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The boron rotor 11B+
13 consists of a tri-atomic inner “wheel” that may rotate in its pseudo-rotating

ten-atomic outer “bearing”—this concerted motion is called “contorsion.” 11B+
13 in its ground state

has zero contorsional angular momentum. Starting from this initial state, it is a challenge to ignite
contorsion by a laser pulse. We discover, however, that this is impossible, i.e., one cannot design
any laser pulse that induces a transition from the ground to excited states with non-zero contorsional
angular momentum. The reason is that the ground state is characterized by a specific combination
of irreducible representations (IRREPs) of its contorsional and nuclear spin wavefunctions. Laser
pulses conserve these IRREPs because hypothetical changes of the IRREPs would require nuclear
spin flips that cannot be realized during the interaction with the laser pulse. We show that all excited
target states of 11B+

13 with non-zero contorsional angular momentum have different IRREPs that are
inaccessible by laser pulses. Conservation of nuclear spins thus prohibits laser-induced transitions
from the non-rotating ground to rotating target states. We discover various additional constraints
imposed by conservation of nuclear spins, e.g., laser pulses can change clockwise to counter-clockwise
contorsions or vice versa, but they cannot stop them. The results are derived in the frame of a simple
model. Published by AIP Publishing. https://doi.org/10.1063/1.5048358

I. INTRODUCTION

This paper has two motivations that are somewhat antag-
onistic: On the one hand, it is a rewarding task to ignite
intramolecular rotations in molecular rotors. Impressive exper-
imental demonstrations are documented in Refs. 1–4 supple-
mented by theoretical concepts.5–8 A particular challenge here
is the laser excitation of rotations in the planar boron rotors
B−11,9,10 B+

13,11–14 B+
15,15 and B−19.16–18 Pictorially speaking,

these rotors consist of a small inner “wheel” that rotates flux-
ionally in an outer “bearing.” If the rotary motion starts out
from a global minimum (GM) structure, then it transforms
the initial GM to another one and then to a third one, and so
on. The mobility of these rotors is supported by two proper-
ties: First, by their rather low (typically below 1 kcal/mol9–18)
potential barriers or transition states (TSs) between poten-
tial wells that support the GM structures. These potential
wells and their GMs as well as the TSs between the GMs
are arranged in cyclic orders, GM1, TS1,2, GM2, TS2,3, . . .,
GMN , TSN ,1, where the total numbers N of the GMs and TSs
are rather large: They are equal to the product N = Nw × Nb

of the number Nw of atoms that determines the shape of the
wheel times the number of atoms Nb in the bearing; thus,
N = 2 × 9, 3 × 10, 4 × 11, and 5 × 13 for B−11, B+

13, B+
15,

a)Electronic mail: dmjia@email.sxu.edu.cn

and B−19, respectively. Second, the mobility is supported by
pseudo-rotations of the nuclei of the bearings that adapt their
shape to the rotating wheel,19,20 which is analogous to rotating
molecules in pseudo-rotating cages.21 According to the termi-
nology that has been introduced in Ref. 22 in accordance with
the nomenclature that was coined in Ref. 23, the concerted
rotational (or torsional) and pseudo-rotational motion of the
boron rotors will be called “contorsion” below. The boron
rotors were given names that point to their rotary mobility,
such as molecular “Wankel motors,”12,13,17,18 “tank treads”9,15

with the peripheral atoms behaving as a flexible “chain gliding
around,” or “molecular ball bearings.”14 The rotary motions
were demonstrated by means of molecular dynamics (MD)
simulations;9,10,12,14,15,17,18 these employ classical trajectories
that are propagated on the potential energy surfaces of the
molecular rotors in their electronic ground states. Recently,
Fagiani et al. discovered two signatures of the mobility of
B+

13 in infrared (IR) spectra, namely, apparent line broad-
ening and a spectral peak that was assigned to the rotor
when it crosses the TS.14 Zhang et al. suggested to trigger
the intramolecular rotation of B+

13 by means of an external
laser field, with MD simulations of the mechanism.12 Their
concept was highlighted by Merino and Heine’s article enti-
tled “And yet it rotates: The starter for a molecular Wankel
motor.”13

On the other hand, recently, Grohmann and Manz have
discovered fascinating effects of the nuclear spins of the boron
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rotors that render the previous results of classical MD simu-
lations assailable.22 They investigate explicitly the example
11B−11 using the theory of molecular symmetry (MS) groups23

and a simple model and extrapolate analogous results for all
planar boron rotors.11–20 Their model extends that of Refs. 19
and 20 by considering not only the contorsions of the rotors but
also the constraints imposed by nuclear spins. Analogous con-
straints are described in many textbooks of quantum mechanics
and physical chemistry, usually for the hydrogen molecule
with its two nuclear spin isomers, para-H2 and ortho-H2.
For reference, Fig. 1 shows the energy levels of the lowest
rotational states of para-H2 and ortho-H2, together with a
hypothetical transition for rotational excitation by a right circu-
larly polarized laser pulse, for example, from the ground state
JM = 00 (para-H2) to the first excited rotational state JM = 11
(ortho-H2). This type of rotational excitation is doubly prohib-
ited: First, it is “dipole forbidden” because the electric dipole
d(R) of H2 in the electronic ground state 1Σ+

g is exactly equal
to zero for all molecular orientations and for all internuclear
distances R. As a consequence, the interaction −ε · d between
the laser field ε and the dipole d is equal to zero and the tran-
sition dipole matrix element 〈Ψ011 | − ε · d |Ψ000〉 between the
vibrational and rotational ground stateΨνJM =000 and the target
state Ψν′J′M′=011 vanishes. Second, the transition is prohibited
by nuclear spins because it would call for nuclear spin flip;
this is associated with a change of the symmetry (or the corre-
sponding irreducible representations, IRREPs) of the nuclear
spin wavefunctions, here from the nuclear singlet state (total
nuclear spin quantum numbers I tot, mItot = 0, 0: para-H2) to
the triplet state (I tot, mItot = 1, 1: ortho-H2). Now, on one hand,
the familiar (first) dipole selection rule is actually an approxi-
mation that is derived by means of perturbation theory in the
weak field limit and in the frame of the Born-Oppenheimer
approximation (BOA). This can be overcome, in principle, by
intense ultrashort laser pulses, beyond the BOA.24,25 On the
other hand, it is impossible to overcome the (second) selection
rule imposed by the nuclear spins, during typical durations
of laser pulses. Thus, for reference, it is actually the nuclear
spins that block rotational JM = 00 → 11 laser excitation
of H2. By contrast, transitions within the same nuclear spin

FIG. 1. The reference system: Nuclear spin blockade of hypothetical rota-
tional laser excitation of H2 from the ground state J, M = 0, 0 [I tot = 0]
(para-H2) to the first excited state J, M = 1, 1 [I tot = 1] (ortho-H2). Transi-
tions that conserve nuclear spin are not prohibited, e.g., from J, M = 0, 0 [I tot
= 0] (para-H2) to J, M = 2, 0 [I tot = 0] (para-H2).

isomer, e.g., from ΨνJM =000 (para-H2) to Ψν′J′M′=020 (also
para-H2), conserve nuclear spin; hence, such transitions can
be induced by means of an ultrashort intense laser pulse even
though they are dipole-forbidden in the weak-field limit (cf.
Fig. 1).

Analogous effects of nuclear spins were ignored in pre-
vious work on boron rotors;9–20 see also the reviews Refs. 26
and 27. Here, we investigate these phenomena using the model
of Refs. 19, 20, and 22 for planar boron rotors that consist
of a single boron isotope, specifically 11B with correspond-
ing nuclear spin 3

2~, and that are aligned in a plane, say, in
the x-y-plane of the laboratory; equivalent results hold for the
less abundant isotope 10B with nuclear spin 3~. These boron
rotors have many more nuclear spin isomers than the famil-
iar two species of H2. Hence we do not call them “para” or
“ortho,” but they will be labeled by their irreducible repre-
sentations Γ0, Γ1, . . ., ΓN−1; see Sec. II B. It turns out that
the numbers N of nuclear spin isomers are equal to the num-
bers of GMs and TSs, that is, N = 18, 30, 44, and 65 for
11B−11, 11B+

13, 11B+
15, and 11B−19, respectively.22 Explicitly, we

shall consider the example of the aligned boron rotor 11B+
13,

i.e., the system that was also investigated in Refs. 11–14
and 20.

Important details of the scenario and the model will be
specified in Sec. II. Suffice it here to say that we consider
the rotor at contorsional energies well below any electronic or
in-plane vibrational excitations and the model neglects interac-
tions of nuclear spins that take much longer times than typical
durations of laser pulses, as well as couplings of contorsions
and complementary vibrations, as explained in Ref. 22. Using
this model, Grohmann and Manz have shown that nuclear
spins prohibit localized preparations of the boron rotors in
a single GM structure.22 The reason is that a hypothetical
GM structure would have to be a superposition of eigen-
states of all nuclear spin isomers Γ0, . . ., ΓN−1—but this is
not allowed, which is analogous to the nuclear spin block-
ade against any hypothetical superposition of eigenstates of
para-H2 and ortho-H2. Instead, the boron rotors are always
delocalized in all possible GM structures; for example, 11B+

13
is always delocalized in all thirty GM structures.22 Now, the
classical trajectories of the previous MD simulations of boron
rotors necessarily start out from a single GM structure. Yet,
this type of initial preparation is prohibited by the nuclear
spins, which were ignored in MD simulations.22 In particular,
the previous MD simulation of the ignition of intramolec-
ular rotation in 11B+

13 by means of electric fields,12 which
means the “starter for a molecular Wankel motor,”13 appears
assailable.

The conflict of the two antagonistic motivations for this
paper is now clear. This raises the question whether one can
really induce intramolecular rotations, such as in the aligned
model rotor 11B+

13, by means of well-designed laser pulses,
starting from the non-rotating ground state of the rotor. We
shall investigate this problem by using the model and the
derivations of Ref. 22. Important steps include the assign-
ment of the molecular symmetry (MS) group and the irre-
ducible representations (IRREPs) that label the nuclear spin
isomers of 11B+

13, as well as the use of several equivalent
representations of the operators of the MS group. The purpose
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here is not to provide the ultimate answer—this could not be
expected from the simple model. Instead, the answer derived
within the frame of the model should stimulate extended
investigations. On the way, we shall reveal additional con-
straints on contorsional transitions in 11B+

13 imposed by nuclear
spins. The model and methods are presented in Sec. II, the
results and discussions in Sec. III, and the conclusions in
Sec. IV.

II. MODEL AND METHODS
A. Contorsional eigenfunctions, energies, quantum
numbers, and delocalized structures of the model
rotor 11B+

13

The planar boron rotor 11B+
13 in its contorsional ground

state is illustrated in Fig. 2(a) (adapted from Ref. 19), aligned
in the x-y plane. For reference, one of the GM’s is illus-
trated in Fig. 2(b). Here one recognizes the inner “wheel”
with Nw = 3 boron atoms, embedded in the outer “bearing”
with Nb = 10 boron atoms. So 11B+

13 has altogether Nb × Nw

= 30 GM structures. The contorsion of 11B+
13, which means

the concerted rotation of the wheel with respect to the bear-
ing combined with the pseudo-rotation of the nuclei of the
bearing, is described as motion along the cyclic contorsional
angle ξ, 0 6 ξ 6 2π.19,20 The value of the corresponding
effective moment of inertia, Ieff = 88.5 µÅ2, is adapted from
Ref. 20. If the GM shown in Fig. 2(b) is labeled GM1 and
centered at ξ1 = 2π

2N = 2π
60 (=̂ 6◦), then the cyclic series GM1,

FIG. 2. (a) The planar boron rotor 11B+
13 in its non-rotating ground state.

This is realized for the nuclear spin isomer with irreducible representations
(IRREPs) Γ0[Γ15] of the contorsion [and nuclear spins]; see Sec. II C. Its
delocalized structure comprises the superposition of thirty global minimum
(GM) structures. As an illustration, one of them (GM1) is shown in panel (b).
(b) The GM structure GM1 of 11B+

13. The nuclei of its inner wheel and of the
outer bearing are labeled 1, 2, 3 and a, b, c, . . ., j, respectively. (c) The planar
boron rotor 11B+

13 in one of its excited states—here for the nuclear spin iso-
mer with IRREPs Γ14[Γ1]. The arrows indicate the contorsional motions, i.e.,
the rotation of the inner wheel with respect to the bearing, and the concerted
pseudo-rotations of the nuclei of the outer bearing. Hypothetical laser excita-
tions from the non-rotating nuclear spin isomer Γ0[Γ15] to the rotating nuclear
spin isomer Γ14[Γ1] or others are blocked by the nuclear spins, analogous to
nuclear spin blockade of transitions between para- and ortho-H2 illustrated
in Fig. 1.

GM2, . . ., GMk , . . ., GMN are centered at ξk = ξ1 + (k − 1)
∆ξ, k = 1, 2, . . ., N = 30, where ∆ξ = 2π

N = 2π
30 (=̂ 12◦). The

corresponding transition states TS1,2, TS2,3, . . ., TSk ,k+1, . . .,
TSN ,1 between the GMs are located at ξk ,k+1 = k ∆ξ, k = 1,
2, . . ., N (=̂ 12◦, 24◦, . . ., 360◦ ≡ 0◦). The superposition
of the localized structures of all GMk yields the delocalized
structure of the contorsional ground state that is illustrated in
Fig. 2(a).

The contorsional eigenfunctions Φm(ξ) and energies Em

of the model boron rotor 11B+
13 with quantum numbers

m = 0, 1, 2, . . . are obtained as solutions of the Schrödinger
equation

HcΦm(ξ) = EmΦm(ξ) (1)

subject to cyclic boundary conditionsΦm(ξ = 0) =Φm(ξ = 2π).
The contorsional model Hamiltonian is19,20

Hc = −
~2

2Ieff

d2

dξ2
+ V (ξ). (2)

The cyclic contorsional thirty-well potential V (ξ) supports the
thirty equivalent GM structures of 11B+

13, separated by thirty
equivalent TSs. It is modeled as19,20

V (ξ) =
Vb

2
[1 + cos(30ξ)] (3)

with barrier height Vb = 106.4 hc cm−1 adapted from Ref. 20; h
is Planck’s constant, and c = c0 is the velocity of light in vacuo.
The model potential (3) may be considered as the leading
term of a symmetry-adapted Taylor expansion of the accu-
rate potential; higher order terms V k cos(30kξ), k = 2, 3, . . .,
would induce irrelevant marginal shifts of the energies Em, but
they would not affect any of the fundamental results, e.g., they
would not change the block-diagonal structure of the Hamil-
tonian matrix [see Eq. (9)] and the corresponding assignments
of quantum numbers.

The wavefunctions will occasionally be written using
Dirac notation, Φm(ξ) = 〈ξ |Φm〉. They are normalized and
orthogonal,

〈Φm |Φm′〉 =

∫ 2π

0
dξ Φ∗m(ξ)Φm′(ξ) = δm,m′ , (4)

where δm ,m′ denotes Kronecker’s symbol. They may be
expanded in terms of ortho-normal contorsional basis func-
tions

φk(ξ) =
1
√

2π
ei kξ (5)

and thus

Φm(ξ) =
∑

k

ck,mφk(ξ). (6)

Inserting the variational ansatz (6) into the Schrödinger
equation (1) yields its algebraic version

Hcm = cmEm, (7)

with the vector cm of the coefficients ck ,m and with Hamilton
matrix H. Its elements are

Hk,k′ = −
~2

2Ieff
k2δk,k′ +

1
2

Vbδk,k′ +
1
4

Vb(δk,k′+30 +δk,k′−30). (8)
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The Kronecker δ’s in Eq. (8) make H rather sparse so that it can
be written as a block diagonal matrix or as the corresponding
direct sum of the block matrices

H = H0 ⊕ H1 ⊕ · · · ⊕ H29, (9)

where Hn contains the matrix elements for k, k ′ = . . ., n − 60,
n − 30, n, n + 30, n + 60, . . . such that k mod 30 = n, n = 0,1,
2, . . ., 29. The Schrödinger equation (7) can then be solved
for each Hamilton block matrix separately, and the resulting
energies and wavefunctions can be labeled by two quantum
numbers, m = nl where n = 0, 1, . . ., 29 denotes the number
for the block and l = 0, 1, 2, . . . denotes the lth energy level
for the nth block,

Hncnl = cnlEnl. (10)

These quantum numbers nl will be given important physical
meanings below. The expansion (6) is thus reduced to

Φnl(ξ) =
∑

k

ck,nl φk(ξ), k mod 30 = n. (11)

The matrix elements (8) imply that the block matrix Hn is the
same as H30−n, n = 1, 2, . . ., 14, except for the reverse order
of the diagonal elements. As a consequence, Hn and H30−n,
n = 1, 2, . . ., 14, have the same eigenvalues, i.e., Enl and E(30−n)l

are pair-wise degenerate,

Enl = E(30−n)l for n = 1 , 2, . . . , 14, (12)

whereas E0l and E15l are non-degenerate. Moreover, the coef-
ficients for the degenerate eigenstates labeled nl and (30 − n)l
appear in reverse order,

ck,nl = c−k,(30−n)l, (13)

for k mod 30 = n or −k mod 30 = 30 − n with n = 1, 2, . . .,
14. For the non-degenerate states, the symmetry relation Hkk

= H−k ,−k of the block diagonal matrices H0 and H15 imposes
the related symmetries of the coefficients,

ck,0l = c−k,0l or

ck,0l = −c−k,0l and c0,0l = 0
(14)

for k mod 30 = 0, and

ck,15l = c−k,15l or

ck,15l = −c−k,15l
(15)

for k mod 30 = 15. These symmetry relations imply that
the non-degenerate eigenfunctions Φ0l(ξ) and Φ15l(ξ) of the
model boron rotor 11B+

13 are real-valued, or they can be cho-
sen to be real-valued, except for an irrelevant overall phase
factor.

At first glance, the degeneracy of the two eigenstates,
Eq. (12), may suggest that one could generate alternative pairs
of degenerate contorsional eigenstates by means of a uni-
tary transformation of the set of eigenfunctions Φnl(ξ) and
Φ(30−n)l(ξ). In the supplementary material with Refs. 28–36,
we show, however, that one can prepare the “original” eigen-
functions that are obtained as solutions of the block diagonal
Hamiltonians Hn and H30−n in a unique manner by means of
a magnetic field B = Bzez that is oriented perpendicular to the

molecular plane. Suffice it here to say that the field Bz lifts the
degeneracy (12). The corresponding eigenfunctionsΦnl(ξ; Bz)
andΦ(30−n)l(ξ; Bz) are determined, therefore, in a unique man-
ner (that means without any option for unitary transformation).
Finally, if one switches off the magnetic field adiabatically,
the eigenfunctions Φnl(ξ; Bz → 0) and Φ(30−n)l(ξ; Bz → 0)
approach the original Φnl(ξ) and Φ(30−n)l(ξ), with a continu-
ous approach of the properties of 11B+

13 in the magnetic field to
11B+

13 without the magnetic field. In the context of the present
investigation, the supplementary material shows, in particu-
lar, that the mean values of the canonical contorsional angular
moment of 11B+

13 in the magnetic field approach those that
are calculated for 11B+

13 without the magnetic field using the
original solutions for the block diagonal Hamiltonians Hn and
H30−n, n = 1, 2, . . ., 14.

We close this subsection by a brief consideration of the
numerical method for solving the Schrödinger equation (10)
for the block diagonal Hamilton matrices Hn. In principle, the
expansion (11) is infinite and all the resulting Hamilton block
matrices are infinite square matrices, but, in practice, they are
truncated to finite basis sets, k = n − Nn × 30, . . ., n − 30,
n, n + 30, . . ., n + (Nn − 1 + δn0) × 30. Numerically converged
results with accuracy better than 1/100 of the smallest level
splitting are obtained for Nn = 12, which means the numerical
square block matrix H0 is 2× 12 + 1 = 25 dimensional, whereas
all other block matrices are 2 × 12 = 24 dimensional.

B. The cyclic molecular symmetry group C30(M)
and the assignment of its irreducible representations
to the contorsional eigenfunctions of 11B+

13

Let us now consider the molecular symmetry (MS) group
G11B+

13
(M) of the aligned model boron rotor 11B+

13. It consists
of all the feasible permutations of the three nuclei of the inner
wheel (labeled 1, 2, and 3) and the ten nuclei of the outer
bearing (labeled a, b, c, d, e, f, g, h, i, and j); see Fig. 2(b).
According to Ref. 22, G11B+

13
(M) is the corresponding direct

product of the cyclic groups of the inner wheel Cin = C3(M)
and the outer bearing Cout = C10(M),

G11B+
13

(M) = Cin ⊗ Cout = C30(M). (16)

We stress that even though contorting 11B+
13 is planar, the

inversion E∗ is unfeasible in our scenario of pre-aligned boron
rotors.22

The group Cin in Eq. (16) consists of the three feasible
permutations

Cin = {(1), (123), (132)} = {P0
in = P3

in, Pin, P2
in} (17)

that are generated by the permutation

Pin = (123) (18)

of the three nuclei of the inner wheel. Here we employ the
so-called passive definition of permutations, e.g., (123) means
that nucleus “1” is replaced by “2,” “2” is replaced by “3,” and
“3” by “1.” Likewise, Cout consists of ten feasible permutations
of the nuclei a, b, c, . . ., j of the outer bearing,

Cout = {(a) = P10
out, P1

out, · · · , P9
out}, (19)

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-019841
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-019841
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which are generated by

Pout = (adgjcfibeh). (20)

See the Appendix.
The generator g of the direct product group (16) is the

product of the generators of the sub-groups,

g = Pin Pout = (123)(adgjcfibeh). (21)

The cyclic MS group of 11B+
13 then consists of all 30 feasible

permutations of its nuclei labeled 1, 2, 3, a, b, c, . . ., j that are
generated by repeated applications of g,

G11B+
13

(M) = C30(M) = {E = g30, g, g2, · · · , gm, · · · , g29}.
(22)

We have chosen the generator Eq. (21) such that the group
elements E, g, g2, . . ., gm, . . ., g29 transform GM1 into the
cyclic sequence GM1, GM2, GM3, . . ., GMm, . . ., GM29. Thus
we have

gGM1 = GM2, (23)

gmGM1 = GMm+1, (24)

gGMm = GMm+1. (25)

Cyclic groups such as C30(M) have various well-known prop-
erties that will be exploited below—for a summary that is
tailored to the planar boron rotors, see Ref. 22. Specifically,
C30(M) has 30 one-dimensional IRREPs labeled Γ0, Γ1, . . .,
Γn, . . ., Γ29. The characters assigned to the group elements gm

are

χΓn (gm) = (ηm
30)n, (26)

where

η30 = e−2π i/30. (27)

This allows us to specify the IRREPs of C30(M) by the
characters of the generator,

Γn ↔ χΓn (g) = ηn
30. (28)

The relations (23)–(25) suggest equivalent alternative rep-
resentations of the generator g and of the other group elements
gm of C30(M), namely, in terms of the effect on the contor-
sional coordinate ξ, on the wavefunctions Φnl(ξ), n = 0, 1, 2,
. . ., 29, and on the underlying set of basis functions φk(ξ), k
mod 30 = n, n = 0, 1, 2, . . ., 29. Since GM1 and GM2 in Eq. (23)
[and likewise GMm and GMm+1 in Eq. (25)] are centered at ξ1

and ξ2 = ξ1 + ∆ξ (and likewise at ξm and ξm+1 = ξm + ∆ξ),
respectively, we have

gξ = ξ + ∆ξ, (29)

g−1ξ = ξ − ∆ξ, (30)

gmξ = ξ + m∆ξ. (31)

As a consequence,37

gφk(ξ) = φk(g−1 ξ) = φk(ξ − ∆ξ)

=
1
√

2π
ei k(ξ−∆ξ) = ηk

30φk(ξ)

= ηn
30φk(ξ) if k mod 30 = n. (32)

From Eq. (32), it follows that

IRREP[φk(ξ)] = Γn if k mod 30 = n. (33)

The expression (11) of the eigenfunctions Φnl(ξ) in terms of
the basis functions φk(ξ) then implies that

IRREP[Φnl(ξ)] = Γn (34)

or equivalently

Γn ↔ gΦnl(ξ) = ηn
30 Φnl(ξ). (35)

This allows us to assign physical meanings to the labels nl of
the eigenfunctionsΦnl(ξ) of the model 11B+

13 that are obtained
as solutions of the Schrödinger equation (10) for the nth diag-
onal block of the Hamilton matrix Hn, with energies Enl and
coefficients cnl: The quantum number n = 0, 1, 2, . . ., 29 spec-
ifies the IRREP Γn, whereas l = 0, 1, 2, . . . specifies the level
for the given Γn. We shall show below that the energies appear
in groups, or “bands” of levels, i.e., all energies En0, n = 0,
1, . . ., 29, are well below the energies En1, n = 0, 1, . . ., 29,
and the latter are all below En2, n = 0, 1, . . ., 29, etc. As
a summary, the quantum numbers nl specify the IRREP Γn

and the “energy band” l. The lowest and highest energies in
each “band” are non-degenerate and all others are pair-wise
degenerate [cf. Eq. (12)].

C. Molecular eigenfunctions of the model rotor 11B+
13

According to the nuclear spin hypothesis, molecular (mol)
eigenfunctions can be written as products (or possibly as
linear combinations of products) of rotational-contorsional-
vibrational-electronic (rcve) times nuclear spin (nu.sp) eigen-
functions,22,38

Φ
mol = Φrcve

Φ
nu. sp. (36)

For the present simple model, the rcve-eigenfunctions are
simply the contorsional eigenfunctions

Φ
rcve(ξ) = Φnl(ξ) (37)

assigned to the IRREP Γn and the energy band l.
The nuclear spin functions Φnu.sp = Φnu.sp

n′l′ have corre-
sponding quantum numbers n′ and l′, which assign the IRREP
Γn′ and specify the l′th wavefunction with IRREP Γn′ . For
details, see the supplementary material.

Having determined the contorsional eigenfunctions
Φrcve(ξ) = Φnl(ξ) and the nuclear spin eigenfunctions
Φnu.sp(Σ1, Σ2, Σ3, Σa, Σb, . . ., Σj) = Φnu.sp

n′l′ (Σ1, Σ2, Σ3, Σa,
Σb, . . . , Σj), let us now consider the molecular eigenfunctions
(36). For this purpose, it is mandatory to invoke the spin
statistics theorem applied to the thirteen nuclei of the model
boron rotor 11B+

13. These nuclei 11B are fermions because of
the half-integer nuclear spin I = 3

2 . A familiar version of the
spin statistics theorem for fermions is the requirement that the
molecular wavefunction must change sign if one interchanges
any two of the fermions.39 Now let us consider the conse-
quences of the theorem for the application of the generator g
of the MS group C30(M) applied to the molecular eigenfunc-
tions of 11B+

13. The generator can be expressed in terms of
eleven interchanges of two nuclei,

g = (123)(adgjcfibeh)

= (13)(12)(ah)(ae)(ab)(ai)(af)(ac)(aj)(ag)(ad). (38)

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-019841
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Hence,

gΦmol = (−1)11
Φ

mol = −Φmol

= −Φnl(ξ)Φnu.sp
n′l′ (Σ1, Σ2, Σ3, Σa, Σb, . . . , Σj)

= η15
30 Φnl(ξ)Φnu.sp

n′l′ (Σ1, Σ2, Σ3, Σa, Σb, . . . , Σj)

= (gΦnl(ξ)) (gΦnu.sp
n′l′ (Σ1, Σ2, Σ3, Σa, Σb, . . . , Σj))

= ηn
30 Φnl(ξ) ηn′

30 Φ
nu.sp
n′l′ (Σ1, Σ2, Σ3, Σa, Σb, . . . , Σj).

(39)

A necessary condition for the validity of this application of the
spin statistics theorem is

(n + n′) mod 30 = 15. (40)

As a consequence, one cannot combine the contor-
sional eigenfunction Φnl(ξ) with any arbitrary nuclear
spin eigenfunction Φnu.sp

n′l′ (Σ1, Σ2, Σ3, Σa, Σb, . . . , Σj). Instead,
the IRREP Γn of Φnl(ξ) determines the IRREP Γn′ of
Φ

nu.sp
n′l′ (Σ1, Σ2, Σ3, Σa, Σb, . . . , Σj), and vice versa, such that n

and n′ satisfy condition (40). For example, if the IRREP of
the contorsional eigenfunction is Γ0, then the IRREP of the
nuclear spin eigenfunction must be Γ15. We denote this unique
combination of the contorsional and nuclear spin IRREPs by
Γ0[Γ15]. The corresponding nuclear spin isomer is thus labeled
by Γ0[Γ15]. The definition of nuclear spin isomers in terms of
their IRREPs is in accord with the convention that has been
introduced in Refs. 40–43. The complete set of 30 nuclear spin
isomers of 11B+

13 are labeled by the IRREPs Γn[Γn′] that sat-
isfy condition (40); see also the supplementary material and,
in particular, Table 1 for their numbers, Nnu.sp[Γn′]. Accord-
ingly, the 30 nuclear spin isomers of the model rotor 11B+

13 are
labeled Γn[Γ15−n] for n = 0, 1, 2, . . ., 15 and Γn[Γ45−n] for
n = 16, 17, . . ., 29.

As a summary, the molecular eigenfunctions of the model
boron rotor 11B+

13 are

Φ
mol
nl,n′l′(ξ; Σ1, Σ2, Σ3, Σa, Σb, . . . , Σj)

= Φnl(ξ)Φnu.sp
n′l′ (Σ1, Σ2, Σ3, Σa, Σb, . . . , Σj) (41)

with n = 0, 1, 2, . . ., 29, (n + n′) mod 30 = 15, and l = 0, 1, . . .,
l′ = 1, 2, . . ., Nnu.sp(Γn′).

D. Mean values of the contorsional momenta
of the nuclear spin isomers of 11B+

13

The quantum mechanical operator of the z-component
of the contorsional angular momentum (i.e., the compo-
nent perpendicular to the molecular x-y-plane of the ori-
ented model rotor 11B+

13) is conjugate to the contorsional
coordinate ξ,

Lz = −i ~
∂

∂ξ
. (42)

The contorsional symmetry of Lz is Γ0. Hence the mean values
of Lz for the contorsional eigenfunctionsΦnl(ξ) of the nuclear
spin isomers of 11B+

13 labeled Γn[Γ15−n] (n = 0, 1, 2, . . ., 15)
or Γn[Γ45−n] (n = 16, 17, . . ., 29) are evaluated as

〈Φnl |Lz |Φnl〉 =
∑
k,k′

ck,nl ∗ ck′,nl〈φk |Lz |φ
′
k〉 = ~

∑
k

|ck,nl |
2 k.

(43)
The relation (13) implies that the mean values of the angu-
lar momenta of the degenerate levels Enl and E(30−n)l of

the nuclear spin isomers labeled Γn[Γ15−n] and Γ30−n[Γ15+n],
n = 1, 2, . . ., 14, have opposite signs,

〈Φnl |Lz |Φnl〉 = ~
∑

k

|ck,nl |
2k

= ~
∑

k

|c−k,(30−n)l |
2k (k mod 30 = n)

= ~
∑

k

|ck,(30−n)l |
2(−k) (k mod 30 = 30 − n)

= −〈Φ(30−n)l |Lz |Φ(30−n)l〉 for n = 1, 2, . . . , 14.

(44)

For the non-degenerate levels E0l and E15l of the nuclear spin
isomers Γ0[Γ15] and Γ15[Γ0] of 11B+

13), the symmetry rela-
tions (14) and (15) of the coefficients imply that the mean
contorsional angular momenta are equal to zero,

〈Φ0l |Lz |Φ0l〉 = 〈Φ15l |Lz |Φ15l〉 = 0. (45)

In particular, the mean contorsional angular momentum of the
ground state of 11B+

13 is equal to zero,

〈Φ00 |Lz |Φ00〉 = 0. (46)

The corresponding nuclear spin isomer has IRREPs Γ0[Γ15].

III. RESULTS AND DISCUSSION

In Sec. III A, we shall first present the representative
results for the contorsional eigenfunctions, the levels, the mean
values of the contorsional angular momenta, and the contor-
sional [nuclear spin] IRREPs of the oriented model rotor 11B+

13.
In the second part, we shall discuss the consequences, i.e.,
the constraints of the nuclear spins imposed on laser induced
contorsional transitions of 11B+

13.

A. Contorsional eigenfunctions, levels, mean
values of angular momenta, and IRREPs
of the model rotor 11B+

13

Selected solutions of the contorsional Schrödinger equa-
tion (10) are illustrated in Fig. 3. Specifically, Fig. 3 shows
the four non-degenerate real-valued contorsional eigenfunc-
tions Φnl(ξ) and eigenenergies Enl of the oriented model rotor
11B+

13, at the bottoms (n, l = 0, 0 and 15, 1) and at the tops
(n, l = 15, 0 and 0, 1) of the lowest (l = 0) and first excited
(l = 1) energy bands. The corresponding numbers of nodes
of the wavefunctions (excluding the nodes at the edges of
the cyclic domain 0 6 ξ 6 2π) increase from 0 (for n, l
= 0, 0) via 29, 30 (for n, l = 15, 0 and 1, 0) to 59 (for n,
l = 0, 1). The contorsional [and nuclear spin] IRREPs are
Γ0[Γ15], Γ15[Γ0], Γ15[Γ0], and Γ0[Γ15], respectively. These
examples show that the combination of IRREPs Γ0[Γ15] may
be assigned either to the lowest or to the highest levels of the
energy bands and vice versa for the “opposite” combination
Γ15[Γ0].

The complete set of all energies Enl of the lowest (l = 0)
and first excited (l = 1) energy bands of the oriented model
rotor 11B+

13 is shown in Fig. 4 (these results agree with those
of Ref. 20), together with the new results for the mean values
of the contorsional angular momenta 〈Φnl |Lz |Φnl〉 and assign-
ments of the IRREPs Γn[Γn′]. The numerical results confirm

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-019841
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FIG. 3. Non-degenerate, real-valued contorsional eigenfunctions Φnl(ξ) of
the oriented model rotor 11B+

13, at the bottoms (n, l = 0, 0 and 15, 1) and at
the tops (n, l = 15, 0 and 0, 1) of the lowest (l = 0) and first excited (l = 1)
energy bands. Horizontal base lines of the wavefunctions are drawn at the
related contorsional eigenenergies Enl below and above the barriers of the
cyclic contorsional model potential V (ξ), respectively. For clarity, the results
are shown just for the rather small contorsional domain 0◦ 6 ξ 6 48◦,
with four potential minima supporting the global minimum structures
GM1–GM4.

the non-degeneracy of the levels at the bottom and top of the
energy bands (n = 0, 15) and the degeneracy Enl = E(30−n),l

[Eq. (12)] of the other levels. Likewise, they confirm that the
mean values of the contorsional angular momenta of the non-
degenerate levels at the top and bottom of the energy bands are
equal to zero, cf. Eq. (45), whereas the complementary pairs of
degenerate levels have opposite non-zero values 〈Φnl |Lz |Φnl〉

= −〈Φ(30−n)l |Lz |Φ(30−n)l〉 [cf. Eq. (44)].

B. Constraints on laser induced transitions
in the model rotor 11B+

13 imposed by nuclear
spin conservation

The results shown in Fig. 4 imply huge consequences for
laser-induced contorsional transitions. As discussed in detail
in Ref. 22, we assume that the corresponding laser pulses have
much shorter durations than any intra-molecular nuclear spin-
flips. As the first consequence, the IRREP Γn′ of the nuclear

FIG. 4. Energies Enl , irreducible representations (IRREPs) Γn[Γn′ ] for the
contorsion [and nuclear spin], and mean values of the contorsional angular
momenta 〈Lz〉 = 〈Φnl |Lz |Φnl〉 of the eigenstates |Φnl〉 of the oriented model
rotor 11B +

13. The arrows illustrate that laser induced transitions must conserve
the IRREPs—all other transitions are blocked by nuclear spins.

spins of the initial state is conserved during the laser-induced
transition. As explained in Sec. II C, the second consequence
is that the contorsional IRREP Γn is also conserved, subject
to the constraint (n + n′) mod 30 = 15. The third consequence
is that laser pulses conserve the IRREP labels Γn[Γn′] of the
nuclear spin isomers.

Let us now consider some special consequences of these
general rules. First we consider the boron rotor in its ground
state Γ0[Γ15]. This state is non-degenerate and its mean value
of the contorsional angular momentum is equal to zero [cf.
Eq. (46)]. Figure 4 illustrates that irrespective of the specific
design of the laser pulse, one cannot induce any contorsional
intra-band transitions because all the thirty eigenstates of the
energetic ground state band have different IRREPs.22 As an
example, Fig. 4 shows one of the hypothetical transitions—
i.e., the transition from the ground state labeled Γ0[Γ15] to
the excited state labeled Γ14[Γ1]—which is blocked by con-
servation of nuclear spins. Likewise, the first excited energy
band carries again thirty states, all with different IRREPs.22

This means that one can induce one and only one inter-band
transition (out of 30 choices) between the ground and first
excited bands, starting from the ground state, namely, the
transition that conserves the IRREP Γ0[Γ15]. The only pos-
sible transition from the ground state to any of the 59 excited
states of the ground and first excited energy bands is, there-
fore, to the non-degenerate state at the top of the first excited
state—this transition is indicated by an arrow in Fig. 4. Now
since the target state is non-degenerate, its mean value of
contorsional angular momentum is again equal to zero. By
analogous extrapolation, the only possible laser-induced tran-
sitions from the ground state to any target states of the second,
third, etc. excited bands will again end up in non-degenerate
states labeled by the IRREP Γ0[Γ15], with the mean value of the
contorsional angular momentum equal to zero. This means that
it is impossible to ignite any rotation of the molecular wheel of
the model rotor 11B+

13 with respect to its pseudo-rotating bear-
ing by means of laser induced intra- or inter-band transitions:
this hypothetical process, laser-induced ignition of contorsion
in the model rotor 11B+

13, is blocked by conservation of nuclear
spins.

This nuclear spin blockade holds regardless of whether
the transitions are dipole-allowed or dipole-forbidden. In fact,
dipole selection rules could only further restrict any hypothet-
ical transition from the non-contorting ground state to excited
contorsional states. Yet, these restrictions might be overcome,
for example, by using ultrashort intense laser pulses.24,25

Thus, it is the nuclear spin that ultimately blocks transitions
from the non-contorting ground state to contorting excited
states.

An immediate consequence of nuclear spin blockade of
laser-induced contorsional ignition of the model rotor 11B+

13
is that the reverse process is also impossible. For example, let
us assume that the rotor is in one of its degenerate excited
states that carry a non-zero mean value of contorsional angu-
lar momentum, e.g., in the state labeled by IRREPs Γ14[Γ1]
[cf. Fig. 4]. Then conservation of nuclear spins blocks laser-
induced retardation of the contorsion to zero mean value of
contorsional angular momentum of 11B+

13 in its ground state
labeled Γ0[Γ15].
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Figure 4 illustrates examples of complementary rather
general constraints on laser induced transitions in the model
rotor 11B+

13 imposed by conservation of nuclear spins. First,
let us assume that the model rotor is prepared in a degener-
ate excited state with a non-zero mean value of contorsional
angular momentum, say, again in the state labeled Γ14[Γ1] [cf.
Fig. 4]. Any inter-band transition to the next higher energy
band must conserve the IRREP Γ14[Γ1]. Figure 4 shows that
there is one and only one target state (out of thirty choices)
that satisfies this condition—all other inter-band transitions
are prohibited by conservation of nuclear spin. Figure 4 also
discovers a fascinating effect: this transition changes the direc-
tion of the contorsion, from clockwise to anti-clockwise, or
vice versa. The reason is that the mean values of the contor-
sional momenta 〈Φn0|Lz |Φn0〉 and 〈Φn1|Lz |Φn1〉 of eigenstates
Φn0 and Φn1 in the ground and first excited energy bands
with the same IRREPs Γn[Γn′] are opposite (cf. Fig. 4). As
an outlook, the change in the direction of the contorsion by
inter-band transitions also suggests to design a laser pulse that
transfers partial population from the initial state (such as the
one labeled Γ14[Γ1]) of the ground energy band to the target
state with the same IRREP in the first excited band. At the end
of the laser pulse, the rotor is then prepared in a superposi-
tion of two states with contorsions in opposite directions such
that the mean value of the contorsional momentum is equal to
zero. Note that this type of superposition state is not a state
at contorsional rest—it is just its mean value that is equal to
zero.

Finally, Fig. 4 also suggests some consequences for the
infrared (IR) spectroscopy of the boron rotor 11B+

13 as follows:
The traditional consideration of global minimum structures
[with C2v symmetry, cf. Fig. 2(b)] would predict that all thirty
GM structures yield equivalent spectra—i.e., the spectral lines
are thirtyfold degenerate. In particular, one should observe an
IR absorption peak for the excitation of the normal mode with
the lowest vibrational frequency, ν1 ≈ 135.2 cm−1—this is the
mode that correlates with contorsion along ξ.19,20 By contrast,
the present consideration of cyclic contorsion along ξ, from
one GM to all others, yields the splitting of the levels of the
individual GMs. Such splittings are familiar, e.g., as tunneling
doublets of molecules that possess two interacting GMs; com-
pare the example of the tunneling inversion of ammonia. In the
present case, thirty interacting GMs cause the corresponding
sixteen-plet structures of the energy bands that are illustrated
in Fig. 4, with fourteen doubly degenerate levels between two
non-degenerate levels, representing 14 × 2 + 2 = 30 states in
each energy band. Excitation of the ν1 mode of the individual
GM is thus replaced by inter-band excitation from the ground
band to the first excited energy band for the contorsion along ξ
that correlates with ν1 vibration. Now conservation of nuclear
spins blocks all hypothetical inter-band transitions, except the
thirty transitions that conserve the IRREPs Γn[Γn′] see also
the supplementary material. Thus, the present investigation
suggests that high resolution spectroscopy of 11B+

13 should dis-
cover a set of sixteen transitions that correlate with ν1 for the
individual GM. Figure 4 reveals that due to conservation of the
IRREPs, the lowest and highest frequencies of the sixteen-plet
are ν1(Γ15[Γ0]) = (120.4 − 67.5 = 52.9) cm−1 and ν1(Γ0[Γ15])
= (223.2 − 45.2 = 178.0) cm−1 for the transitions that conserve

the IRREPs Γ15[Γ0] and Γ0[Γ15] of the non-degenerate levels
(cf. Ref. 20). Low resolution IR spectra would observe the
corresponding apparent “broadening” of the “ν1-transition.”
The total width of the apparent IR absorption line should be
of the order of (178.0 − 52.9 = 125.1) cm−1, whereas the full
width at half maximum should be of the order of (125.1/2
≈ 60) cm−1. The IR spectral window of the experimental
method of Fagiani et al.14 did not include the transitions with
lowest frequencies; in particular, they were unable to observe
or even resolve the “ν1-transition(s),” but anyway, in the con-
text of the present investigation, we consider it rewarding that
the absorption peaks at higher frequencies are significantly
broader than the spectral line widths; see also the discussion in
Ref. 19.

IV. CONCLUSIONS

The present investigation shows that the challenge—or
should we say the dream—to design laser pulses that could
ignite contorsion of the model boron rotor 11B+

13 is prohib-
ited by conservation of nuclear spins. The reason for this
nuclear spin blockade is as follows: We assume that initially,
11B+

13 is prepared in its non-rotating ground state. This state
is characterized by the specific combination of the IRREPs
Γ0[Γ15] for contorsion [and nuclear spin]. All excited states
with non-zero contorsional angular momentum have different
IRREPs Γn,0[Γn′,15], or, turning the table, all excited states
with IRREPs Γ0[Γ15] have zero mean values of contorsional
angular momentum. But laser-induced transitions from the
ground state (Γ0[Γ15]) to excited states Γn[Γn′] must conserve
the IRREPs because otherwise any hypothetical transition
Γ0[Γ15]→ Γn,0[Γn′,15] would require nuclear spin flips that
cannot be realized during the laser pulse. As a consequence, the
conservation of nuclear spins restricts laser-induced transitions
from the ground state with IRREPs Γ0[Γ15] to excited target
states with the same IRREPs, which means with the same,
namely, zero, contorsional angular momentum. In brief, con-
servation of nuclear spins blocks laser ignition of contorsion
in the model rotor 11B+

13.
This paper also discovers various other constraints on

laser-induced transitions that are imposed by conservation of
nuclear spin. For example, laser pulses can change clock-
wise to counter-clockwise contorsions, or vice versa, but they
cannot stop them.

The results have been derived in the frame of the model for
contorsions of 11B+

13 which has been developed in Refs. 19 and
20 supplemented by an important extension which accounts
for effects of nuclear spins.22 In particular, the spin statistics
theorem allows only thirty (out of 302 = 900) special combi-
nations of the IRREPs of the contorsional times the nuclear
spin functions. Analogous to the fact that one cannot design
any laser pulse that would induce a transition from the non-
rotating ground state of hydrogen (JM = 00, I tot = 0; para-H2)
to any rotating state of ortho-H2 (see Fig. 1), conservation
of nuclear spin makes it impossible to design any laser pulse
that would excite the non-contorting ground state of 11B+

13
(IRREP Γ0[Γ15]) to any contorting state (IRREP Γn,0[Γn′,15])
(see Fig. 4). The rule for hydrogen holds irrespective of the
complementary vibrational degree of freedom. As a working

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-019841
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hypothesis, the present rule for 11B+
13 should also hold irrespec-

tive of the complementary vibrational degrees of freedom. In
any case, the present results suggest that proper modeling of the
boron rotors must take nuclear spin symmetry into account—
otherwise one may miss important effects such as nuclear spin
blockade of ignition of contorsions. In general, our findings
confirm that molecular symmetries are important in quantum
reaction dynamics.44

SUPPLEMENTAL MATERIAL

See supplementary material for the statistical weights
of the nuclear spin isomers of 11B+

13 and the model for
contorsional eigenstates of 11B+

13 in magnetic field.
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APPENDIX: THE GENERATOR OF THE CYCLIC
MOLECULAR SYMMETRY GROUP C30(M) OF 11B+

13

The generator g of the cyclic MS group C30(M) may be
determined with help of Fig. 5 as follows: Fig. 5(a) shows the
delocalized structure of 11B+

13 which is due to the superpo-
sition of altogether thirty global minimum structures GM, in
the laboratory frame. Two of them, namely, GM1 and GM2

are marked by red dots and by open circles in Fig. 5(a).
Figures 5(b) and 5(c) show GM1 and GM2 with labels 1, 2,
3 and a, b, c, . . ., j attached to the nuclei of the inner wheel
and of the outer bearing, in clockwise orders. The generator g
transfers GM1 into GM2,

gGM1 = GM2. (A1)

This is achieved by concerted shifts of all nuclei along the
contorsional coordinate ξ,

gξ = ξ + ∆ξ,∆ξ = 2π/30. (A2)

Specifically, when ξ increases by the small contorsional shift
∆ξ, the individual nuclei of the wheel move versus the
bearing by small steps along paths that are approximately
circular, whereas the nuclei of the bearing move along pseudo-
rotational paths. The rather small steps along these paths are
obvious from Fig. 5(a). Now, even though the shifts of the
individual nuclei are small, the net effect is a rearrangement
of the overall shape of the rotor 11B+

13 that appears as if it has
been rotated by a rather large angle. In order to recognize this
apparent rotation of 11B+

13, we have added dashed arrows in
Figs. 5(b) and 5(c) that represent the symmetry axes of GM1

FIG. 5. (a) Delocalized structure of 11B+
13 as superposition of thirty global

minimum structures GMl , l = 0, 1,2,3, . . ., 29. As an example, GM1 and GM2
are illustrated by red dots and by open circles in panels (b) and (c). (b) Global
minimum structure GM1 of 11B+

13 with the nuclei of the inner wheel and the
outer bearing labeled 1, 2, 3 and a, b, c, . . ., j, respectively. As a guide to
the eye, the dashed arrow indicates the symmetry axis of the molecular point
group C2v of GM1 of 11B+

13. (c) The same as (b), but for GM2.

and GM2. The symmetry axis of GM1 is replaced by the sym-
metry axis of GM2 as if it has been rotated by a rather large
angle.

Now let us consider the effect of g in the frames of the
global minimum structures GMm. For convenience, we attach
right-handed Cartesian coordinates xm, ym, zm to GMm such
that xm and ym are in the molecular plane and xm points along
the C2v symmetry axis and zm is perpendicular to the molecular
plane. The values xmk , ymk , zmk (=0) of the nuclear coordinates
at the nuclei k = 1, 2, 3, a, b, . . ., j are the same for all GMm. Let
us focus on the nucleus that sits of the symmetry axis. In GM1,
this is the nucleus labeled 2, whereas in GM2, it is nucleus 3.
This means that in the molecular frame, the effect of g is to
replace nucleus 2 by 3. Likewise, in clockwise order, the nuclei
3 and 1 of GM1 are replaced by nuclei 1 and 2 in GM2 [cf.
Figs. 5(b) and 5(c)]. Altogether, the replacement of the nuclei
2, 3, and 1 in GM1 by 3, 1, and 2 in GM2 is represented by the
permutation

Pin = (123) (A3)

of the nuclei of the inner wheel.
Next, let us investigate the effect of g on the nuclei of the

bearing, again in the molecular frame. Let us focus on the two
nuclei of the bearing that sit to the left and to the right of the
arrow head of the symmetry axis. In GM1, these are the nuclei
labeled c and d, whereas in GM2, these are the nuclei labeled
f and g. Likewise, in clockwise order, the nuclei labeled e, f,
g, h, i, j, a, and b in GM1 are replaced by nuclei h, i, j, a, b, c,
d, and e in GM2. Altogether, the replacement of the nuclei c,
d, e, f, g, h, i, j, a, and b in GM1 by f, g, h, i, j, a, b, c, d, and e
in GM2 is described by the permutation

Pout = (adgjcfibeh) (A4)

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-149-019841
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of the nuclei of the bearing. Consequently, we have

g = Pout Pin = (123)(adgjcfibeh) (A5)

q. e. d.
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