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ABSTRACT: Charge migration moves electrons from one molecular site to another, in a typical
time domain from few hundred attoseconds to few femtoseconds. On this timescale, the nuclei
stand practically still, implying that the nuclear point group symmetry is conserved. Because
electrons move ultrafast, this can lead to a surprising effect, namely, breaking the spatial symmetry
of the electron density in spite of the conservation of nuclear framework symmetry. We
demonstrate theoretically that attosecond charge migration achieves this electron symmetry
breaking if the electrons are prepared in a coherent superposition of nondegenerate electronic
ground and excited states which transform according to different irreducible representations. Two simple examples provide a proof-
of-principle, namely, periodic attosecond charge migration in the σg + σu superposition state of the aligned H2

+ cation (nuclear point
group D∞h, but electron symmetry breaking D∞h → C∞v) and in the A1 + B2 superposition state of the oriented H2O molecule (C2v
vs C2v → Cs).

■ INTRODUCTION

Progress in ultrafast spectroscopy and quantum reaction
dynamics has advanced to the forefront of investigations of
the fastest processes in molecules from femtochemistry1 to
attochemistry.2,3 A fascinating effect at the border between
femtochemistry and attochemistry is charge migrationthis is
a purely quantum mechanical process which moves the
electronic charge from one molecular site to another, on
typical timescales from a few hundred attoseconds (this is why
it may be called “attosecond charge migration”) to a few
femtoseconds; for pioneering work and recent literature
surveys, see refs.4−12 Note that the “charge migration” is a
generic term, which means, in general, the ultrafast shift of part
of the electronic density from one molecular site to another,
and this comprises many different mechanisms, for example, in
linear molecules such as HCCI+12−14 or the present H2

+, it
may describe the shift of charge from one molecular end to the
opposite one. In ring-shaped molecules, it may describe charge
circulation9,10,15 or the breathing of electronic charges in ring-
shaped or linear molecules.16−18 A recent milestone is the first
joint experimental and theoretical reconstruction of charge
migration in an oriented linear molecular cation.12−14 Atto-
second charge migration is important because it may induce
subsequent processes, such as site-selective bond breaking,5 or
affect the cosmologic distribution of isotopes.19

Here, we point to an intuitive effect which is inherent in
many examples of attosecond charge migration, but has
escaped the general attention, see, for example, refs 20−25:
breaking the spatial symmetry of the electron density in spite
of nuclear framework symmetry conservation. Nuclear frame-
work symmetry is conserved because the nuclei stand
practically still during attosecond charge migration. Mean-

while, the symmetry of the ultrafast electronic system can be
broken as follows: The symmetry of the electronic system in
the nondegenerate molecular ground state Ψg is identical to
the nuclear framework symmetry . If the ground state is
superposed with an excited state Ψe to form a superposition
state Ψ that represents charge migration and that does not
transform according to a one-dimensional representation of ,
then the symmetry of the initial electron density is reduced.
The electron symmetry in the state Ψ is determined by the
maximal subgroup of , in which Ψ transforms according to a
one-dimensional representation.

■ MODELS AND METHODS

As a proof-of-principle, the effect is demonstrated for the
aligned H2

+ cation and the oriented H2O molecule. The
nuclear configurations belong to the molecular point groups
D∞h and C2v, respectively. Textbooks suggest that the
electronic states should be labeled according to the irreducible
representations of the same groups. In contrast, attosecond
charge migration may transiently reduce the electron symmetry
group down to C∞v and Cs, respectively. Electron symmetry
breaking is demonstrated by means of quantum dynamic
simulations of attosecond charge migration in the model
systems, based on quantum chemistry calculations of the
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electronic eigenstates Ψg and Ψe and their energies Eg and Ee.
For this purpose, we adapt experimentally and theoretically
established methods.12−14 Accordingly, the model systems H2

+

and H2O are aligned or oriented with their principle axes along
the laboratory z-axis; the H2O molecule is in the yz-plane. We
assume that the nuclei remain fixed in the D∞h and C2v
geometries of their ground states.
The electrons are prepared in superposition states Ψ(t) of

two nondegenerate electronic eigenstates, Ψg and Ψe, where Ψe
corresponds to the dominant singlet excitation of Ψg. Without
loss of generality, we assume equal contributions for both
states. The literature on charge migration has many examples
of time-dependent two-state superposition states which lend
themselves to rather easy derivations of fundamental
effects.8−14,16,20,21,25−28 For example, the first joint exper-
imental and theoretical reconstruction of charge migration was
carried out by the experimental preparation of a two-state
superposition state of the cation HCCI+, which could then be
used to facilitate the theoretical analysis.12−14 Another example
is the derivation of schemes for ultrafast laser control of charge
migration, starting from simple two-state superposition
scenarios which could then serve as a platform for extensions
to the laser control of multistate superposition states.26−28

Likewise, our derivation of the effect of electron symmetry
reduction starts out from the representations by two-state "Ψg
+ Ψe" superposition states, but in the Conclusions section, we
shall point to extensions to multiple state superposition states.
The time evolution of these states is given by12−14

Ψ = [ − ℏ Ψ + − ℏ Ψ]t iE t iE t( ) 1/2 exp( / ) exp( / )g g e e , with
ℏ being the reduced Planck constant. The corresponding
densities ρ(t) = |Ψ(t)|2 are periodic with period T = 2πℏ/(Ee
− Eg). Below, we shall consider illuminating snapshots of the
densities, namely, ρ(t) = ρ+ ≡ (1/2)|Ψg + Ψe|

2 at t = 0, T, ...
and ρ(t) = ρ− ≡ (1/2)|Ψg − Ψe|

2 at t = T/2, 3T/2, .... For
reference, the densities of the electronic ground and excited
states are ρg = |Ψg|

2 and ρe = |Ψe|
2. These all-electron densities

yield the corresponding one-electron densities (denoted by
subscript “1e”) by integration over the coordinates of all
electrons but one, and by summing over all electron spins. An
important difference with the scenario of refs 12−14, in which
the electronic eigenfunctions Ψg and Ψe have the same
irreducible representations IRREPg = IRREPe, is that IRREPg
≠ IRREPe in the present applications.
The electronic structure of H2

+ and H2O is calculated at the
TD-CAM-B3LYP/def2-TZVPP level of theory, as imple-
mented in Gaussian16.29 The H2

+ bond length is 1.057 Å.
For water, the OH bond lengths are 0.965 Å at a bond angle of
102.8°. For H2

+, Ee − Eg = 12.25 eV. For H2O, Ee − Eg = 11.95
eV. The respective ground states are represented as single
reference Slater determinants. The excited states are
represented as a linear combination of singlet excited
configuration state functions, combined according to the
expansion coefficients obtained from linear response time-
dependent density functional theory (LR-TDDFT). The
choice of the CAM-B3LYP functional is found to give accurate
excitation energies.30 On the other hand, the associated wave
functions have a simple structure at the LR-TDDFT level of
theory. The coefficients of excited state configurations are
directly extracted from the output of the quantum chemistry
package using ORBKIT.31−33 The pseudowave function
coefficients obtained are truncated below some threshold,
and the many-electron states are then re-normalized prior to

postprocessing using ORBKIT. Electronic densities are plotted
using VMD.34 More details on the hybrid time-dependent
density functional theory/configuration interaction method
can be found in refs 33 and 35.

■ RESULTS AND DISCUSSION
Let us consider first the attosecond charge migration in aligned
H2

+ prepared in the superposition of its ground (Ψg = σg) and
first excited (Ψe = σu) electronic states, with irreducible
representations Σg

+ and Σu
+, respectively. Figure 1 shows the

corresponding electron densities ρg and ρe, together with the
alternating snapshots ρ+ and ρ− of the time-dependent density
ρ(t) at times t = 0, T, ... and t = T/2, 3T/2, ..., respectively.
Apparently, the electron moves periodically from one proton
to the other, and back, with period T = 338 as. This
phenomenon was predicted in 1944 in Eyring, Walter and
Kimball’s textbook on Quantum Chemistry;4 since then,
attosecond charge migration in H2

+ has been investigated in
depth,8,16,36−41 but without noting explicitly the reduction of
the electron symmetry from the nuclear point group to a
subgroup. The snapshots ρ+ and ρ−, however, clearly show that
the D∞h symmetry of the electronic densities of eigenstates σg,
σu is broken to C∞v during attosecond charge migration in the
σg + σu superposition state.
The result shown in Figure 1 is confirmed in the frame of

molecular point group theory: Consider the D∞h character
table for H2

+, cf. Table 1. All characters of the electronic
ground state Ψg = σg with IRREPg = Σg

+ are equal to 1,
whereas the excited state Ψe = σu with IRREPe = Σu

+ has
characters 1 and −1. In order to determine the transformation

Figure 1. Electron density symmetry breaking D∞h → C∞v during
attosecond charge migration in the σg + σu superposition state of
aligned H2

+ with the nuclei fixed in D∞h symmetry. Middle panels:
Contour plots of alternating electron densities ρ+ and ρ− (C∞v) at t =
0, T/2, T, 3T/2, ... (T = 338 as). Lower and upper panels: Electron
densities ρg and ρe of the electronic ground (σg) and excited (σu)
states (D∞h). The contours are at ρ = 0.06 and 0.03 a0

−3. The nuclei
conserve the D∞h symmetry, illustrated as balls.

Table 1. Selected Part of the Character Table for D∞h

D∞h E 2C∞ ∞σv i 2S∞ ∞C2

Σg
+ 1 1 1 1 1 1

Σu
+ 1 1 1 −1 −1 −1
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behavior of the σg + σu superposition state, we note that it must
be assigned to one and only one IRREP. The corresponding
symmetry operations on both σg and σu must, therefore, yield
the same characters. That means, these characters must be
equal to 1. This condition does not hold for all the symmetry
operations of the molecular point group D∞h. It is satisfied,
however, for the subset {E, 2C∞, ∞σv}. This defines the
molecular point subgroup C∞v of D∞h, cf. Table 2. In

summary, attosecond charge migration in the σg + σu
superposition state of H2

+ reduces the symmetry group D∞h
of the electronic eigenstates σg and σu to C∞v. Its IRREP in
C∞v is Σ+.
Our second example is for attosecond charge migration in

the oriented H2O molecule, prepared in the superposition of
the ground state Ψg with IRREPg = A1 and the lowest-lying
excited bound state Ψe with IRREPe = B2, corresponding
predominantly (98%) to the 3a1 → 2b2 excitation. The
derivation of electron symmetry breaking in the A1 + B2
superposition state is analogous to the first example: Figure 2

shows the corresponding one-electron densities ρ1e,g and ρ1e,e,
together with the alternating snapshots ρ1e

+ and ρ1e
− of the

time-dependent density ρ1e(t) of the Ψg + Ψe superposition
state at times t = 0, T, ... and t = T/2, 3T/2, ..., respectively,
with T = 346 as. As in the case of H2

+, the one-electron density
moves periodically between two molecular sites neighboring
the opposite protons. In the case of H2O, the charge migration
is, however, less obvious than for H2

+ because the number of
electrons which participates in charge migration in H2O is

small (≈1) compared to the total number of electrons (=10).
As a consequence, the time-dependent one-electron density
ρ1e(t) appears to be rather robust. Nonetheless, the snapshots
ρ1e

+ and ρ1e
− clearly show that attosecond charge migration in

the A1 + B2 superposition state of H2O breaks the electron
symmetry C2v down to Cs.
The result shown in Figure 2 is explained in the frame of

molecular point group theory, analogous to the previous
derivation: Consider the character table for C2v, cf. Table 3. All

the characters of the electronic ground state Ψg with IRREPg =
A1 are equal to 1, whereas the excited state Ψe with IRREPe =
B2 has characters 1 and −1. During attosecond charge
migration, the transformation behavior of the A1 + B2
superposition state must lead to the same characters for all
symmetry operations, that is, the characters must be equal to 1.
This condition is satisfied for just the subset {E, σyz}, which
establishes the molecular point subgroup Cs, cf. Table 4. As a
result, attosecond charge migration in the A1 + B2 super-
position state of H2O conserves nuclear C2v symmetry, but
breaks the electron symmetry group down to Cs.

■ CONCLUSIONS
In conclusion, we have presented two examples serving as a
proof-of-principle for the effect of electron symmetry breaking
during attosecond charge migration with conserved nuclear
symmetry. By extrapolation, they establish a simple, general,
and novel rule and method: Attosecond charge migration in
superposition states of two or more electronic eigenstates of
aligned or oriented molecules or molecular ions with two or
more different IRREPs reduces the electron symmetry down to
a molecular point subgroup. We emphasize that the occurrence
of different IRREPs is essential here; in contrast, charge
migration may also be represented by a superposition state of
two or more electronic eigenstates with the same IRREP, see,
for example, refs 12, 14, and 16. These superposition states
may well describe the ultrafast changes in the electronic
density, with corresponding very rapid shifts of part of the
density from one molecular site to another, typically in the
attosecond time domain, but those changes do not break the
electron symmetry. For the given set of different IRREPs, the
subgroup of the reduced electron symmetry consists only of
the subset of symmetry operations, which yield the same
characters. For the usual case where the superposition state
includes the totally symmetric electronic ground state, these
characters are equal to 1. This extrapolation is obvious for
attosecond charge migration in the superposition of electronic
states with one-dimensional (1D) IRREPs, cf. Tables 1−4. It
should also hold for applications involving 2D or 3D IRREPs,
for example, benzene11,15,18,42,43 or Mg-porphyrin;9 explicit
derivations will be published elsewhere. The novel rule is

Table 2. Selected Part of the Character Table for C∞v

C∞v E 2C∞ ∞σv

Σ+ 1 1 1

Figure 2. Electron density symmetry breaking C2v → Cs during
attosecond charge migration in the A1 + B2 superposition state of
oriented H2O (T = 346 as). Middle panel: Contour plots of
alternating electron densities ρ1e

+ and ρ1e
− (Cs) at t = 0, T/2, T, 3T/2,

... (T = 346 as). Lower and upper panels: Electron densities ρg and ρe
of the electronic ground (A1) and excited (B2) states (C2v). The
contours of the corresponding one-electron densities are at ρ1e =
0.325 and 0.06 a0

−3. The nuclei conserve the C2v symmetry and are
illustrated as balls.

Table 3. Selected Part of the Character Table for C2v

C2v E C2 σ = σxz σ′ = σyz

A1 1 1 1 1
B2 1 −1 −1 1

Table 4. Selected Part of the Character Table for Cs

Cs E σ = σyz

A′ 1 1
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significant because it is well known that the electron symmetry
may have an enormous effect on the reaction dynamics, see, for
example, the Woodward−Hoffmann rules.44 It is therefore easy
to predict that the present rule for electron symmetry
reduction should have significant effects on sequel reactions
which are triggered by charge migration, for example, site-
selective bond breaking, as discovered in ref 5.
As an outlook to longer time domains, charge migration is

just a transient ultrashort phenomenon which may trigger
subsequent processes but disappears because of decoherence
by nuclear motions.15,18,38,45−51 The consequences depend on
the molecular system. For example, in the case of H2

+, nuclear
motions cause dissociation of the σu contribution to the σg + σu
superposition state, whereas the σg partial wave remains
bound.38 In this case, the nuclei conserve the D∞h symmetry,
and the electronic D∞h → C∞v symmetry breaking is a
transient phenomenon during attosecond charge migration.38

The effect could be monitored by attosecond photoionization
of the coherently coupled states,52 by time-resolved measure-
ments of the asymmetries in photoelectron angular distribu-
tions,16 by high harmonic spectroscopy which allows atto-
second time resolution and is sensitive to symmetry,53−56 or by
exploring electron migration dynamics by electron diffraction
with ultrashort X-ray pulses.57−61
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