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Highly sensitive detection of Rydberg atoms with
fluorescence loss spectrum in cold atoms∗
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Fluorescence loss spectrum for detecting cold Rydberg atoms with high sensitivity has been obtained based on lock-in
detection of fluorescence of 6P3/2 state when cooling lasers of the magneto-optical trap are modulated. The experiment
results show that the signal to noise ratio has been improved by 32.64 dB when the modulation depth (converted to laser
frequency) and frequency are optimized to 4 MHz and 6 kHz, respectively. This technique enables us to perform a highly
sensitive non-destructive detection of Rydberg atoms.

Keywords: fluorescence loss spectrum, Rydberg atoms, signal to noise ratio

PACS: 32.10.Ee, 32.30.Dx, 32.50.+d DOI: 10.1088/1674-1056/ab593b

1. Introduction
In recent years, significant progress in the research field

of ultra-cold atoms has taken place, such as coupling ultra-
cold atoms with ions systems.[1–3] Besides, ultra-cold atomic
ensembles also provide an ideal platform for investigating the
behavior of interacting many-body quantum systems due to
their large degree of control and tunability.[4–6] Rydberg atoms
excited in cold atoms have attracted lots of interests of sci-
entists, and much of the recent breakthrough in the field of
quantum information has been made by taking advantage of
strong interactions between Rydberg atoms,[7–9] quantum non-
linear optics,[10–13] quantum information processing,[14–16] as
well as Rydberg-dressed atoms based on laser cooling and
trapping.[17,18]

The decay rates of Rydberg states are quite small accord-
ing to their long lifetimes which are proportional to n3,[19]

and multiple decay channels and non-radiative decay make
the radiation of Rydberg states a much complicated process.
Therefore, the fluorescence of a high lying Rydberg state is
too weak to be observed directly in this case. There are sev-
eral methods to detect Rydberg atoms, such as ions detection,
in which the state selective field ionization (SFI) techniques
are generally used to detect specific Rydberg states, however,
the Rydberg atoms are ionized in this case and this detec-
tion method is destructive.[20–24] Electromagnetically induced
transparency (EIT) has been successfully applied to provide
a non-destructive method for Rydberg states detection.[25–28]

Besides absorption spectroscopy and imaging,[29] the fluores-

cence loss spectrum is also used for recording Rydberg excita-
tion spectra in a magneto-optic trap spanning a series of prin-
cipal quantum numbers.[30,31] However, in those techniques,
the signal-to-noise ratio (SNR) shows large room to improve.
In this study, we use a method to directly measure the fluores-
cence of the excited states of the cooled atoms in the magneto-
optic trap, when the coupling laser is tuned at the resonance
with a certain Rydberg level we could observe a sudden drop
of the magneto-optical trap (MOT) fluorescence signal, which
can be utilized for the detection of the Rydberg atoms, and in
order to improve the detection sensitivity, a frequency mod-
ulation is applied on the cooling lasers. The precision laser
spectroscopy measurements of Rydberg states are made ef-
fectively using pure optical detection with a vapor cell sam-
ple based on frequency modulation as described in Ref. [32].
High-resolution photoassociation spectroscopy by using the
modulation technique is also carried out in a cesium atomic
magneto-optical trap.[33,34]

In this paper, we demonstrate a highly sensitive fluores-
cence loss spectroscopy based on ultra-cold cesium atoms in a
magneto-optical trap by adding a frequency modulation to the
cooling lasers. The modulation frequencies and depth have
been optimized that lead to the improvement of SNR at least
30 dB compared to the unmodulated spectrum. The modu-
lated fluorescence loss detection technique provides a simpler,
versatile, and non-destructive method for the detection of Ry-
dberg atoms.

∗Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0304203 and 2016YFF0200104), the National
Natural Science Foundation of China (Grant Nos. 61505099, 61827824, 91536110, and 61975104), and the Fund for Shanxi ‘1331 Project’ Key Subjects
Construction, Bairen Project of Shanxi Province, China.
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2. Experimental setup

Cold cesium atoms are prepared in a magneto-optical
trap with the temperature about 200 µK. A cuboid shaped
quartz vacuum chamber with a background pressure of about
1.5×10−10 Torr is connected with a cesium reservoir via a
metal valve. The quadrupole magnetic field for MOT is gen-
erated by a pair of anti-Helmholtz coils together with mag-
netic fields compensations, and the magnetic field gradient of
the quadrupole field along the symmetry axis of the coils is
about 10 G/cm. The cooling beams are provided by a com-
mercial diode laser (DL pro, Toptica) of which the linewidth
is smaller than 1 MHz and the frequency is stabilized to tran-
sition 6S1/2(F = 4)→ 6P3/2(crossover of F ′ = 3 and 5) using
a saturated absorption spectroscopy, and then shifted with an
acoustic optical modulator (AOM) to be red detuned from the
6S1/2(F = 4)→ 6P3/2(F ′ = 5) atomic transition, and the de-
tunning is about twice of the natural linewidth of state 6P3/2.
The power of the cooling beams is about 1.3 mW each and
the diameter is about 5 mm. To prevent the accumulation

of atoms on state 6S1/2(F = 3) decaying from 6P3/2(F ′ = 4)
level, another repumping laser is necessary which is provided
by an external-cavity diode laser (New Focus, model 6305),
and the frequency is locked to the transition of 6S1/2(F = 3)→
6P3/2(F ′= 4) by using a polarized absorption spectrum. In our
experiments, the first excitation laser which drives the atoms
from ground state 6S1/2 to excited state 6P3/2 is performed
by the cooling lasers, and another 510 nm laser provided by
a frequency-doubled laser (TA-SHG pro, Toptica) couples the
transition from the excited state to 47D5/2 Rydberg state. The
frequency of the upper transition laser is scanned around cer-
tain Rydberg state to record the fluorescence spectrum, and the
diameter is about 0.4 mm, which is a little bit larger than the
size of the atoms cloud (0.3 mm in diameter). In this case,
all the atoms can be illuminated by both excitation lasers. By
using the absorption method, the number of the trapped atoms
is measured to be about 4×107, yielding a peak density of
3.5×1011 cm−3. The fluorescence loss spectra are investigated
based on the three-level systems, and the related energy level
diagrams and experimental setup are shown in Fig. 1.
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Fig. 1. Experiment setup and levels diagram. (a) Lasers setup, where the 852 nm laser (upper left) is coupled into three PM fibers respectively
as the cooling beams. The 510 nm coupling beam (left lower) is split into two parts, one of which is used for power stabilization via PID, and
the other one is coupled into a PM fiber for Rydberg excitation. (b) Zoom in of the trapping area, including cooling and excitation lasers, MOT
coils, and photodiode for fluorescence collection. (c) Cascade three levels of Rydberg excitation. Cesium atoms are excited from 6S1/2 ground
state to 6P3/2 excited state with 852 nm cooling lasers and then from the excited state to 47D5/2 Rydberg state by 510 nm coupling laser. The
detuning of the first excitation laser is periodically varied due to the modulation of the 852 nm cooling lasers.

As mentioned above, the frequency of the 510 nm cou-
pling laser is scanned and at the same time the oscilloscope
is used to record the fluorescence loss spectrum of Rydberg
atoms excitation. The scanning speed of the 510 nm laser is
slow and carefully chosen to be 0.8 MHz/s with which the
signal intensity is almost twice larger than that of fast scan
(e.g., 3.2 MHz/s) and the signal is symmetry for both scan di-
rections. The fluorescence is collected by an achromatic lens
whose focal length is 50 mm and detected with a photoelectric

detector (PDA36A-EC, Thorlabs). The frequency of the cool-
ing lasers is modulated by feeding a weak oscillation through
the frequency MOD interface of the cooling laser AOM. The
varying ranges of depth (converted to laser frequency) and fre-
quencies of modulation are 0.2–5.7 MHz and 1–11 kHz in
steps of about 0.4 MHz and 1 kHz, respectively. The fluores-
cence signal is then sent into and demodulated with a lock-in
amplifier (SR830, Standford Research Systems), of which the
time constant is 300 ms and the sensitivity is 200 mV.[35]
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3. Results and discussion
The direct fluorescence loss spectra are shown in Fig. 2.

The blue and black dots represent the signal with and without
modulation, respectively. The red line is the theoretical cal-
culation. All the data are normalized with respect to the peak
of the modulated signal. Obviously, the signal increases a lot
and the noise narrows down when the cooling lasers are mod-
ulated which leads to a significantly enhancement of SNR of
the fluorescence loss spectrum.
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Fig. 2. Direct fluorescence loss spectra with (blue dots) and without (black
dots) modulation. Red line is the result of theoretical calculation.

In order to study the fluorescence variation of excited
states, we consider a three-level system composed of states
|1〉, |2〉, and |3〉, corresponding to the ground 6S1/2, excited
6P3/2, and Rydberg 47D5/2 states, respectively, which is illus-
trated in Fig. 1(c). The atoms are excited to the Rydberg states
through two-photon excitation 6S1/2–6P3/2–47D5/2. The sys-
tem Hamiltonian is written in the form

H =

 0 Ω852 0
Ω852 −2∆510 Ω852

0 Ω852 −2(∆510 +∆852)

 ,

in which Ω852 and Ω510 represent the Rabi frequencies of the
852 nm first excitation and 510 nm coupling lasers, respec-
tively, ∆510 and ∆852 denote the detunings associated with the
510 nm laser and 852 nm laser, respectively. The Von Neu-
mann equation is applied to investigate the time evolution of

this system. The decay and decoherence of the system can be
attributed to the finite lifetime of the atomic levels, interaction
and collisions between atoms, which lead to a Liouville term
in the equation. Then the time evolution of the density matrix
becomes

ρ̇ =− i
h̄
[H,ρ]− 1

2
{Γ ,ρ}, (1)

where Γ has 〈n|Γ |m〉 = γnδnm. Then we have the following
optical Bloch equation:

˙̃ρ11 = i
Ω852

2
(ρ21−ρ12),

˙̃ρ22 = −γ2ρ22− i
Ω852

2
(ρ21−ρ12)− i

Ω510

2
(ρ23−ρ32),

˙̃ρ33 = −γ2ρ33 + i
Ω510

2
(ρ23−ρ32),

˙̃ρ∗21 = ˙̃ρ12 = (−γ12 + i(∆510−∆852))ρ̃12

− i
Ω510

2
ρ̃13 + i

Ω852

2
ρ̃32,

˙̃ρ∗31 = ˙̃ρ13 = (−γ13− i∆852)ρ̃13

+ i
Ω852

2
(ρ̃33− ρ̃11)− i

Ω510

2
ρ̃12,

˙̃ρ∗32 = ˙̃ρ23 = (−γ23− i∆510)ρ̃23

+ i
Ω510

2
(ρ̃33− ρ̃22)− i

Ω852

2
ρ̃21. (2)

Theoretically, the absolute fluorescence radiance, BF, in the
absence of self-absorption is obtained through the relation[36]

BF = n0ρ22hν12A21l/4π, (3)

where n0 is the total population (number of atoms per cm3),
hν12 is the energy difference between the ground and excited
states, A21 (in s−1) represents the Einstein spontaneous emis-
sion probability, and l (in cm) denotes the depth of the (homo-
geneous) fluorescing volume as seen in the direction of obser-
vation. The ρ22 is the probability density distribution on the
excited state and it is determined by the frequency detuning as
well as the Rabi frequency of the cooling laser beams and the
510 nm laser beam, and the steady state solution is

ρ22 =
4(∆852 +∆510)

2Ω 2
852

4γ2
2 (∆852 +∆510)2 +(−4∆852(∆852 +∆510)+Ω 2

510)
2 +2(4(∆852 +∆510)2 +Ω 2

510)Ω
2
852 +Ω 4

852
, (4)

where γ2 is the decay rate of the excited state and the decay

rate of Rydberg state γ3 is ignored throughout the calculation

as it is far smaller than ∆852. When we add the frequency

modulation to the cooling lasers, in the expression of ρ22, the

∆852 can be substituted with (−3/2γ2+Acos(2πtδ )) and Ω852

can be substituted with (Ω 2
852(0)−Ak cos(2πtδ ))1/2, where A

represents the modulation depth, δ represents the modulation

frequency, and k represents a coefficient of the modulation am-
plitude impact on the laser intensity.

Besides, the relationship between ρ22 and ρ33 can be writ-
ten as

ρ33

ρ22
=

Ω 2
510 +Ω 2

852
4(∆852 +∆510)2 . (5)

Thus, in this paper, we mainly use ρ22 to investigate the vari-
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ation of the fluorescence loss spectrum. Since the cooling and
repumping lasers are applied continuously on the atoms, the
atomic populations on the ground and excited states are in dy-
namical equilibrium. Then the rapid decrease of the atomic
population on the excited state is mainly due to the excita-
tion to Rydberg state rather than decay. Since the cooling
lasers also serve as the first excitation laser, the number of
cooled atoms in the MOT can be evaluated by observing the
fluorescence of the atom cloud, in this way we measure the
dependency of fluorescence of the excited state on the detun-
ing of the cooling laser beams without both modulation and
Rydberg excitation as shown in inset of Fig. 3, which was
also illustrated in Refs. [37,38]. The fluorescence signal peaks
around the position when the cooling lasers are red-detuned by
7.5 MHz. Then modulation with the frequency of 6 kHz and
depth of 0.2–5.7 MHz is applied on the cooling lasers. The
fluorescence signal of the excited state decreases as expected,
as shown in Fig. 3.
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Fig. 3. The dependency of the excited state fluorescence on the depth
of modulation of the cooling lasers. Inset: the dependency of fluores-
cence of cooling atoms on detuning of the cooling lasers. The error bars
represent the fluorescence jitter.

Thus, we can simulate the dependence of Rydberg excita-
tion on the modulation parameters of the 852 nm laser consid-
ering the population decrease in the cooling process caused by
the modulation on the cooling lasers, and the optimal modu-
lation parameters can be obtained from the theoretical simula-
tion as shown by the red solid line in Fig. 4. In the experiment,
we systematically investigate the effects of the modulation on
the fluorescence loss spectrum by varying the depth and fre-
quencies of the modulation. SNR data are extracted from each
measurement as shown in Fig. 4. The dependencies of SNR
on the modulation depth for each frequency are almost arch
shapes of which the peaks are around 2.5–4.5 MHz, which
agrees with the theoretical calculation, while it remains nearly
the same value when the modulation frequencies are varied
since the detunings and density of the first excitation are only
affected by the depth of modulation rather than the frequen-
cies. In the best result of measurements, the SNR of the mod-
ulated fluorescence loss spectrum is 52.48 dB, which improves

by about 33 dB with respect to the mean value of 19.84 dB of
the original fluorescence loss signals.
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Fig. 4. (a) The SNR versus modulation depth with different modulation
frequencies of 2 kHz, 4 kHz, 6 kHz, 8 kHz, and 10 kHz. (b) When
the modulation depth is fixed at 4 MHz, we measure the SNR versus
different modulation frequencies. The error bars represent the standard
deviation uncertainty from fitting data.

We choose the D state of Rydberg atoms for detection in
the experiment for its larger transition dipole moment com-
pared to that of S state. However, the D state exhibits DC
stark splitting due to the stray electric field which is not well
compensated in the experiment, shown as a small bump in the
left wing of signal in the fluorescence loss spectrum in Fig. 2.
Fluctuations of atoms number due to power instability of cool-
ing lasers and collisions between atoms and environment par-
ticles contribute to the errors of the experiment.

4. Conclusion
We obtained a highly sensitive fluorescence loss spectrum

in the MOT of cesium atoms by optimizing the modulation
depth and frequencies of the cooling lasers, which leads to a
significant improvement of the signal to noise ratio of the spec-
trum, and the best result is 32.64 dB. This technique provides
a robust and sensitive way for detections of Rydberg atoms
non-destructively.
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