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Abstract

We present a protocol to implement discrete-time quantum walks and simulate topo-
logical insulator phases in cavity-based quantum networks, where a single photon
is the quantum walker and multiple cavity input—output processes are employed to
realize a polarization-dependent translation operation. Different topological phases
can be simulated through tuning the single-photon polarization rotation angles. We
show that both the topological boundary states and topological phase transitions can
be directly observed via measuring the final photonic density distribution. Moreover,
we also demonstrate that these topological signatures are quite robust to practical
imperfections. Our work opens a new prospect using cavity-based quantum networks
as quantum simulators to study discrete-time quantum walks and mimic condensed
matter physics.
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1 Introduction

Cavity input—output process is one of the basic building blocks in cavity quantum
electrodynamics (QED) [1,2]. It has been widely used in studying quantum optics and
cavity-based quantum information processing [3—16]. One of seminal protocols in this
regard is the Duan—Kimble model [7], which has been extensively studied in the past
years. In this model, a flying single photon has been input into an optical cavity with a
single atom trapped inside. When the coupling between the single atom and photon is
in the strong coupling regime, this cavity input—output process can function as a atom-
photon-controlled phase flip gate. Recent experiments have successfully demonstrated
the Duan—Kimble model and also the controlled phase flip gates [17,18]. The setup in
this model can also be used for single-photon transistor [19] and naturally scaled up to
a cavity-based quantum network [3], where different cavity-based quantum nodes are
connected by the flying photons. These progresses greatly promote the development
of cavity-based quantum networks for scalable quantum computation [17,18,20-22].

On the other hand, investigating the discrete-time quantum walk (DTQW) in various
quantum systems has recently attracted a lot of research attentions, including in pho-
tons [23-30], cold atoms [31-34], trapped ions systems [35,36], and superconducting
circuits systems [37,38]. Quantum walk is a quantum analog of the classical random
walk [39]. Because of the coherence of the quantum states, the information propagates
at a ballistic rate rather than a diffusive one in the classical random walks [40]. The
DTQW also can provide a powerful tool to realize quantum computation [41] and
quantum state transfer [42]. In addition to quantum information science, the DTQW
also can function as a versatile quantum simulator for studying quantum diffusion,
Anderson localization and topological phases [43-50]. For the quantum simulation
of topological phases, many recent research attentions have been paid to investigate
the topological boundary states and the topological phase transition via DTQWSs in
linear optics and optical lattice systems [51-63]. However, such topological features
have not been explored in a cavity-based quantum network, which we will argue has
several important benefits.

In this paper, motivated by the recent experiments on cavity input—output process,
we propose a protocol using a cavity-based quantum network as a quantum simu-
lator to realize a single-photon DTQW. In this protocol, the polarization-dependent
translation operation which is the basic ingredient for implementing DTQWSs can be
achieved by multiple cavity input—output processes. Based on this DTQW, we further
show that a one-dimensional topological phase characterized by a pair of topological
winding numbers can be simulated via many steps of this DTQW in a cavity-based
quantum network. The topological phase diagram versus the rotation angles is also
given. We further study the topological features of this DTQW, including the topolog-
ical boundary states and the topological phase transitions. In particular, we illustrate
how to design a cavity-based quantum network with two different topological phases
and observe the emerged topological boundary states. All the topological phase tran-
sition points between different topological phases can be unambiguously measured
from the final output photonic density distribution. Our results are also robust to the
imperfections in each step of cavity-assisted quantum walks.
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This paper is structured as follows. In Sect. 2, we show how to realize DTQW
using multiple cavity input—output processes in a cavity-based quantum network. In
Sect. 3, we analyze the topological structure of our DTQW. In Sect. 4, we illustrate
how to create and observe the topological boundary states in such network. In Sect. 5,
we demonstrate the topological phase transition can also be directly observed in this
quantum simulator. In Sect. 6, we give a conclusion to summarize our work.

2 DTQWSs via multiple cavity input-output processes

We consider a single-photon DTQW, which is governed by an one-step unitary operator
~ A (O1\ & A A~ (01
U(01,02) = Ry 5 TRy(62)TRy 5 ) ey

~ s O . .. .
where Ry (6;) = e~ "% 2 (i = 1, 2) are the single-photon polarization rotation opera-
tions. T is a polarization-dependent translation operation

T =) |x+ x| ®R)(R|— x — 1)(x| @ L)L, @)

where |R)(|L)) is the right-circular (left-circular) polarization of a single photon, and
|x) denotes the discrete position in one dimension. This translation operator is unique
from that usually found in the literature [43,44]: a minus sign on the second term
due to the phase shift. As illustrated in Fig. 1a, such a single-photon DTQW can be
implemented in a cavity-based quantum network.

The basic building block in our protocol is the input—output process of one single
cavity, which consists of a two-level atom trapped in a two-side optical cavity, see
Fig. 1b—c. The cavity has two resonant modes ag and ay, with right-circular (R) and
left-circular (L) polarizations, respectively. The input single-photon pulse contains two
polarization components |R) and |L). The atomic transition |g) <> |e) is resonantly
coupled to the cavity mode ag and is resonantly driven by the R polarization compo-
nent of the input single-photon pulse. The L polarization component of the input pulse
will see an empty cavity as the atom is decoupled to the cavity mode a; . When the atom
is prepared in the state |g), as we will demonstrate below, the L component of the input
single-photon pulse is resonant with the bare cavity mode a;, and thus will go through
the cavity with a phase of ¢/ . However, for the R component of the input single-photon
pulse, with the strong atom-cavity coupling, the frequency of the dressed cavity mode
is notably detuned from the frequency of the input single-photon pulse; thus, the R
component will be reflected when it enters the cavity without a phase change.

For a detailed theoretical derivation, we give the interaction Hamiltonian of the
atom and the cavity mode

H = g(le)(glar + |8) (elak). 3

where g is the atom-cavity coupling rate. The cavity modes a;(n = R, L) are driven

by the corresponding input fields af;f ; from the left side of the cavity. The Heisenberg—
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Fig. 1 a Schematic setup for the implementation of a single-photon DTQW in a cavity-based quantum
network. The walker is a single photon with the red (blue) color denoting the right(left)-circular polarization
R(L) component of the single photon. The polarization-dependent translation Tis implemented by multiple
cavity input—output processes. The rotation operations Ry ;) = e~ i0y b/ 2(1’ = 1, 2) are implemented by
the suitable wave plates, which could generate a superposition of left- and right-circularly polarized light.
Since the rotation operation satisfy the relation Iéy 61/ 2)1§y 61/2) = Iéy (61), only one rotation operation
is needed between adjacent steps during a multistep DTQW process. In order to spatially separate the
reflected photon from the incident photon, a mirror, one side of which has high transmissivity and the other
side has high reflectivity, is set in front of each atomic cavity. For simplicity, these mirrors are not shown
here. b Schematic setup for a single cavity input—output process. A single two-level atom is trapped at the
center of a two-side symmetric optical cavity, with decay rate « /2 for each side, and thus, a total decay rate
of k. The L component of input photons can go through the cavity but the R component will be reflected
when it enters the cavity. ¢ Level structure of the two-level single atom and its coupling with the cavity
mode ag (Color figure online)

Langevin equations for the cavity modes a;, and the atomic operator have the
form

A~ K K
y = —ilay, H1 - (i5 + 5) ay — \/;a;;}l, @

where k is the total decay rate of the cavity and § denotes the detuning of the cavity
field mode from the atomic transition. The cavity input—output relation connects the

output fields a;'}, a)'} with the input fields as

ayt = /K /2ay, (5)
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a,‘;}]lt — ai;jl =V« /2ay,. 6)

We note that there is no input from right-side of the cavity.

For the L component of the input pulse, the Hamiltonian H in Eq. (4) does not
work [7]. Suppose the input pulse shape changes slowly with time r compared with
the cavity decay rate «, that is a, = 0, from Eqs. (4)—(6), we can find

K/2 is

out in out in
= —-—— . = —— R 7
arp.r i8+K/2aL‘1 ar i8+/</2aL’l @)
out id in out I(/2 in
P — s = - . 8
aR,l i5 + K/zaR,l aR,}’ i5 + K/2aR,l ( )

Therefore, for the resonant interaction § = 0, the transmission coefficient of the L
component Ty = a,‘i‘f} /aiL“J = |Tr|e’7 = —1 and the reflection coefficient R; =
az"]} /aiLn, ; = 0, so the L component will go through the cavity and acquire a 7 phase
shift. However, for the R component, the coupling (3) modifies the response function
of the cavity. For the case of strong coupling, the two dressed cavity modes have
frequencies that are effectively detuned from that of the input pulse by § = =g,
respectively. When g > «k, we have the reflection coefficient of the R component
Rp = a%‘f}/ag‘)l = |Rg|e’?® = 1, and the transmission coefficient Ry = a%‘fﬁ/ag‘,l =
0, so the R component will be reflected without a phase change. By using multiple
such cavity input—output processes, we can realize a polarization-dependent translation
operation T = Y Rrlx + 1) (x| ® [R)(R| + Tr|x — 1)(x| ® |L)(L|, see Fig. 1a.

Very recently, such cavity input—output process has been experimentally demon-
strated in a single-side cavity with a trapped single atom [17,18,20-22]. For the
experimental implementation of our protocol, one could employ a single 8’Rb atom
trapped in a three-dimensional optical lattice at the center of a two-sided optical
high-finesse cavity. The relevant atomic transition could be chosen as |g) = |F =
2,mp =2) < le) = |F =3,mp = 3), where F and mp are the quantum numbers
describing the total atomic angular momentum and its projection onto the quanti-
zation axis, respectively. The photons as well as the empty cavity are on resonance
with the transition |g) <> |e) at 780nm. Based on such process, we can realize a
polarization-dependent photonic translation.

Different from the DTQW using photons in linear optics [51-60], where the pho-
tonic state-dependent translation is generated by classical polarization-dependent
optical elements, here the moving of photons is controlled by a quantum atom-photon
coupling and its moving direction dependents on both the atomic and photonic inter-
nal states, which is important for studying and understanding the coherent features of
quantum walks. Moreover, the atom-photon interaction can be flexibly tuned in current
quantum optics laboratory, which offers more possibilities for designing and studying
novel quantum walks. For example, our protocol can be directly generalized to realize
a quantum walk with four internal quantum states in the coins by taking into account
the two internal states in the atoms and photons. Specifically, we consider replacing the
two-level single atoms with three-level single atoms, with two low-lying energy levels
coupled with the upper excited state through left and right polarization cavity modes,
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respectively. In this case, the two low-lying energy levels and the two photonic states
form the four internal coin states. Combined with single photon rotation, it allows us to
simulate complicated four-by-four spin-orbital couplings. Such spin-orbital couplings
have not been realized in any artificial systems, which are important in realizing Z»
topological insulator phases. Our study thus opens possibilities for realizing tunable
complicated spin-orbital couplings and provides a promising platform for exploring
Floquet Z, topological insulator phases. Furthermore, our setup can also be general-
ized to coherent state case, which can cause state-dependent moving and phase shifts on
the coherent state, which allows us to explore novel topological quantum walks asso-
ciated with atoms and coherent states. This can not be done for linear optics systems.

3 Topological features of the cavity-based quantum walks

In this section, we will analyze the topological features of our DTQW. As shown
in Eq. (1), the unitary operator for the DTQW is equivalent to the evolution oper-
ator generated by a time-independent effective Hamiltonian Hefr over a step time
ot [43,44], i.e., U = e iHettd! After N steps of DTQW, the evolution operator
becomes (U)N = e iHettNo! In this case, the resulted DTQW simulates the evo-
lution of an effective Hamiltonian I:Ieff at the discrete times Néz. In the following,
we take the step time of DTQW as 6z = 1. Using the Fourier transformation |x) =
1//2m >k e’**|k), the polarization-dependent translation operation can be written as
f(k) = [eik, 0; 0, —e’ik]. Thus, the one-step DTQW operator in momentum space
isU = ["_dk-U(k) ® |k)(k|, where U (k) = Ry(61/2)T (k)Ry(62)T (k) Ry(61/2).
Furthermore, the effective Hamiltonian in momentum space has the form

I:Ieffzf dk[E(k)n(k) - o] @ |k) (k] &)

—7T

where o = (6y, 6y, 6;) are the Pauli matrices defined on the photonic polarization
basis, E (k) and n(k) are the quasienergies and the unit vector field, respectively.
Through the relation U (k) = e *E®mK)0 e can obtain the explicit forms of the
eigenvalues and the spinor eigenstates

0> 01 .6 0
cos E (k) = cos = cos — cos 2k + sin — sin —,
2 2 2 2
cos 922 sin 021 cos 2k — sin 022 cos 92‘ cos 972 sin 2k
nk) = , . . (10)
sin £ sin £
Note that the effective Hamiltonian possesses a chiral symmetry r _1I:Iefff =— Aeff,

where the chiral operator I'=A- o, the vector A = (1, 0, 0) is perpendicular to n(k)
for the whole first Brillouin zone.

To characterize the topological features of this system, we firstly need to obtain
the topological phase diagram governed by U. For one-dimensional DTQWs with
chiral symmetry, the complete topological phase diagram includes the gapped phases,
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01 ‘+—7r/2 ——7/8 +7T/2‘

Fig.2 a The topological phase diagram of the DTQW U (61, 62). Different topological phases are charac-
terized by (vg, vy ). The phase boundaries correspond to points where the quasienergy gap closes at E4 = 0
(blue dotted lines) and E4 = 7 (red solid lines). The dashed-dotted line indicates the rotation angles for
observing the topological phase transition. The hollow-colored symbols indicate the rotation angles for
plotting the quasienergy spectrum. The other colored symbols indicate the rotation angles for observing the
topological boundary states. b The quasienergy spectrum of the cavity-based DTQW, where the rotation
angles 0} » are chosen as the values in (a) (Color figure online)

characterized by a pair of topological winding numbers (vg, v;) [46,48], and the phase
boundaries, which are determined by the quasienergies E, = £|E(k)|.

For the phase boundaries, we know that the topological phase transition occurs at the
gap closing point of the energy spectrum. Furthermore, the gap closes at quasienergies
E, = 0 as well as at E; = 7 due to the 27 periodicity in energy, which is unique
to periodically driven systems. Through the explicit form of the quasienergies £, =
=+ arccos(cos %2 cos %‘ cos 2k + sin 972 sin %‘), we can obtain the phase boundaries, see
the blue dotted lines and the red solid lines in Fig. 2a. In Fig. 2b, we have plotted the
quasienergies E, as a function of quasimomenta k, where 6, is fixed at 37 /2.

For the gapped phases, we need to consider another auxiliary one-step operator
U 01, 6,) = ﬁy 62/ 2)IA‘I€’y (1 )fﬁy (62/2), and rewrite these one-step operators as

U,0)=e7"F-TE'[ = -0, (11)
U®,6)=e"FF . F=-0,, (12)

where F = Iéy (6‘1/2)721%y (62/2), and I = 0. According to the method in [46,48],
the pair of topological winding numbers (vg, v;) can be obtained through

(13)

Vi — V2 v+
2 72 ’

(V()s vﬂ) = ("}Tl’v GO) = (

where (Vr, Vo) is a pair of topological winding numbers, which is used to characterize
the topological gapped phases governed by the operators U 1 and U, and v; (vy) is the
winding number of the effective Hamiltonian governed by U 1 (Uz) Since the difference
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between the operators U(U") and U,(0>) is just a minus sign, we can replace the
winding nAumbers v1(v2) with v(v"), which is the winding number of U (U’). For the
operator U, the winding number is defined as

1 T 0
V= — dk nx—n -A
27 J_, Ok

| 9 9
dk( dde —nzﬂ). (14)

:E .

Through numerical calculations, we can obtain the winding number v as a function of
the rotation angles 6 and 6,. Similarly, we can calculate the winding number v’ for
the operator U’

We have numerically calculated the topological phase diagram in Fig. 2a. One can
find that various topological phases can be prepared via tuning the rotation angles 6,
and 6. The topological phase transition occurs at the gap closing points at £, = 0
as well as E;, = 7. The number of boundary states at £, = O(r) are equal to the
difference of the winding numbers vy(v;) in the two sides of the phase transition
points, which yields the bulk-edge correspondence for topological quantum walks.

4 Observation of topological boundary states

According to the bulk-edge correspondence, boundary states will emerge at the bound-
aries between different topological phases [64,65]. Topological boundary states are
one of basic signals showing the existence of topological phase. In this section, we will
study three cases and show how to observe the topological boundary states generated
at the boundaries. The boundary can be created by making the rotation angles 61, 6,
spatially inhomogeneous in the cavity-based DTQW, such as (6!, Qé) in the left region
x < Oand (0], 6)) in the right region x > 0.

In the first case, we consider two DTQW spatial regions with different rota-
tion angles 0y, 62, i.e., (0],00) = (—m/4,37/8) and (0],05) = (3m/4, —57/8).
As demonstrated in the last section, the topological invariants of the two regions
are (vo,v7) = (1, —1) and (vp, vy) = (—1, —1), respectively. As the topological
invariant vy for the two regions are different, we expect to observe the topological
boundary states with quasienergy E, = 0 near the boundary x = 0. To experimentally
observing such topological boundary states, a single photon pulse with polarization
1/+/2(|R) + |L)) has been input into the cavity with position x = 0. Suppose this
initial state is denoted as | (0)). After that, as shown in Fig. 1a, we implement 15
steps of cavity-based DTQW governed by U and measure the final photon density
distribution in the cavity outputs. In Fig. 3a, we have numerically calculated the final
photon density distribution P(x, N)

P(x, N) = |{x, RIY(N)) > + | {x, LIY (N2, (15)

where the final state [/ (N)) = on [ (0)). If there exists a topological boundary
mode around the boundary x = 0, the input photon at x = 0 will resonate with this
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Fig.3 The photon density distribution P (x, N) of the inhomogeneous DTQW governed by U in the ideal
a, ¢, e and realistic b, d, f cases when the number of steps is N = 0, 3, 6, 9, 12, 15. The colored symbols
are consistent with those in Fig. 2a. Suppose the single-photon walker initially begins at the position
x = 0. The polarization angles are a-b (0{ , Gé) = (—m/4,37/8) and (0], 05) = (3m/4, —57/8), e-d
©!,00) = (—=3m/4, —57/8) and (6], 65) = (/4,37/8), e (6}, 65) = (—7/4,37/8) and (8], 65) =
(7w /4, 37 /8). In the realistic case, the practical parameters in the state-dependent translation operation T are
chosenas Rg = 0.98 - /0057 anq T, =0.98 - /0957 and all the rotation angles have been introduced
into a fluctuation A € (—x /20, 7 /20) (Color figure online)

boundary mode and the final photon density will have a peak at x = 0. Our numerical
result in Fig. 3a shows that the photon density distribution after 15 steps of DTQW
is nonvanishing around the boundary x = 0, which indicates that the system has a
topological boundary state at x = 0.

In the second case, we consider two DTQWSs spatial regions ©!, 95) =
(=37 /4, —57/8) and (0], 03) = (/4, 37/8). The topological invariants of the two
regions are (vg, v;) = (1, 1) and (vg, v;) = (1, — 1), respectively. As the topolog-
ical invariant v, for the two regions are different, the topological boundary states
with quasienergy E, = m are also expected in this case, which are confirmed by the
numerical results shown in Fig. 3c.

In the third case, we consider creating a boundary between same topological phases,
where the topological boundary state will not appear. For this purpose, the polarization
angles 01, 6, in two DTQW spatial regions are tuned to (0’, 9%) = (—m /4,37 /8) and
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o, 95 ) = (;r/4, 37 /8). In this case, both the topological invariants in the two regions
are (vg, v7) = (1, — 1), topological boundary states will not appear in the boundary
x = 0. To demonstrate this point, we prepare the system into the same initial state
[ (0)) as shown in the first two cases. In Fig 3e, the final photon density distribution
after 15 steps of DTQW is numerically calculated. The distribution of the DTQW up
to 15 steps shows ballistic behavior and no localization is observed around x = 0. It
means that the system has no resonant topological boundary mode in the boundary
x=0.

Moreover, the novel topological features of a system are robust against small fluc-
tuations. Thus, we also numerically calculate the influence of various imperfections
in our protocol, which corresponds to the realistic case comparing with the ideal
case (without imperfections). The imperfections mainly include the fluctuations of the
parameters in 7 and I%y in each step of the cavity-assisted quantum walk [17,18,57,60].
For the translation operation T, the experimental imperfections in the cavity input—
output process will lead to the reduction of probability of the transmitted and reflected
output pulse [17]. In addition, the fluctuations of the atomic, cavity and photon fre-
quencies will lead to a variation of the phase of the transmitted and reflected output
pulse [18]. For the rotation operation I%y, the fluctuations on the rotation angles 6 »
can be chosen randomly from the interval [6; » — 7r/20, 61 2 4 7/20] at every step
of a DTQW, where 6, ; indicate the corresponding parameters without fluctuations
[57,60]. The numerical results of the photon density distribution are shown in Fig. 3b,
d, f. For the case supporting topological boundary states, the localization around the
boundary of different topological phases decreases because of the loss of the cavity
input—output process, but it remains maximal around the boundary. Then we still can
unambiguously verify the existence of the topological boundary state even with vari-
ous imperfections. For the case without topological boundary states, one still can find
that there is no photons maximally localized around x = 0. So, due to the topological
protection, the existence of the topological boundary states at the boundaries between
different topological phases is robust against small perturbations.

5 Observation of topological phase transitions

In this section, we will further show that the topological phase transition between differ-
ent topological phase can also be directly observed basing on second-order moment
associated with final output photon density [58]. The rotation angles for observing
topological phase transition are chosen as 8; = /3 and 6, € [—2m, 2]. Similar
to the last section, suppose the initial state of the system is prepared into | (0)). To
reveal the relationship between the topological phase transition and the final output
photon density, the second-order moment is defined as [58]

M:szP(x,N)/Nz, (16)

where P (x, N) is the final output photon density distribution after N steps of DTQW.
By transforming the above equation into momentum space, we further get
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e

dk Ao (- d 2 N 2
M= 7y Y(O)|WU") <l—> " 1Y) ) /N~ (I7)
T dk

—TT

The N-step evolution operator can be expanded as (O)YN =e™ HetN- — cos[N - E] —
i sin[N - En - o. Thus, we can obtain M in the following form

™ dk dE ,
M=[ —[—]
. 2w dk
+— PRI N B (R
I i %ol n algo
dk
—/ [dk2 ¢o|n~6|¢0>}
dk v 42
+N2/_ S sinIN - E1{ool@)Y <m0 oo (1)

where |¢) is the initial polarization state of the single photon.
Under the infinite-steps-limit, that is N — o0, we ignore these infinitesimal terms
in Eq. (18). The form of M becomes particularly simple

1 (7 [dE7?
- | dxk, (19)
27 ), | dk

where the quasienergies E = arccos(cos 922 cos 02' cos 2k + sin %2 sin %‘). The above
integral can be rewritten as M = ¢ f(z)dz with the complex variable z = e'’*, which
can be analytically calculated using the residue theorem. After a long straightforward
calculation, we obtain

2, =2 <492<—5?”,
4+4sin%, % <6, <-I,
M =12, 3 <bh <%, (20)
4—4sin%2, %<92<5T”,
2, STH<92<27{.

It turns out that the second-order moment has a plateau when the topological invariants
vy = Vp, in contrast to the sine oscillation when the topological invariants v, # vg.
Such obvious difference allows us to observe a slope discontinuity at the topological
phase transition points in the experiment.

In Fig. 4a-b, we have numerically calculated the second-order moment M as func-
tions of the controllable polarization angle 6, for different steps of DTQW in the ideal
case. It is found that M has a plateaus in the regions {—2x, —57/3}, {—n/3, n/3}
and {57 /3, 2m}. According to the phase diagram, the topological invariants governed
by cavity-based DTQW (U ) in these regions are (vg, v;) = (—1, —1). In contrast,
M has sine oscillations in the other regions where the topological invariants are
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N=T7 N=14
a
@y ®),
=1 =1
0_51 T T 51 92 0 5w T 5T 02
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Fig.4 The second-order moment varying with different polarization rotation angle 6, for the ideal a—b and
realistic c—d cases. The parameters for the realistic case is chosen same as those in Fig. 3. The number of
DTQW stepsis(a,¢) N = 7,(b,d) N = 14. The red dots (blue solid lines) denote the numerical (analytical)
results (Color figure online)

(vo, vr) = (—1,1) or (1, —1) . Then the phase transition between different topo-
logical phases can be clearly observed from the slope discontinuity of M. We also
show that M agrees very well with the theoretical predicated value in Eq. (20) when
the number of quantum walk steps N become very large. We note that the behaviors
of M in different topological regions (v; = vg or v; 7# Vo) depend on the parametric
region chosen for observing topological phase transitions [60]. If the parametric region
in our system are chosen as 6, = /3 and 61 € [—2m, 27 ], the corresponding M has
a plateau when the topological invariants v; # v and has sine oscillations when
the topological invariants v; = vy, which is consistent with the results in [58,60]. In
Fig. 4c—d, we also calculate the influence of the cavity loss in each step of quantum
walk on the above results. It turns out that, although the value of the plateaus changes,
the plateaus remains in the presence of small imperfections. This feature has not been
reported previously [58]. It shows that the second-order moment is quite robust against
imperfections and also has a topological protection. Moreover, this method based on
quantum dynamics of single particle state can be generalized to detect and explore var-
ious topological phases, including the non-equilibrium topological phases of matter.

6 Conclusion

In summary, we have proposed a protocol to implement single-photon DTQWs in
cavity-based quantum networks. Multiple cavity input—output processes are employed
to realize a polarization-dependent translation operation, which recently have been
extensively studied in the quantum optics laboratory for implementing large-scale
quantum network and scalable quantum computation [17,18,20-22]. We have shown
how to employ cavity-based DTQWs as quantum simulators to mimic and explore
the topological phases, including the topological boundary states and topological
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phase transitions. Our work connects cavity-based quantum computation network with
quantum simulation and can motivate more further studies on quantum simulation of
condensed matter physics in this quantum platform.
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