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Coherent 420 nm laser beam generated by four-wave mixing in
Rb vapor with a single continuous-wave laser∗
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We demonstrate the generation of the coherent 420 nm laser via parametric four-wave mixing process in Rb vapor. A
single 778 nm laser with circular polarization is directly injected into a high-density atomic vapor, which drives the atoms
from the 5S1/2 state to the 5D5/2 state with monochromatic two-photon transition. The frequency up-conversion laser is
generated by the parametric four-wave mixing process under the phase matching condition. This coherent laser is firstly
certified by the knife-edge method and a narrow range grating spectrometer. Then the generated laser power is investigated
in terms of the power and frequency of the incoming beam as well as the density of the atoms. Finally, a 420 nm coherent
laser with power of 19 µW and beam quality of M2

x = 1.32, M2
y = 1.37 is obtained with optimal experimental parameters.

This novel laser shows potential prospects in the measurement of material properties, information storage, and underwater
optical communication.
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1. Introduction
Nonlinear optical processes in an atomic medium give

rise to fascinating phenomena such as coherent population
trapping,[1] electromagnetically induced transparency,[2] las-
ing without inversion,[3] and multi-wave mixing.[4] Among
different nonlinear optical processes in the atomic medium,
frequency conversion is widely studied as a promising ap-
proach for studying the physical process itself and attaining
novel wavelength lasers.

In addition to traditional nonlinear crystals, a strong non-
linearity can be achieved in the proximity of optical transitions
in the atomic medium as well, which has shown potentials
in a wide range of applications, such as quantum information
science,[5] coherent optical phenomena diagnostic,[6] and gen-
eration of novel tunable laser sources. Especially, most optical
detectors are very sensitive to the blue light field (400–480 nm)
which can be obtained by the infrared field up-conversion.
Therefore, the frequency conversion effect has great future in
night vision,[7] star studies,[8] underwater communication,[9]

etc. There have been extensive studies of the transitions in
atomic medium[10,11] that appear suitable for the frequency
up-conversion, and the efficiency can be improved dramati-
cally by controlling the parametric four-wave mixing (FWM)
process.

Since the FWM process in atomic medium has been
proved as a useful method for producing short wavelength
laser beams, it has been paid more attention in recent stud-
ies. Using multiple near-infrared fields to generate blue and
mid-infrared radiations by FWM in Rb vapor was pioneered
by Zibrov et al.[12] and then achieved in cesium medium.[13]

Also, another additional resonant laser was demonstrated as a
useful way to enhance the power of the blue laser.[14] How-
ever, the requirement of multiple pump lasers increases the
complexity of the system, which sets an obstacle for the appli-
cations based on the blue laser. Sulham et al. investigated the
generation of a blue laser by using a single dye laser in rubid-
ium and cesium medium.[15] While, the linewidth of the dye
laser is usually several GHz, which has a direct defective in-
fluence on the linewidth of the generated blue laser. Compared
with pulsed laser, single continue wavelength laser has advan-
tages of distinct narrow linewidth and convenient equipment
integration. A preliminary research was carried out in 87Rb
isotopes recently.[16] However, a further and detailed research
about the efficient generation of this specific blue light with a
single laser beam is still required for underwater communica-
tion or other potential applications.

In this work, we investigate the efficient frequency up-
conversion in a thermal vapor containing a natural mixture of
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85Rb and 87Rb isotopes via a parametric FWM process. The
spatial and spectral measurements of the generated beam were
implemented by using a knife-edge method and a narrow range
grating spectrometer, which confirm that the novel light is a
collimated and single-wavelength coherent 420 nm laser. The
relationship between the generated blue laser and various ex-
perimental parameters was studied in detail. In this paramet-
ric FWM process, the appropriate parameters can facilitate the
generation of the blue laser, which shows promises in commu-
nication between near-infrared and blue light fields.

2. Experimental setup

The related energy levels of the FWM process are shown
in Fig. 1(a). The two-photon transition is achieved via the si-
multaneous absorptions of two 778 nm photons, which excite
the rubidium atoms from the 5S1/2 ground state to the 5D5/2

excited state. A third optical field of 5.2 µm infrared radia-
tion is firstly generated corresponding to the 5D5/2 → 6P3/2

transition. Then the strong atomic coherence in this diamond-
type energy level structure produces the collimated blue light
(CBL) at 420 nm via the parametric FWM process correspond-
ing to the 6P3/2→ 5S1/2 transition.

A schematic experimental setup is shown in Fig. 1(b).
The pump laser is provided by a diode laser (DLC TA pro,
Toptica), with a tunable range of 30 nm and a linewidth less
than 1 MHz. After the laser passes through a single-mode
polarization-maintaining fiber, a 778 nm Gaussian beam with
the power of 1.3 W and beam quality of M2

x = 1.24, M2
y = 1.35

is obtained. A half wave plate (HWP1) and a polarization

beam splitter (PBS1) are used to divide a weak beam from
the main beam. The laser frequency is precisely monitored
by a wavelength meter (WS-7, High Finesse). Then the main
beam is split into two beams by HWP2 and the PBS2 with dif-
ferent powers. One beam with the power of about 30 mW
is used to obtain the reference two-photon transition spec-
troscopy in vapor A which is 50 mm in length and 25 mm in
diameter. The vapor is shielded with a µ-metal to reduce the
effect of stray magnetic field and the temperature can be ac-
curately controlled by a self-feedback temperature controller
(TC1). The 420 nm fluorescence from the cascade decay of
the upper 5D5/2 state is fltered with an interference filter (cen-
ter wavelength 420 nm, 10 nm pass band) to isolate the back-
ground light, and then detected by a side-window photomul-
tiplier tube (CR131, Hamamatsu). The other strong 778 nm
beam with circular polarization is used to generate the CBL
with the phase match of the FWM process. Meanwhile, a high
atomic density for realizing the parametric FWM process is
achieved by a self-feedback temperature controller (TC2).

At the exit of vapor B, we block the transmitted input
pump laser by using two dichroic mirrors and a 420 nm band-
pass interference filter. The generated laser beam is firstly
measured by a narrow range grating spectrometer (AvaSpec-
ULS2048L, Avantes). Then, the knife-edge method, which is
implemented by a chopper wheel (SR540, Stanford Research
Systems) and a photodiode (PDA36A-EC, Thorlabs), is also
used to demonstrate the blue laser. Finally, we evaluate the
beam quality M2 of the generated coherent radiation by using
a CCD. The power of the generated laser is measured by using
a power meter (S305C, Thorlabs).
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Fig. 1. (a) The energy levels involved in the parametric FWM process of rubidium atoms. (b) Experimental setup. L: lens, F: 420 nm bandpass
interference filter; M: high reflection mirror, PMT: photomultiplier tube, DM: dichroic mirror, HWP: half-wave plate, QWP: quarter-wave plate,
PBS: polarization beam splitter, PD: photodiode, TC: temperature controller, WM: wavelength meter, GS: narrow range grating spectrometer,
CCD: charge coupled device.

3. Results and analysis
The coherent 420 nm laser is generated via parametric

FWM process by a single 778 nm laser in Rb vapor. The beam
is observed at the exit of vapor B in the same propagating di-
rection as the input pump beam. The beam’s spatial profile

can be characterized by using the knife-edge method.[17,18] A

chopper with modulation frequency of 30 Hz is used in the

experiment. Figure 2(a) presents the normalized intensities

of the 778 nm pump beam (black line) and 420 nm blue beam

(red line), respectively. The measurement results show that the
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two beams spatially overlap with each other. The directional-
ity of the generated blue beam is consistent with the phase
matching condition for FWM, 𝑘pump + 𝑘pump = 𝑘ir + 𝑘cbl,
where 𝑘pump, 𝑘ir, and 𝑘cbl are the wave vectors of the radia-
tion at 778 nm, 5.23 µm, and 420 nm, respectively. The wave-
length of the generated blue beam is also measured with a nar-
row range grating spectrometer, which is shown in Fig. 2(b).
The detected frequency peak is centered at 420.1 nm with the
full-width-at-half-maximum of 0.36 nm. This wavelength is
precisely corresponding to the 6P3/2 → 5S1/2 transition that
agrees well with the theoretical expectation.[19] The inset of
Fig. 2(b) shows the blue beam profile obtained in a screen and
a ruler is used as a reference. The above spatial and spectral
measurements confirm that this blue beam is generated by the
parametric FWM process. Also, a 5.23 µm field is produced
in this process. However, the infrared field is hindered by the
opacity of the fused-silica vapor cell window at THz frequen-
cies.
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Fig. 2. (a) Knife-edge measurements of the generated CBL beam and
the pump beam at the chopper position. (b) Spectrum of the output
beam measured by a narrow range grating spectrometer. The inset
presents the CBL spatial profile.

The power of the generated blue laser is influenced by
several experimental parameters, such as the polarization,
power of the pump laser, and the atomic density. The fre-
quency conversion effect is sensitive to the polarization of
the pump laser, which determines the transition probability

of the excitation pathway. Also, the polarization of the out-
put laser field changes as the polarization of the input laser
changes. Here, an efficient CBL generation is achieved when
the pump beam has circular polarization instead of linear
polarization.[11,13] Thus, we use a pump laser with circular po-
larization to conduct the experiment in the following research.
Angular momentum conservation during the FWM process de-
termines that the polarization of the output CBL is circular
with the applied laser fields.[20]

Then, we study the dependence of the generated blue
laser power on the atomic density. Figure 3(a) shows the
CBL’s power as a function of the pump laser frequency and
the atomic density, and the white line shows the two-photon
transition spectroscopy in vapor A. The pump laser power is
fixed at 1.25 W. The temperature of vapor B is varied form
20 ◦C to 225 ◦C, which corresponds to an atomic density rang-
ing from 4.04× 109 cm−3 to 2.35× 1015 cm−3. The mea-
sured CBL intensity is plotted with logarithmical atomic den-
sity to show the detailed result in the low-density case. As
the atomic density increases, the CBL resonances with 85Rb
6P3/2 → 5S1/2 (F = 3) transition firstly appear. The vapor
has two naturally isotopes of 85Rb and 87Rb, whose natural
abundances are 73% and 27%, respectively.[21] The statisti-
cal weights of the atoms in these hyperfine levels are equal
to the degeneracy of the hyperfine levels (2F + 1), the ratios
of the two hyperfine energy level weight factors of 87Rb and
85Rb are 5 : 3 and 7 : 5, respectively.[22] The large weight fac-
tor makes the atoms in 5S1/2 (F = 3) state firstly satisfy the
parametric FWM condition. When the atomic density is about
0.2×1015 cm−3, the CBL resonances with other three hyper-
fine transitions appear, and their intensities all increase with
the atomic density increasing. When the atomic density is
about 0.4× 1015 cm−3, the CBL intensity begins to decrease
due to the self-absorption effect. While the CBL far detuned
from the resonance positions can continuously increase as the
atomic density increases. The strongest laser generation is ob-
served at red detuning 600 MHz from the 85Rb 5D5/2→ 5S1/2

(F = 2) transition.
In order to quantitatively study the relationship between

CBL’s power and atomic density, we measure the laser power
with different atomic densities, which is shown in Fig. 3(b).
The pump laser frequency is red detuned 600 MHz from
the 85Rb 5D5/2 → 5S1/2 (F = 2) transition. The generated
CBL is visually observed when the atomic density reaches
0.5× 1015 cm−3, and then the CBL’s power approximate lin-
early grows with the increasing atomic density. When the
atomic density exceeds 1.75× 1015 cm−3, the CBL’s power
growth trend slows down, and tends to saturate. The forward
(5S–5P–5D–6P–5S) and reverse (5S–6P–5D–5P–5S) FWM
processes are competing with each other. With a larger atom
density, the increase of the CBL power causes a balance be-
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tween these two FWM processes, which leads to the saturation
of the CBL generation.[23] At this point, the parametric FWM
process reaches saturation. This saturation point is given by

Ω5S,5P Ω5P,5D

∆5P
=

Ω5S,6P Ω6P,5D

∆6P
, (1)

where Ω is the Rabi frequency between two states, and ∆m is
the detuning from the state m. For the two-photon excitation
scheme used here, the pump laser frequency is largely detuned
from the 5P state, thus a microwatts (µW) level blue laser can
induce the saturation.
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Fig. 3. (a) Contour plots of the generated blue laser intensity as a func-
tion of the pump laser frequency detuning and atomic density. The
white line shows the two-photon transition spectroscopy in vapor A. (b)
The generated CBL power versus atomic density when the pump laser
frequency is red detuned 600 MHz from 85Rb 5D5/2 → 5S1/2 (F = 2)
transition.

We also study the effect of the pump laser power on the
CBL’s power. Figure 4(a) illustrates the CBL’s power as a
function of the pump laser frequency and power. Here, the
atomic density is fixed at a large value of 2.35× 1015 cm−3.
It is found that the CBL’s power is weak with a low pump
laser power. When the pump power reaches 750 mW, the CBL
is observed near the resonance positions. The CBL’s power
is constantly increasing with the increase of the pump laser
power, which seems like the atomic density case in Fig. 3(a).
But the CBL frequency position does not change with the in-
crease of the pump laser power, which is different with the
atomic density case. With such a high atomic density, the

Doppler width is larger than 1 GHz, which gives a large fre-
quency window for the generation of two-photon excitation.
While, the generated CBL resonances on 6P→ 5S transition
have a drastic absorption with such high atomic density. When
the pump laser frequency is red detuned about 600 MHz from
the 85Rb 5D5/2 → 5S1/2 (F = 2) transition, the CBL’s power
reaches the maximum, which can be clearly found in Fig. 4(a).
In order to quantitatively study the relationship between CBL’s
power and pump laser power, we select this detuning position
to investigate in detail, which is shown in Fig. 4(b). When the
pump laser power reaches the threshold value (about 600 mW)
of the FWM process, the blue laser power begins to increase.
When the pump laser power keeps increasing, the power of
the generated CBL shows a continuous and rapid change. The
power of the generated blue laser can be written as[24]

PCBL ∝
ωCBL

ωR

[
|D5S,5P| |D5P,5D| ∆6P

|D5S,6P| |D6P,5D| ∆5P

]2

P2
pump, (2)

where PCBL is the CBL’s power, ωCBL and ωR are the fre-
quencies of the 420 nm and 5.23 µm beams, respectively. |D|
denotes the dipole matrix element, ∆m is the detuning from the
state m, and Ppump is the power of the pump laser. If we con-
tinue to increase the pump laser power, the blue laser power
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Fig. 4. (a) Contour plots of the generated blue laser power as a function
of the pump laser frequency detuning and power. The white line shows
the two-photon transition spectroscopy in vapor A. (b) The generated
CBL power versus pump laser power when the pump laser frequency
is red detuned 600 MHz from 85Rb 5D5/2 → 5S1/2 (F = 2) transition.
The red line is the fitting of the experimental result with formula (2).
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is expected to scale as the square of the pump power in the
power-broadened regime. The red line is the fitting of the ex-
perimental result with formula (2). We obtain a 19 µW blue
laser output power with the input pump laser power of 1.25 W.
After considering the transmission coefficients of the vapor
cell material to the incident laser and blue laser, the blue laser
generation efficiency is estimated as 0.0018%. This efficiency
is on the order of magnitude from previous experiment with
similar mechanism.[16]

Finally, we evaluate the CBL output with optimal exper-
imental parameters. The directly measured profile of the gen-
erated CBL is a Gaussian beam, which is shown in the inset of
Fig. 5. The beam quality of the CBL can be obtained by mea-
suring the beam waist at different positions. The black squares
are results for the x axis, and the red dots are results for the y
axis. The measured M2 values are M2

x = 1.32 and M2
y = 1.37,

which are similar to those of the 778 nm pump laser. Com-
pared to the frequency up-conversion in the crystals,[25] the
blue laser generated in atomic medium has a better beam pro-
file, and the beam quality is good enough for future applica-
tions.
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Fig. 5. The measured beam quality M2 of the output CBL. The black
squares and the red dots are the experimental data for the x axis and y
axis, respectively. The insert is the beam profile of the CBL.

4. Conclusion
In summary, we have studied the parametric FWM pro-

cess in a Rb vapor by using a single 778 nm laser. The co-
herence of the generated 420 nm light is firstly confirmed by
the spatial and spectral measurements of the laser by the knife-
edge method and a narrow range grating spectrometer. A cir-
cularly polarized pump beam, which leads to a higher tran-
sition probability determined by selection rules, promises an
efficient CBL generation. The CBL’s power is found to be
approximate linearly increase with the increase of the atomic
density and a saturation effect is observed when the atomic
density exceeds 1.75× 1015 cm−3. The CBL’s power has a

quadratic dependence on the pump laser power after the pump
laser’s power exceeds the threshold value of the FWM process.
These results are qualitatively interpreted and discussed in the-
ory. Finally, a 19 µW blue laser output with the beam quality
of M2

x = 1.32, M2
y = 1.37 is obtained. Due to its good opti-

cal characteristics, this laser can be used in the realization of
single photon source and measurement of material properties.
Such results enrich our understanding of the dynamic mecha-
nism of parametric FWM process in atomic medium and have
great prospect in the applications of novel tunable laser source
and underwater optical communication. In the next work, we
will use an improved multiple-pass metal vapor cell to improve
the blue laser generation efficiency. In addition, if we further
use a buildup cavity surrounding the atomic medium, the out-
put power can be greatly increased, and the beam quality can
also be optimized.[26]
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