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The details of quantummulti-body interactions are so rich and subtlewhichmake it difficult to accurately model
for some situations such as the behavior of diatomic long-range vibrations. In recent years, data-driven machine
learning has made remarkable achievements in capturing complex relationships that are subtle. Combining the
characteristics of these two fields, we propose a jointmachine learningmethod to obtain reliable diatomic vibra-
tional spectra including dissociation energy by using accessible heterogeneous micro/macro information such as
low lying vibrational energy levels and heat capacity. Applications of this method to CO and Br2 in the ground
state yield their state of the art of vibrational spectra including dissociation limit. The strategy introduced here
is an exploration of combining the model-driven and data-driven method to cover subtle physical details that
are difficult to study in a single way.

© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

The spectroscopy of molecules plays an important role in studying
physical and chemical phenomena in atomic level. For a long time, peo-
ple have made great progress in studying molecular structures, chemi-
cal reactions, astrophysics, interstellar matter, nuclear energy and
fundamental constants by taking advantage of molecular spectra (and
corresponding energy levels) [1–6].

In recent years, considerable progress has been made in the ex-
perimental study of vibration-rotational energy spectra of small
molecular systems especially for diatomic molecules. Many spectro-
metric techniques (microwave, molecular beam, sub-doppler laser
spectroscopy, infrared spectroscopy, photoassociation spectros-
copy, etc.) have been developed for “hot molecules” [7,8] and
“ultra-cold molecules” [9,10]. By these techniques, in the “hot mol-
ecule” part, the spectral lines in the short-range region can be
anqunchao@sina.com (Q. Fan).
located with high quality. However, it is still difficult to obtain the
same achievements in the medium-long range region due to the
reasons of doppler broadening, laser continuous modulation limit
and too small transition probability. In the “ultra-cold molecules”
part, thanks to the extremely low temperature of the sample, the
doppler effect is almost negligible, a few near-dissociation energy
levels can be measured [11]. At the limit of the vibrational energy
sequence lies the dissociation energy, which is even more difficult
for direct spectroscopy measurement. A few molecules can be mea-
sured directly [12] and many others are obtained by indirect
methods like near disassociation expansion [13]. In general, part
of the vibration-rotational spectrum can been obtained experimen-
tally in a high quality but the remain is still hard to acquire.

On the theoretical side, it is mainly dependent on the ab initio
methods (such as Hartree-Fock and Post-HF Extensions [14], Den-
sity Functional Theory [15]) based on quantum mechanics to calcu-
late the spectra. For some simple one electron diatomic molecules
(such as HD+), one can rely on more precise QED [5] method. How-
ever, even in diatomic molecule, there may be hundreds of
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electrons, which can lead to very complicated multi-body interac-
tions, letting alone incomplete basis set, relativistic effect [16], etc.
One has to model these things approximately according to the na-
ture of particular system, and make a delicate balance between
the computational cost and model complexity in real calculation
(neglecting a part of correlation effects and using truncated basis
sequence). Consequently, many ab initio approximation methods
are introduced under the framework of Post-HF (CI, MCSCF, CASSCF,
CASPT2, MRCI, etc.) [14] and DFT (LDA, GGA, mGGA, Hybrid, Double
Hybrid, etc.) [15]. It turns out that these approximations still lag be-
hind the experimental results in the position far away from the
equilibrium especially for exited electron states. The diatomic cal-
culation error for dissociation energy may usually be in hundreds
cm−1 [17,18] and in tens [17] for some vibrational energy levels.

While there are computational problems in ab initio and QED
methods, they confirm us that each quantum configuration (elec-
tron state, vibration and rotation) does correspond to a certain en-
ergy level (bound state) and provide computed levels, however,
with uncertainty. It's just too arduous to eliminate these uncer-
tainties by considering more detailed interactions with acceptable
computing power. From an information theory [19] point of view,
data (information) can serve to reduce uncertainty. In our previous
study [20,21] dissociation energy and low energy level data are suc-
cessfully used to predict the ro-vibrational spectra. However, on the
one hand, the dissociation energy of some molecular systems may
be difficult to obtain or have a large uncertainty, it is very worthy
of study in itself. On the other hand, there may be over-fitting prob-
lems for all the data is used for building up the projection function,
which makes it difficult to assess its reliability. In recent years, ma-
chine learning has found ways to build reliable higher-dimensional
functions from data [22], which performs well in solving quantum
and statistical mechanics problems [23–25]. Their main strategy is
to transform modeling into optimizing (uncertainty is covered by
parameters), and separate the fitting and testing procedure with
different data to avoid over-fitting. [22].

The main purpose of this work are to combine the model-driven
quantum result with data-driven method to overcome the weak-
ness of their own to cover subtle physical effects in a reliable ma-
chine learning way. The findings show that the new method can
obtain spectra including the unknown high-lying vibrational levels
and dissociation energy under experimental accuracy at a low com-
putational expense.
Fig. 1. A typical Artificial neural network t
2. Theoretical method

2.1. Quantum models that are flexible enough to cover subtle physical ef-
fects in long-range vibrations

The relationship between quantum number ν and energy levels of
bound state is definite, however, the exact form may be very compli-
cated and change with physical effects detail such multi-body interac-
tion. The components (nuclei and electronics) and their interactions
(coulombic electron-electron, electron-nucleus and nucleus-nucleus)
of diatomic molecule are clear. Consequently, the Hamiltonian of the
system is as follows:
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where Greek alphabets stand for nuclei and digital labels are on behalf
of electrons. Then, for a stable system, the time-independent
Schrödinger equation is

Ĥ ψ r1; r2;…; rn;Rα ;Rβ ;…;Rm
� �

¼ Eψ r1; r2;…; rn;Rα ;Rβ ;…;Rm
� � ð2Þ

After introducing the potential energy hyper-surface (PES) accord-
ing to Born-Oppenheimer approximation (BOA) and considering the
geometrical symmetry of two atoms, the state of nuclei (vibration and
rotation) is contained in the radial equation:

−
ℏ2

2μ
d2

dr2
þ V rð Þ þ

J J þ 1ð Þ−Λ2
h i
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2μr2

8<
:

9=
;φ rð Þ ¼ EνJφ rð Þ ð3Þ

J, Λ and ν represent the total angular momentum quantum number,
the absolute value of the projection of electron orbital angular momen-
tum onto the nucleus line (correspond to electronic state) and the vi-
brational quantum number. The diatomic PES is just a function of
nuclear distance. One can expand it to its eighth order at the equilibrium
o build relationship between X and Y.



Fig. 2. The full vibrational spectrum corresponding to different dissociation energies for
ground state of CO.

Table 1
Ground state dissociation energy of CO [30].

De
a Year Method

55,821.120 1936 Spectrum
70,976.136 1939 Electron impact
75,815.428 1947 Theoretical calculation
81,461.247 1943 Spectrum
89,615.437 1945 Spectrum
90,679.1b 2014 Spectrum

a Dissociation energy in cm−1.
b Newly added from [31].
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position [26]:
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Þr¼re is the so called n-rank force constant. Using

the second order perturbation method to regroup the Hamiltonian in
Eq. (3):
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When we focus on the vibrational part, the corresponding energy
levels are:

Ev ¼ ω0 þ ωe þωe0ð Þ ν þ 1
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and dissociation energy is a function of last three vibrational energy
[20]:

Dcal
e ≅Eνmax þ

ΔEνmax;ν max−1
2

ΔEνmax;ν max−2−ΔEνmax;ν max−1

ð8Þ

The perturbation result has the similar Herzberg [27] like polyno-
mial form as well as Dunham [28] underWKB approximation. Compar-
ing it to Taylor expansion of normal function
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one can find that, E(ν) are actually be expanded as series at ν= − 1/2.
Any complicated physical effects can be reflected in the expansion coef-
ficient that is usually called spectroscopic constants [8]. In previous
quantum study the function E(ν) is expanded at low ν, so the long-
range vibrations according to high ν are far from the expansion point,
which means long-range vibrations may require a lot of expansion
terms. In fact, spectroscopic constants are usually fitted by the low-
lying experimental levels through least square method. However, with
the increasing of polynomial items number, the fitting ability increases
rapidly. Complex details like nonphysical experimental errors and sub-
tle physical effects can be covered as an indistinguishable whole (over-
fitting). Therefore, in practice, only few expansion items (usually less
than 4 [7,8]) are kept in order to gain statistical significant. Higher-
order constants that related to long-range interactions but mixed with
uncontrollable errors inside the experimental results have to be aban-
doned (under-fitting). Therefore, the least square strategy leads to
poor performance in the predictive extrapolation for high-lying vibra-
tional and disassociation energy [20].We have to find a newway to un-
lock the power of higher-order items in Eq. (7) to achieve long-range
vibrations.
2.2. Data driven machine learning method

To unlock the power of functionswithmassive parameters, machine
learning is the master [22]. It can approximate higher-dimensional
functions to forecast globally rather than a local fitting by making
good use of data. First, it introduces a function that may contain billions
of parameters such Deep-neural-network (DNN), recurrent-neural-
network (RNN), convolutional-neural-network (CNN) to cover the rela-
tionship it want to build such as Y = f(X) in Fig. 1 (to deal with under-
fitting problem). Then, the data (sample of X→ Y) are used to determine
the parameterswhich are called learning. In order to dealwith the over-
fitting problem, the data set is divided into training and testing part. In
the learning procedure, only training data is used to determine the pa-
rameter by optimizing the difference between prediction and exist
data in training set. The learning results are final assessed by the data
in test set. It is worth to note that, cross-validation, normalization and
so on are introduced to settle over-fitting issues (The details can be
found in [22]). Themain idea of them can be summarized as introducing
big enough but restricted parameter space for valid model searching by
training and testing with different data.

Back to spectral part, Eq. (7) is a better choice than artificial neural
networks for the parameter are much fewer and the flexibility is con-
firmed by bound state quantum theory and Taylor's series Eq. (9). The
challenge remains solving the under and over fitting problem according
to its own characteristic, which are managed by spectroscopy learning
that is inspired by general machine learning.
2.3. Spectroscopy learning

2.3.1. A formal description of spectroscopy learning
Under the framework of general machine learning, the task of spec-

troscopy learning is defined to find a reliable functional approximation



Fig. 4. Error comparison of different vibration levels for the ground state of CO [32,34].

Table 2
Full vibrational spectrum prediction of COmolecule in ground state.

ν Eν
exi [32] Eν

cal ν Eν
cal

0 1081.701 1081.756 42 69,159.054
1 3225.042 3225.036 43 70,251.348
2 5341.833 5341.831 44 71,319.269
3 7432.210 7432.210 45 72,362.715
4 9496.241 9496.242 46 73,381.565
5 11,533.994 11,533.995 47 74,375.680
6 13,545.540 13,545.541 48 75,344.898
7 15,530.954 15,530.954 49 76,289.034
8 17,490.307 17,490.307 50 77,207.878
9 19,423.677 19,423.677 51 78,101.196
10 21,331.141 21,331.141 52 78,968.723
11 23,212.778 23,212.778 53 79,810.166
12 25,068.668 25,068.668 54 80,625.202
13 26,898.893 26,898.893 55 81,413.472
14 28,703.535 28,703.535 56 82,174.582
15 30,482.679 30,482.679 57 82,908.102
16 32,236.407 32,236.407 58 83,613.561
17 33,964.805 33,964.805 59 84,290.446
18 35,667.957 35,667.957 60 84,938.200
19 37,345.949 37,345.949 61 85,556.217
20 38,998.865 38,998.865 62 86,143.843
21 40,626.788 40,626.788 63 86,700.371
22 42,229.802 42,229.802 64 87,225.037
23 43,807.989 43,807.989 65 87,717.022
24 45,361.428 45,361.428 66 88,175.441
25 46,890.196 46,890.196 67 88,599.345
26 48,394.370 48,394.370 68 88,987.720
27 49,874.020 49,874.020 69 89,339.474
28 51,329.216 51,329.216 70 89,653.443
29 52,760.022 52,760.022 71 89,928.381
30 54,166.498 54,166.498 72 90,162.961
31 55,548.698 55,548.698 73 90,355.764
32 56,906.672 56,906.672 74 90,505.279
33 58,240.461 58,240.460 75 90,609.901
34 59,550.101 59,550.099 76 90,667.917
35 60,835.619 60,835.616 77 90,677.513
36 62,097.034 62,097.029
37 63,334.355 63,334.347
38 64,547.581 64,547.568
39 65,736.698 65,736.681
40 66,901.681 66,901.660
41 68,042.490 68,042.469
De
exi 90,679.1 [31] De

cal 90,679.099
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to construct the whole vibrational spectrum by drawing information
from accessible experimental or theoretical data. For diatomic case,
take Eq. (7) into matrix form:

AX ¼ E ð10Þ
Fig. 3. (a) The vibrational molar heat capacity relative errors based on different dissociati
correspondence between dissociation energy and heat capacity (500 K) in detail [33].
where

Aνk ¼ ν þ 1
2

� �k

;X ¼
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−ωexe
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Eq. (10) provides alternative functions of any dimension through ar-
guments X to cover the valid spectrum. However, due to the unavoid-
able uncertainty in existing samples (theoretical or experimental)
{Enexi} ≔ {(vi,Evi

)}, the equation cannot be solved directly and the high-
lying energy levels are always not accessible. Thus, the descriptive sta-
tistical approaches like least square method are introduced but gener-
ally can make good use of the previous few parts of X for low-lying
vibrational levels. In order to improve the prediction of high-lying
part, one has tofind away to unlock the power ofmuchhigher order co-
efficients in X while avoiding over-fitting.

Big enough restricted parameter space.
For getting a moderately flexible model to avoid under and over-

fitting, reasonable restrictions should be applied to the range of higher
order parameters. Eq. (10) can play an important role here, by which,
one can obtain the one-to-one mapping from {Enexi} to constants X.

X ¼ EA−1 ð12Þ

The {Enexi} given by experiments/calculations could own high quality
(generally within 1cm−1) in low-lying levels. Therefore, through
on energy comparing to experiment for the ground state of CO. (b) The relative error



Fig. 5. The full vibrational spectra corresponding to different dissociation energies for the
ground state of Br2.
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Eq. (12) the value of X could be firstly restricted by

ΔX ¼ ΔEA−1 ð13Þ

On the other hand, experiments/calculations can usually provide
dozens of energy levels, which means that scores of elements in X can
be produced through Eq. (12). Occam's razor is used to further confine
the size of X. The simpler model (X) with enough expression are
preferred.

Data set in practice.
Dozens of {Enexi} could be collected from experiments/calculations.

Heterogeneous information such as dissociation energy (De in Eq. (8))
and molar vibrational heat capacity [29] (Cmol in Eq. (14)) are intro-
duced to enhance the dataset, which are also accessible.

Ccal
mol ¼

NA

kT2 E2ν
D E

− Eνh i2
� �

ð14Þ

Finally, the spectroscopy learning task is tomake good use of data set
{Enexi}, De and Cmol to locate a suitable formula f in terms of Eq. (11) to
predict the whole vibrational spectroscopy {En} by learning algorithm
described below.

2.3.2. Learning algorithm
• Learning is optimization
There are many possibilities of molecular constants X even if their

scope are limited by Eq. (13). The learning is to find a prophetic one
by minimize the distance between reconstructed data with the input
Fig. 6. (a) The vibrational molar heat capacity relative errors based on different dissociatio
correspondence between dissociation energy and heat capacity (3800 K) in detail [33].
data. In our case, there can be tree concerns:

X� ¼ arg min
X

∥Eexi−AX∥ ð15Þ

X� ¼ arg min
X

∥Dexi
e −Dcal

e Xð Þ∥ ð16Þ

X� ¼ arg min
X

∥Cexi
mol−Ccal

mol Xð Þ∥ ð17Þ

where X are restricted in Eq. (13). De
cal depends on X as a combination of

Eqs. (8) and (10). Cmol
cal depends on X as a combination of Eqs. (14) and

(10). The distance is defined as

ΔE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

Xm−1

ν¼0

Eν;exi−Eν;cal
�� ��2

vuut ð18Þ

for energy levels and

ΔDe ¼ j Dcal
e −Dexi

e j ð19Þ

ΔCmol ¼ j Ccal
mol−Cexi

mol j ð20Þ

for dissociation energy and heat capacity. All above three optimiza-
tion goals can be used to get X ∗. In order to predict spectra without ex-
perimental De, we use Eqs. (15) and (16) to obtain X ∗ while treating De

as a pending parameter. The heat capacity is further introduced as an
additional physical criterion to determine the De.

• Greedy algorithm
In the adjustment to finding X ∗ within tolerance, the greedy algo-

rithm was adopted. Parameters are adjusted one by one from the
lowest-order one. This compresses the search problem of n-
dimensional space into n 1-dimensional spaces. In detail, two small var-
iations (δE = 1cm−1) are first added to get three try points Eν

1 ∈ {Eν-
ex − δEν,Eνexi,Eνexi + δEν} and select the one with the least error
(according to Eqs. (18) and (19)), then halve the variations to get
three new points Eν2 ∈ {Eνexi − 0.5δEν,Eνexi,Eνexi + 0.5δEν} and choose the
one with the least error. At last, iterate the operation until convergence
(the last significant digit, 0.001cm−1 here) is reached.

• Initial values guessing
The selection of initial value plays an important part in optimization

problems. If the initial value is close to the optimal value, the final re-
sults are easy to locate by simpler searching algorithm like we used
here. According to Eq. (10), if m parameters are undetermined, only m
n energy comparing to experiment for the ground state of Br2. (b) The relative error



Fig. 7. Vibrational level errors of different methods for the ground state of Br2 [35–37].
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elements of {Enexi} are needed. In fact, the number of elements in {Enexi} is
usually larger than the size of X ∗. There are Cn

m alternatives to solve
Eq. (10) and produce X ∗. If {Enexi} is exactly correct, then the Cn

m alterna-
tives are equivalent. Whereas, the correct answers distribute around
{Enexi} in a narrow breadth, which makes Cnm alternatives become differ-
ent qualified starting points.

• Testing
The dissociation energy can server as an independent test for the

spectrum constructed from optimized X ∗ because its exact value is the
most difficult to predict. By comparing it with experimental counter-
part, one can show the reliability of the method and avoid over-fitting.
2.3.3. Calculating details
1) For a certain dissociation energyDe, try 5 low-order parameters as

the initial attempt for the size of X in Eq. (10).
2) Select five levels from the known energy levels and use greedy al-

gorithm to solve the five parameters in step 1). As described in Initial
values guessing, if there arem lines, there can be Cm

5 choice for the cal-
culation, which finally gives Cm5 different answers to the 5 parameters.

3) Verify the parameters that best meet the conditionsΔEb0:5cm−1

in Eq. (18) and ΔDeb10cm−1 in Eq. (19). It is worth noting that the cri-
terion can also ensure that the final error given by the parameter solu-
tion found by different initial values in step 2) is very small.

4) If step 3) is satisfied, the calculation is over. Conversely, if the con-
dition cannot be met, increasing the number of parameters by 1 (to 6
this time) and repeat steps 1) to 4) until step 3) is satisfied.

5) When step 4) is down, one can calculate heat capacity according
to the spectra with Eq. (14), then by changing the De used in step
1) one can draw the heat capacity error curvewith different dissociation
Table 3
The error of dissociation energy calculated by differentmethods of Br2 in the ground state.
[36,37].

Method Basis Error (cm-1)

SS-MRCCSD cc-pVQZ 3270
SS-MRCCSD CBS 3547
SS-MRCCSD cc-pVTZ-PP 3169
CCSD(T) cc-pVDZ-PP 2731
AF-QMC cc-pVDZ-PP 1332
AF-QMC cc-pVTZ-PP 2130
DC-HF pVDZ 12,909
DC-HF pVTZ 10,566
NR-CCSD pVDZ 3396
NR-CCSD pVTZ 1053
NR-CCSD(T) pVDZ 2626
NR-CCSD(T) pVTZ 67
This work 108
energy and determine the best De (first inflection point, see the follow-
ing cases of CO and Br2).

3. Application

Continuous researches on carbon monoxide across many years pro-
vide historical increasingly reliable data, which could be used as touch-
stone for our method. It can be seen from Table 1 that the dissociation
energy varies greatly during different times.

Following the steps described in Section 2.3, the full vibrational spec-
trum corresponding to various dissociation energies in Table 1 are cal-
culated and shown in Fig. 2. It can be seen from the figure that
dissociation energy has a great influence on spectra prediction (over-
fitting) and levels closer to it are greatly affected (Difference in
104cm−1). The latest (De

expt = 90,679.1cm−1) [31]) is listed in Table 2.
The levels and dissociation energy errors are all within 0.1 cm−1. The
nine selected levels to calculate full spectrum are over-strike. It can be
seen that the “Initial values guessing” algorithm in Section 2.3 works
well. The optimal values are directly found by changing the choice.

Because data in [32] has been used to learn the parameters (see
Eqs. (15) and (16)), additional information (Cmol in Eq. (14)) is intro-
duced for further testing. As shown in Fig. 3 (a), the more accurate the
dissociation energy is, the more reliable the calculated spectrum will
be. The best Cmol still bound to latest De

expt (90,679.1cm−1 [31]).
The dependence on heat capacity for dissociation energy suggests a

way to obtain the latter by the former and make dissociation energy a
good criteria to test the reliability of the whole method. The correspon-
dence between them is expanded to detail and illustrated with Fig. 3
(b). As the dissociation energy increases, the heat capacity error de-
creases to near latest De

expt. Considering the uncertainty of heat capacity,
detail changes after the first turning point may be ignored and 91,179.1
cm−1 could be the estimate with an absolute error of 500 cm−1 (5.5‰),
which is better than the second best in Table 1. The corresponding en-
ergy levels are compared with the MRCI method [34] in Fig. 4. The
MRCI method obtains 21 vibrational levels from ν = 0 to ν = 20. The
error (compared to [32]) increases with the vibration number rapidly
and reaches 144.835 cm−1 at ν = 20. In this work, the errors are all
within the range of 0.13 cm−1 and tend to be stable. The detailed data
sheet is listed in the supplementary materials (Table S1).

In order to further test the method, similar analysis is applied to Br2
in ground state. Dissociation energy is treated as an unknown parame-
ter as X in Eq. (10). Several candidates across the experimental one
(16,057 cm−1 [35]) are illustratedwith Fig. 5. It can be seen that the var-
iance in dissociation energy has great influence on the construction of
vibrational spectrum. On the heat capacity side, situation is also similar.
The correspondence is shown in Fig. 6. It can be seen that higher or
lower dissociation limit will raise the error. The best choice is 16,165
cm−1 with a shift of 108 cm−1 to experiment (6.7‰). The final results
are further compared with several other method as shown in Fig. 7 for
energy levels and in Table 3 for dissociation energy. In Fig. 7, the errors
of this work are all within the range of 0.36 cm−1 and tend to be stable,
while the errors of othermethods aremuch greater. Like the situation in
CO system, the error of othermethod increaseswith the vibration quan-
tum number rapidly and reach around 100 cm−1 at ν = 20. In Table 3,
the results given here (error is 108 cm−1) are more accurate than
most other methods (error distributed from 67 cm−1 to 12,909 cm−1

and most of them are over 1000 cm−1) in comparison with the experi-
ment. The only exception is NR-CCSD(T) with pVTZ basis (67 cm-1).
However, as shown in Fig. 7, although it yields impressive result in the
calculation of dissociation energy, it performs poorly in the prediction
of vibration levels.

4. Discussion

Suggestion on how to collect and use data efficiently.



7J. Fu et al. / Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 239 (2020) 118363
The solution may come from Bayes' theory:

P AjBð Þ ¼ P BjAð ÞP Að Þ
P Bð Þ ð21Þ

Suppose a particular model A is contained in a big model set (P(A)
is small) and evidence B can be derived from A (P(B|A) is large). Ac-
cording to Eq. (21), if the evidence B is hard to happen (P(B) is very
small) and does take place, then the confidence in model A is greatly
increased (P(A|B) N P(A)). In our method, only part of the energy
levels is used to generate the model sets, the dozen others together
with dissociation behavior and heat capacity are used as evidences
(validation and testing) that are hard to guess from merely several
levels. Their co-occurrence is even rarer. The learning method intro-
duce here is actually to use great information carried by rare evi-
dence to eliminate uncertainty in full spectrum prediction.
Therefore, in order to collect and use data efficiently, when collecting
data, attention should be paid to those with large amounts of infor-
mation (rare evidence), and when using data, model sets should be
generated with as little data as possible to ensure sufficient data for
validation and testing.

5. Conclusion

A joint spectroscopy learning method for long-range vibrations
including dissociation behavior is proposed, which allows us to ob-
tain reliable full vibrational spectra that are notoriously difficult to
achieve. The reliability of the method is guaranteed in two ways.
1) using quantum models to provide flexible parameter form to
cover any subtle physical effects in long-range vibrations to solve
the under-fitting problem. 2) several carefully selected evidence
such as low-lying energy levels, dissociation energy and heat capac-
ity together with machine learning strategy are used to solve the
over-fitting problem. The systems of CO and Br2 in the ground state
are investigated by the method. It manages to reconstruct the entire
vibrational spectrum including dissociation energy from several
low-lying energy levels and heat capacity. The joint method pro-
posed here can make good use of existing research findings to pre-
dict the ones in long-range vibrations that may not be available.
Considering the widespread application of parametric form in phys-
ics, many fields may benefit from this study.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.saa.2020.118363.
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