the character system

C3(M) E (123) (132)

ζ�
nu.sp
sub 3 0 0

(61)

This is again the regular representation of C3(M), thus
confirming our general finding that the representation
�nu.sp contains all irreducible representations of C3(M).

If properly modified, the argument is also true for
contorting molecules of which both parts exhibit a per-
mutation symmetry. Here, however, we have to consider
the nuclear spin states of the twomoieties of themolecule
separately. In the case of B−

11, for example, we have to
analyse the nuclear spin states of the outer bearing with
the group C9(M) and the nuclear spin states of the inner
wheel with the groupC2(M). Following the procedure we
explained above, we find that the nine nuclear spin states
with mI = 9· 3/2 − 1 = 25/2 are a basis for the regular
representation of C9(M), and the two states with mI =
2· 3/2 − 1 = 2 span the regular representation of C2(M).

Taking then into account the direct product structure
of C18(M), see Equation (12) and Appendix 3, we can
conclude that�nu.sp contains every symmetry of C18(M).

3.3. Localised states and the nuclear spin isomers of
systemswith feasible contorsions

With the results of the last two subsections, we are now
able to make some general conclusions about the nuclear
spin isomers of systems with one cyclic contorsion and
their relationship to localised contorsional states. The
simplest case is again the system that is composed only
of nuclei with zero spin. Then, from the spin-statistics
theorem it follows that

�mol = �0, (62)

as all permuted nuclei are bosons. Further, we know
from the last section that �nu.sp = �0. Hence, from
Equation (24), it follows that �con = �0 is the only
contorsional symmetry being consistent with the spin-
statistics theorem. Thus for systems with nuclei carrying
zero spin only one nuclear spin isomer is allowed, namely
�0[�0]; spatial states with �con �= �0 are symmetry-
forbidden. As the discussion in Section 3.1 shows,
this restriction has far reaching consequences. Because
localised states are linear combinations of contorsional
states with different symmetry, for systems with zero
nuclear spin, localised states cannot be constructed with-
out violating the spin-statistics theorem.

In the general case with Ii �= 0, the situation is dif-
ferent. Here, localised states are unphysical linear combi-
nations of wave functions belonging to different nuclear
spin isomers. To show this, we make use of the fact
that if the symmetries �mol and �con are given, then
the representation �nu.sp is fixed as well; for different
symmetries �con and �nu.sp, there is only one way to
form the irreducible representation �mol (Equations 1
and 24) [61].

As we show in Section 3.1, each contorsional symme-
try that is possible in Chtot(M) exists. For each of these
symmetries, there is a compatible nuclear spin symme-
try (see Section 3.2). Hence, each contorsional symmetry
represents a different nuclear spin isomer of themolecule.
The correct combinations are dictated in Equations (1)
and (24). Taking once more into account the results from
the discussion of Section 3.1, we conclude that any hypo-
thetical localised state is a linear combination of contor-
sional functions belonging to different nuclear spin iso-
mers. Consequently, in case the nuclei that are described
by the Hamiltonian equation (16) have non-zero spin,
any hypothetical localised state in a cyclic potential is a
superposition of states of all possible nuclear spin isomers
of the molecule.
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4. Why coherent superpositions of different
nuclear spin isomers are unphysical

What is the problem with hypothetical localised states
being linear combinations of wave functions with differ-
ent contorsional symmetries? They would be superposi-
tions of wave functions that represent different nuclear
spin isomers of the molecule. But why is such a linear
combination unphysical? Should it not be possible to pre-
pare a localised state out of energy eigenstates, e.g. by
using a proper excitation scheme?Moreover, according to
Equation (2), nuclear spin isomers are instable, because
their existence relies on an approximation. Could we not
use mechanisms of nuclear spin conversion to create a
coherent superposition of states belonging to different
nuclear spin isomers?

The answer to both is no. The first scenario can be
ruled out because no type of interaction exists that can
excite different contorsional symmetries, if nuclear spin
isomers were stable. The second argument fails because
mechanisms of nuclear spin conversion take so long that
any coherence of molecular eigenstates would be lost.
Hence, both strategies cannot succeed, and therefore,
localised statesmust be discarded as physical descriptions
of molecular rotors. Let us illustrate why.

4.1. Localised states through external interactions?

In most known cases, nuclear spin isomers are stable
species on the time scale of seconds or longer [44]. The
only counter-examples that have been discovered until
today are specific radicals [71], but they seem to be
exceptional.

If nuclear spin isomers were stable, we could create
localised states only by an interaction that directly excites
superpositions of different symmetries from one state
with specified contorsional symmetry. For example, if it
was possible to cool down a molecular probe to almost
0K, one would prepare the contorsional ground state, i.e.
only the lowest contorsional eigenstate with �0 symme-
try would be populated. Then, creating a localised state
is only possible if contorsional states with symmetries
�1, . . . , �htot−1 are excited from the contorsional ground
state with symmetry �0.

To excite a superposition of states with all symme-
tries in Chtot(M) out of a state with one specific �n, one
of the following conditions has to be fulfilled [41,42]:
(a) the interaction that is used reduces the symmetry
group of the system to C1(M) or (b) the correspond-
ing Hamiltonian transforms according to the irreducible
representation

�int = �n′ ⊗ �∗
n �= �0, (63)

where �n and �n′ denote the symmetries of the contor-
sional states that are coupled by the interaction Ĥint with
symmetry �int. Both conditions follow from the vanish-
ing integral rule, according to which an excitation from
a state with symmetry �n′ to a state with symmetry �n
using the interaction Ĥint is allowed only if [41,42]

�∗
n′ ⊗ �int ⊗ �n = �0. (64)

In Equations (63) and (64), we took into account
that Chtot(M) has only one-dimensional irreducible
representations.

In both scenarios, the symmetry is reduced only if
Ĥint breaks the permutation symmetry of the molecu-
lar system. For case (a), the field strength is arbitrary,
and to understand the effect of the interaction, it is nec-
essary to analyse the symmetry group of field-dressed
Hamiltonian [41,42]. Within this group, the Hamilto-
nian Ĥint transforms according to the totally symmet-
ric representation �̃0 of the permutation subgroup of
the field-dressed symmetry group [41,62]. Hence, to
induce excitations between states that have symmetries
�n and �n′ in the field-free case, the symmetries within
the field-dressed group have to be complex conjugate
to each other, cf. Equation (63). Taking into account
that a localised state contains states of all symmetries in
Chtot(M), each �n must be reduced to �̃0 in the field-
dressed group. In other words, the symmetry groupmust
be reduced from Chtot(M) to C1(M) by the external field.
As Chtot(M) only contains permutations, the external
field must therefore break the permutation symmetry.
Yet, such an interaction is not known. Neither magnetic
or electric fields, nor the combination of both can break
the permutation symmetry of a quantum mechanical
system [62].

In scenario (b), the field strength is so low that pertur-
bation theory is sufficient to describe the excitation of the
molecule. Here, the symmetry of the system can be con-
sidered to be conserved and Ĥint can be classified accord-
ing to the irreducible representations of Chtot(M). Yet,
to induce excitations between different �n, the Hamilto-
nian Ĥint must contain parts that have symmetry�1, . . . ,
�htot−1 , otherwise Equation (63) is not fulfilled. Hence,
Ĥint is not invariant under the permutation of identi-
cal nuclei, which is physically not possible, for the same
reasons as in case (a).

There is a second argument why scenario (b) is inap-
propriate for producing localised states. If the interaction
is only a small perturbation, the excited states are pre-
pared with much smaller populations than the ground
state. Thus it is impossible to create a localised state,
which calls for equal weights of all symmetry-adapted
eigenstates (Equations 40a and 46).
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Intuitively, the results of this paragraph are clear.
Breaking the permutation symmetry would violate the
indistinguishability of identical nuclei. Although spectro-
scopists are searching for such violations, they have not
been observed yet [42,72]. Hence, if nuclear spin isomers
are considered to be stable species, it is impossible to cre-
ate a localised state by exciting contorsional eigenstates
directly.

4.2. Localised states through nuclear spin
conversion?

As an alternative to direct excitation, creating hypothet-
ical localised states indirectly might be possible by using
nuclear spin conversion effects. In fact, different nuclear
spin isomers are interconverted by nuclear spin depen-
dent interactions, such as the dipolar interaction or the
spin–rotation interaction [44]; a probe of one specific
nuclear spin isomer will eventually evolve into an inco-
herent mixture of different nuclear spin isomers. How-
ever, the interconversion rates are usually on the time
scales of seconds to years. Moreover, most mechanisms
of nuclear spin conversion are assumed to be incoher-
ent processes [44]. Hence, they are useless for preparing
a coherent superposition of contorsional states belonging
to different nuclear spin isomers, like a localised state.

Recent research shows, however, that using time-
dependent magnetic fields might accelerate the inter-
conversion of nuclear spin isomers by exciting dipolar-
coupled contorsional states [69]. The superpositions of
molecular states are coherent; through a change of the
nuclear spin state, themagnetic field creates linear combi-
nations of contorsional states with different symmetries,
if the dipolar interaction between the nuclei is taken into
account.

Unfortunately, there are two problems if this scheme
is used. First, the superpositions created by the magnetic
field do not contain each contorsional symmetry with
equal weight, which, however, is required for preparing
a localised state (see Section 3.1). Second, the intercon-
version still takes place on the time scale of μs, which is
much longer than the period of the contorsional motion.
Hence, in practice, it is impossible to prepare a localised
state, because in a realistic scenario, maintaining coher-
ence on that time scale is very difficult.

Consequently, also by using nuclear spin conversion
effects, we are not able to prepare a localised state from
an energy eigenstate.

5. Conclusion: molecular rotors are quantum
rotors

In summary, we have shown that localised states are
unphysical representations of systems with observable

contorsional motions in cyclic potentials. For these
molecular rotors, localised states are superpositions of
symmetry-adapted states, such that each symmetry-
adapted function contributes with equal weight. Depend-
ing on the spin of the contorting nuclei, localised states
are either superpositions of states belonging to different
nuclear spin isomers, represented by different contor-
sional symmetries, or localised states are forbidden by the
spin-statistics theorem.

In case the nuclei have zero spin, only contorsional
states with symmetry �con = �0 are physically allowed.
Since a localised state contains contorsional states of all
symmetries, it is principally impossible to prepare such
states. For molecular rotors with non-zero nuclear spin,
localised states are superpositions of eigenfunctions of
all possible nuclear spin isomers of the molecular rotor.
However, it is impossible to create superposition states
of different nuclear spin isomers. A direct preparation
by means of an electromagnetic field can be ruled out,
because the interaction that is used would have to destroy
the indistinguishability of identical nuclei; an indirect
preparation based on nuclear spin converting effects
either takes too long, or the effect is too weak to create a
coherent superposition of contorsional states belonging
to different nuclear spin isomers. Consequently, whether
the nuclear spin is zero or not, localised wave packets do
not represent physical states of the molecular rotors we
consider here.

Our findings have far reaching consequences for con-
ventional molecular dynamics simulations of molecu-
lar rotors. When scientists use classical mechanics to
describe the motions of nuclei, they often illustrate their
approach with pictures like the one we show in Figure 3
[16–23]. As an example, we depict the concerted rotation
and pseudo-rotation of B−

11. The semi-classical simula-
tion starts in one specific minimum of the electronic
potential energy surface (a), and after passing a tran-
sition state (b), it arrives at one specific neighbouring
minimum (c). Since classical structures can be mim-
icked quantum mechanically by localised states, so the
implicit argument, molecular dynamics simulations gen-
erate reliable results, as long as dispersion and tun-
nelling occur on timescales that are longer than the
timescale of the contorsional motion. But this conclusion
is wrong, because the localised state is a superposition
of symmetry-adapted states belonging to the different
nuclear spin isomers of B−

11, they are physically incorrect.
For the boron rotors in particular, the impossibil-

ity of localised states also has important consequences
for their molecular spectroscopy. Let us assume for a
moment that localised states representing global min-
imum structures would exist. Accordingly, one would
observe spectral lines with htot-fold degeneracies for htot
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Figure 3. Aclassical depictionof the concerted rotationandpseudo-rotation inB−
11: fromone specifiedminimumof theelectronic poten-

tial energy surface (a), the nuclei pass a transition state (b) and reach one specific neighbouring minimum (c). A quantum analogue for
this scenario is the progression of one localised state to the neighbouring one. The figure is adapted from Ref. [20].

equivalent global minimum structures. In contrast, the
preparation of molecular eigenstates that are delocalised
in htot potential energy wells implies systematic splittings
of the hypothetical degenerate lines into non-degenerate
ones. If the spectra are taken with lower resolution
than the level splittings, the corresponding spectral lines
appear broader than the hypothetical lines for individual
global minimum structures. Gratifyingly, such broaden-
ing has been observed in Ref. [22], but the authors could
not explain the reason for the broadening, see also the
discussions in Ref. [23].

Concluding, the results of this work show thatmolecu-
lar rotors cannot be described in terms of a semi-classical
approach. For molecular rotors like B−

11 or molecules
with observable torsion, localised states are not physically
valid descriptions. Hence, conclusions based on semi-
classical molecular dynamics simulations, for example
concerning the control of directed contorsional motions,
have to be reevaluated. For systems showing contorsion
in cyclic potentials, a quantum description of nuclear
motions is unavoidable. Such molecular rotors are quan-
tum rotors.
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Appendix 1. Molecular symmetry andmodels of
reduced dimensionality

In this work, we use simple models to describe the nuclear spin
isomers of alignedmolecular rotors. Thesemodels are based on
the assumption that the contorsional motion can be adiabati-
cally separated from all other internal motions, which includes
the following approximations:
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• The Born–Oppenheimer approximation
We premise that we can adiabatically separate the electronic
motions from the nuclear motions by approximating the
nuclear-spin-free roconvibronic wave function as

�rcve = �rcv
e ·�el

e . (A1)

In Equation (A1),�el
e is the electronic wave function for the

electronic state e including electronic spin and�rvc
e denotes

a roconvibrational wave function for this particular elec-
tronic state. Specifically, we assume that the molecule is in
the electronic ground state.

• Adiabatic separation of rotational, contorsional and
vibrational motions
In addition to the Born–Oppenheimer approximation, we
assume that the nuclear wave function �rcv

e can be written
as

�rvc
rc;v;e = �rot

r;v;e·�con
c;v;e·�vib

v;e. (A2)
Here, �vib

v;e is the vibrational eigenfunction for the vibra-
tional states v within electronic state e; �rot

r;v;e denotes the
rotational eigenfunctions for electronic state e and vibra-
tional state vwith rotational quantumnumbers r; and�con

c;v;e
represents the eigenfunctions of the contorsional motion
within electronic state e and vibrational state v characterised
by the quantum number c. While separating the vibrations
from the rocontorsional motions is quite common, in par-
ticular in the theory ofmolecular spectroscopy [41], the sep-
aration of the contorsional motion from the rotations may
be questionable, depending on the system. Recent studies
on torsional alignment, for example, show that the coupling
of rotations with internal motions might be quite distinct
[73–78]. Thus our models are highly idealised.

• Adiabatic separation for field-dressed states
In our model, we further assume that controlling the orien-
tation or the alignment of the molecular rotor by manipu-
lating its rotational motions is possible without exiting the
contorsional motion. Thus, even within the presence of a
laser field, we expect contorsions and rotations to remain
decoupled. Systematic studies on the torsional alignment of
molecules have shown that a strong coupling of rotations
and contorsions may be induced by the aligning field, again
depending on the system [73–78]. Our choice therefore
underlines the highly idealised character of our model.

The present approximations allow for a rather simple pro-
cedure for identifying the nuclear spin isomers of molecular
rotors. Using the Born–Oppenheimer approximation, we aver-
age the molecular Hamiltonian over the electronic degrees of
freedom, so that we obtain an effective Hamiltonian for the
nuclear motion in the given electronic state. Likewise, we inte-
grate the remaining nuclear Hamiltonian over the vibrational
degrees of freedom, assuming that the molecule remains in the
chosen vibronic state. This gives the effective Hamiltonian

Ĥrc
v;e = 〈�vib

v;e·�el
e |Ĥnuc|�vib

v;e· �el
e 〉 (A3)

for the vibrational state v in the electronic state e.
Accordingly, we suppose that the molecules are aligned

by off-resonant laser pulses, which prepare pendular states p
with wave functions �

pen
p;v;e [35–37], typically the one lowest in

energy. In this case, we can define the contorsionalHamiltonian

Ĥcon
p;v;e = 〈�pen

p;v;e|Ĥrc
p;v|�pen

p;v;e〉 ≡ Ĥcon. (A4)

Appendix 2. TheMS group of B−
11

To identify the MS group of non-rigid molecular rotors, we
employ a systematic approach starting from the MS group Geq

of its rigid energy minimum (‘equilibrium’) structure [79,80].
Accordingly, we expand the MS group GMS of a molecule with
large-amplitude internal motions as

GMS = Geq ∪ F̂2 Geq ∪ · · · ∪ F̂nV G
eq =

nV⋃
i=1

F̂i Geq with

F̂1 ≡ E, (B1)

whereas the group Geq is isomorphic to the molecular point
group of the electronic energy minimum structure [38,39]. As
we show in the following, for the boron clusters with observable
pseudo-rotation, Equation (B1) has a simple structure

GX = Geq ⊗ G({F̂i}) X = B−
11, B

+
13, B

+
15, B

−
19, (B2)

where G({F̂i}) is a group formed by the set of operators F̂i. The
operator F̂i in Equations (B1) and (B2) transforms the refer-
ence version 1 into version i. We find all F̂i by identifying those
permutations and permutation-inversions that interconvert the
nV versions of the molecule that are separated by superable
energy barriers. A barrier is superable when it leads to observ-
able tunnelling splittings in the energy spectrum of the nuclear
motion on the timescale of the observation time [41,42].

The boron cluster B−
11 shows contorsional motions of an

inner ‘wheel’ consisting of hin = 2 nuclei that rotates against
an outer ‘bearing’ consisting of hout = 9 pseudo-rotating nuclei
[23] (see Figure B1 for an illustration). Hence, the poten-
tial energy surface for the contorsional motion of B−

11 has
hin· hout = 18 global minima, and the group G({F̂i}) has the
order hin· hout = 18. The barriers between the global minima
are so low that tunnelling is observable in the picosecond time
domain [23].

The group Geq is isomorphic to the point group at the equi-
librium structure, which is C2v in case of B−

11 [20] (see the
picture in the middle of Figure B1). Following the rules derived
by Hougen [38,39], we conclude that the Ĉ2 operation in the
molecular point group corresponds to the permutation

P0 = (a e)(b d)(f i)(g h)(1 2), (B3)

generating the group

G0 = {E, P0}. (B4)

As B−
11 has a planar energy minimum structure [20,23],

Geq = G0 ⊗ E , (B5)

where
E = {E, E∗} (B5a)

is the inversion group. To obtain Equation (B5), we have used
that (i) MS groups of rigid molecules contain the inversion
E∗ if the equilibrium structure is planar [41,42,80] and (ii) E∗
commutes with every operation in the MS group [41,42].

To determine the group G({F̂i}) of the B−
11 cluster, we con-

sider exemplarily the two operations

Pin = (12) (B6a)

Pout = (a e i d h c g b f) ; (B6b)
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Figure B1. Three versions of the cluster B−
11. The reference version (middle) is converted by Pin (right) and Pout (left) into two other

versions, see Equation (B6) for the definition of Pin and Pout. The motion that interconverts all three versions is the rotation of the inner
wheel in the pseudo-rotating outer bearing.

see Figure B1. They generate the groups

Cin = 〈Pin |, Phin
in = E〉 (B7a)

Cout = 〈Pout | Phout
out = E〉 (B7b)

with orders hin = 2 and hout = 9, respectively. Applying any
combination of these two operations

F̂i = PainP
b
out with a = 1, 2; b = 1, . . . , 9;

i = 9(a − 1) + b = 1, . . . , 18 (B8)

to a reference minimum, we are able to access all of the remain-
ing 17 minima of the potential energy surface. Here, we chose
the generators such that g = Pin·Pout interconverts two neigh-
bouring global minima [23], i.e.

gξ = Pin·Pout ξ = ξ + 2π
18

. (B9)

Taking into account that

Poutξ = ξ − 4
2π
hout

(B10a)

Pinξ = ξ + 2π
hin

, (B10b)

we see that g has exactly this property if we define Pout and Pin
according to Equation (B6).

Because Pain and Pbout commute, i.e.

PainP
b
out = PboutP

a
in ∀a, b, (B11)

we are able to write

G({F̂i}) = Cin⊗Cout ≡ Chtot(M). (B12)

Taking further into account that E∗ and P0 both commute with
all elements of Chtot(M), we finally obtain the complete MS
group for B−

11 with observable pseudo-rotation,

GB−
11

= Geq ⊗ Cin⊗Cout = Geq ⊗ C2 ⊗ C9; (B13)

see also Equation (9).

Appendix 3. On the irreducible representations
of the group Chtot

To find the irreducible representations of the cyclic group
Chtot(M), we apply Equation (15). Once we have calculated the
character of the generator g for the irreducible representation

�n, see Equation (7),

ζ�n [g] = ηnhtot
, (C1a)

the character of all group elements

ζ�n [gz] = (ζ�n [g])z (C1b)

are fixed (Equation 15). Hence, for cyclic groups, the irre-
ducible representations �n are completely determined by the
character Equation (C1a).

For example, for C3(M), we use

ζ�n [(123)] = ηn3 = exp
(

−n
2π i
3

)
(C2)

to determine the three irreducible representations:

ζ�0 [(123)] = 1 ⇔ � = �0 ≡ A,

ζ�1 [(123)] = η3 ⇔ � = �1 ≡ E1,

ζ�2 [(123)] = η∗
3 ⇔ � = �2 ≡ E2.

(C3)

Here, the irreducible representations E1 and E2 are separable
degenerate as long as the quantum systemof interest is invariant
under time-reversal [41].

We could apply the same approach to determine the 18 irre-
ducible representations of C18(M), the symmetry group of B−

11
with hindered rotations. Defining

η18 ≡ exp
(

−2π i
18

)
(C4)

and using Equations (C1a) and (C1b), we then obtain the 18
irreducible representations �0, . . . , �17 that are given in the
right column of Table 1. It is instructive, however, to employ an
alternative method that makes use of the direct product struc-
ture (Equation 12). Consider a group G that can be written
as

G = U ⊗ U′. (C5)
Then, according to the representation theory of groups
[41,67,68], the character ζ of the element gi,j = ui ◦ u′

j for any
irreducible representation �G

αᾱ of the group G can be written as

ζ
�G

αα′ [gi,j] = ζ�U
α [ui]· ζ�U′

α′ [u′
j], (C6)

where �α and �ᾱ denote irreducible representations of the
subgroups U and U′. Applying Equation (C6), we are able to
write the characters of the irreducible representations of C18
as products of the irreducible representations of Cin(M) and
Cout(M).

How we choose the characters of the two cyclic subgroups,
C9(M) and C2(M), is to some extent arbitrary, as long as Equa-
tions (C1a) and (C1b) are fulfilled, andwe obtain a different set
of characters for each irreducible representation. We choose η
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for C2(M) and C9(M) such that their irreducible representa-
tions properly correlate with the irreducible representations of
C18(M). Hence, for the group Cin(M) = C2(M), we define

ζ�n [(12)] = ηnin = exp(−nπ i) (C7)

and
ζ�0 [(12)] = 1 ⇔ � = �0 ≡ A,

ζ�1 [(12)] = −1 ⇔ � = �1 ≡ B.
(C8)

Applying Equation (C1b) then gives all characters of A and B.
For the nine irreducible representations of Cout(M) =

C9(M), �0,�1, . . . ,�8, we choose

ζ�n [(a e i d h c g b f)] = ηnout = exp
(
n· 8π i

9

)
, (C9)

cf. Equation (B10a), and calculate the characters of each �n
employing Equations (C1a) and (C1b). Here, we find for the
irreducible representations

�n = �∗
hout−n . (C10)

Again, it follows from representation theory that the pair
(�n,�hout−n) is separable degenerate as long as time-reversal
is a symmetry operation of the system [41].

Thus, for B−
11, we can write the 18 irreducible representa-

tions of Chtot(M) as

�0,A,�0,B, . . . ,�8,A,�8,B. (C11)

Their characters can be directly read off (EquationsC1b, C6, C8
and C9, respectively) without calculating the character table of
C18(M) explicitly.

The direct product structure of C18(M) (Equation 12) also
simplifies assigning the basis functions φk in Equation (18)
according to their symmetries. From Equation (B10) follows

PoutPinφk = ηkoutη
k
inφk (C12)

with ηout and ηin being defined in Equations (C9) and (C7).
Thus, with the help of Equations (B10) and (C12), we can clas-
sify the contorsional basis functions φk according to irreducible
representations of the groups (Equations 10a and 10b) to finally
confirm the results in Table 1.

Appendix 4. How to find the number of nuclear
spin states with given symmetry

In general, the characters of the reducible representation �nu.sp

that is spanned by all nuclear spin functions can be found by

counting the number of nuclear spin functions that are left
invariant if the operation P is applied [41],

ζ�nu.sp
[P] =

NP∏
k=1

(2Ik + 1)
N̄P∏
k′=1

(2Ik′ + 1). (D1)

In Equation (D1), k labels the NP nuclear spins belonging to
the same mIk that are permuted by P, whereas k′ denotes the
N̄P nuclear spins that are not affected by P.

We discuss the nuclear spin states of B−
11 as an exam-

ple. Taking into account the direct product structure of
C18(M), cf. Equation (12), we determine the symmetries
�nu.sp for the groups Cin(M) and Cout(M) separately. Applying
Equation (D1), we obtain for �

nu.sp
Cin

ζ
�
nu.sp
Cin [P2in] =

(
2· 3

2
+ 1

)2
= 16 (D2a)

ζ
�
nu.sp
Cin [Pin] =

(
2· 3

2
+ 1

)
= 4. (D2b)

Using the formula for reduction [41,67,68]

a�i = 1
htot

htot∑
n=1

(ζ�i [Pnin])
∗ζ�

nu.sp
Cin [Pnin], (D3)

we find
�
nu.sp
Cin

= 10A ⊕ 6 B (D4)
in accordance with Equation (29a).

Analogously, for the reducible representation �
nu.sp
Cout

Cout E P1out P2out P3out P4out P5out P6out P7out P8out
ζ�nu.sp 262, 144 4 4 64 4 4 64 4 4

(D5)

Using the characters shown in Equation (D5) and the formula
for reduction (Equation .3), for C9, confirms the results shown
in Equation (29b). In particular, we have

a�1 = a�2 = a�4 = a�5 = a�7 = a�8 (D6a)

a�3 = a�6 . (D6b)
We then obtain the complete representation �

nu.sp
C18

by applying
Equation (C6).
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