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Probe of topological invariants using quantum walks of
a trapped ion in coherent state space*
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We present a protocol to realize topological discrete-time quantum walks, which comprise a sequence of spin-
dependent flipping displacement operations and quantum coin tossing operations, with a single trapped ion. It is demon-
strated that the information of bulk topological invariants can be extracted by measuring the average projective phonon
number when the walk takes place in coherent state space. Interestingly, the specific chiral symmetry owned by our
discrete-time quantum walks simplifies the measuring process. Furthermore, we prove the robustness of such bulk topolog-
ical invariants by introducing dynamical disorder and decoherence. Our work provides a simple method to measure bulk
topological features in discrete-time quantum walks, which can be experimentally realized in the system of single trapped
ions.
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1. Introduction

Topological physics, which exhibit some of the most
striking phenomena in modern physics, have been investi-
gated intensively in recent years.[1–3] Contrast to the con-
ventional phases characterized by local order parameters, the
bulk topological phases are distinguished by topologically in-
variant integers.[4] Classification and detection of bulk topo-
logical phases give an essential understanding of topological
physics. In addition, the novel bulk topological features have
potential important applications in quantum information for
their robustness. Besides condensed-matter materials such as
topological insulators and superconductors, topological phe-
nomena also emerge in synthetic systems such as photonic
systems[5–7] and cold atoms in optical lattices.[8] Moreover,
recent progress has focused on the measurement of bulk topo-
logical invariants of these synthetic systems.[9–14] The flexi-
bility offered by these synthetic simulators guarantees the ex-
citing possibility of extending the study of topological matters
to regimes beyond the scope of the condensed-matter physics
based on electronic systems.

An outstanding example here is the identification of topo-
logical phenomena in discrete-time quantum walks (DTQWs),
in which the movement of the particle (walker) on a lattice de-
pends on the specific internal (coin) state.[15] The DTQW pro-
vides an unique platform to investigate all topological phases

in one- and two-dimensional noninteraction systems with cer-
tain symmetries.[16,17] Over the past few years, it has become
technologically possible to implement DTQWs in real sys-
tems using ultracold atoms in optical lattices,[18,19] trapped
ions,[20,21] photons[22,23] and nuclear magnetic resonance.[24]

Moreover, the topological effects, including the topological
edge states, the topological phase transitions and the topologi-
cal invariants, in the context of DTQWs have been widely dis-
cussed theoretically,[16,17,25–36] and experimentally measured
by several groups.[37–51] For chiral DTQWs, the mean chi-
ral displacement is proportional to the topological invariant
in long-time limit.[39] For general DTQWs, the topological
invariants can be obtained using scattering theory.[40] Fur-
thermore, the topological invariants can also be directly ex-
tracted through the accumulated Berry phase of Bloch oscil-
lating DTQWs in a circuit quantum electrodynamics (c-QED)
architecture,[35,41] or through the winding number of a large-
scale chiral DTQW.[42] Nevertheless, the direct measurement
of these topological invariants is still a huge challenge for the
experimental technology of tomography required by current
experimental methods. Even the mean chiral displacement
also requires the detection of all position states and the coin
state at each lattice. Recently, a theoretical work proposed that
the average photon number can be used to reveal the topologi-
cal phases transition in a c-QED architecture, where a DTQW
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takes place in coherent state space.[52] The measurement of
bulk topological invariants have also been discussed in this
work, while it has no generality since the dependence of the
initial coin state. In addition, all the above experimental pro-
gresses are based on photonic DTQWs, there are few stud-
ies on the topological features in other synthetic quantum sys-
tems.

In this paper, we propose an experimental protocol to re-
alize topological DTQWs in coherent state space with single
trapped ions. Through analytical and numerical analysis, we
illuminate the topological structure of our DTQWs, including
two pairs of topological invariants and the mean chiral dis-
placements. More importantly, we demonstrate that the infor-
mation of bulk topological invariants can be extracted through
the average projective phonon number of the final state, with
no need for reading out the position states and the coin state
at each lattice. For completeness, we define two kinds of av-
erage projective phonon numbers corresponding to different
parameter regions. By introducing dynamical disorder and de-
coherence, we verify the robustness of our results. This work
gives a simple method to directly measure bulk topological in-
variants in discrete-time quantum dynamics in coherent state
space.

This paper is structured as follows. In Section 2, we
present a protocol to realize a spin-dependent flipping oper-
ation in coherent state space with a single trapped ion. In
Section 3, we show the forms of our DTQWs in the system
of single trapped ions and analyze the topological structure of
such DTQWs. In Section 4, we derive two kinds of average
projective phonon numbers, which contain the information of
bulk topological invariants. Furthermore, we demonstrate the
robustness of our results by introducing dynamical disorder
and decoherence. Finally, we summarize in Section 5.

2. Spin-dependent flipping displacement opera-
tion

The key problem of realizing DTQWs in real systems
is how to implement a spin-dependent displacement opera-
tion. Here we implement a spin-dependent flipping displace-
ment operation in coherent state space with a single trapped
ion. Most of the previous works are concerned with the spin-
dependent displacement operation without flipping. Only one
experimental group considers a complicated spin-dependent
flipping displacement operation, which is implemented by a
special q-plate.[38,39] Although this seems like a small differ-
ence, it can have far reaching consequences with a simple chi-
ral symmetry, as we will show in the following.

The spin-dependent flipping displacement operation is

defined as

T α

↑↓ = ∑
x
|(x+1)α⟩⟨xα|⊗ |↑⟩⟨↓|

+ |(x−1)α⟩⟨xα|⊗ |↓⟩⟨↑| , (1)

where the positions of the walker (ion) are encoded with a
series of coherent states |xα⟩, and the coin states (|↑⟩, |↓⟩)
denote two ground-state hyperfine levels of the ion. This
spin-dependent flipping displacement operation can be real-
ized through a pulse sequence in the system of single trapped
ion.

Firstly, we apply displacement Raman beams, the corre-
sponding interaction Hamiltonian between the light field and
the trapped ion in the interaction frame can be written as[53]

HI(t) = Ω↓ e−iδ t exp[iη(ae−iωzt +a† e iωzt)] |↓⟩⟨↓|

+Ω↑ e−iδ t exp[iη(ae−iωzt +a† e iωzt)] |↑⟩⟨↑|

+H.c., (2)

where Ω↑ (Ω↓) is the Rabi frequency when the coin state is
|↑⟩ (|↓⟩), η is the Lamb–Dicke parameter, δ is the frequency
difference of the displacement Raman beams, ωz is the ion’s
motional mode frequency, and a† (a) is the creation (annihila-
tion) operator of phonon. In the Lamb–Dicke limit (η ≪ 1),
the resulting Hamiltonian is given by

HI ≃ (iηΩ↓a† − iηΩ
*
↓a) |↓⟩⟨↓|

+(iηΩ↑a† − iηΩ
*
↑a) |↑⟩⟨↑| , (3)

where we assume δ =ωz, and replace the fast oscillating terms
by their zero average values. Thus, the evolution operator 𝒰 of
the interaction Hamiltonian over time δ t can act as a displace-
ment operator,

𝒰 = D(Ω↓ηδ t) |↓⟩⟨↓|+D(Ω↑ηδ t) |↑⟩⟨↑| , (4)

where D(β ) = exp(βa† −β *a). It is clear that Eq. (4) will be
essentially a displacement of Ω↑ηδ t or Ω↓ηδ t if the coin state
is ↑ or ↓, respectively.

Secondly, a π pulse Rπ , which exchanges the two coin
states, is required.

Finally, we apply displacement Raman beams again with
opposite Rabi frequencies, the resulting evolution operator
over time δ t is

𝒰† = D(−Ω↓ηδ t) |↓⟩⟨↓|+D(−Ω↑ηδ t) |↑⟩⟨↑| . (5)

Equation (5) will be a displacement of −Ω↑ηδ t or −Ω↓ηδ t if
the coin state is ↑ or ↓, respectively. Application of this pulse
sequence generates a total evolution

D(α) |↑⟩⟨↓|+D(−α) |↓⟩⟨↑| , (6)
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which exactly corresponds to the spin-dependent flipping dis-
placement operation T α

↑↓ with identical leftward and rightward
step size α ∼ (Ω↓−Ω↑)ηδ t, see Fig. 1. In order to make the
walk of different spins in the opposite directions in coherent
state space, which is the core in quantum walks, we require
that the Rabi frequencies are opposite.

↼x↩↽α> xα> ↼x⇁↽α>

Fig. 1. The diagram of the spin-dependent flipping translation T α
↑↓ =

𝒰†Rπ𝒰 in the system of a trapped ion. The interaction of the dis-
placement Raman beams and the trapped ion allow the coherent dis-
placements in coherent state space. Between two displacement Raman
beams, a π pulse, which exchanges the spin, is required. In this dia-
gram, the Rabi frequencies satisfy Ω↑ =− 3

2 Ω↓ as an example.

Based on the current ion-trap techniques,[20,21] it is pos-
sible to realize such a spin-dependent flipping displacement
operation in the realistic ion-trap experiments. For example,
the Rabi frequencies can satisfy Ω↑ =− 3

2 Ω↓ with Ω↓ = 2π ×
68 kHz by choosing appropriate polarization and directions
of Raman beams.[20,21,53,59] With the Lamb–Dicke parameter
η = 0.06,[21] different step sizes (α = 0.3,0.5,1.5) of the spin-
dependent flipping displacement operation can be realized by
choosing different durations of Raman beams (δ t = 5 µs, 8 µs,
24 µs). Within the decoherence time of the motional mode,[60]

the spin-dependent flipping displacement operation can be re-
peated many times for realizing multistep DTQWs as we show
in the following. In addition, the quantum coin tossing opera-
tions, which act on the internal state of the walker, are also
required for realizing DTQWs. In this paper, we consider
a specific quantum coin tossing operation Rx(2θ) = e−iθσx ,
which can be easily performed by a resonant radio frequency
pulse.[20]

3. Topological invariants
Since in Floquet 1D systems, there exists two indepen-

dent classes of protected edge states at either 0 or π energies.
A complete topological classification for such a system with
chiral symmetry would require introducing a pair of topologi-
cal invariants (ν0,νπ).[26] Thus, we consider two inequivalent
“chiral symmetry time frames” of DTQWs as follows:

Uα
1 = Rx

(
θ1

2

)
T α

↑↓Rx(θ2)T α

↑↓Rx

(
θ1

2

)
, (7)

Uα
2 = Rx

(
θ2

2

)
T α

↑↓Rx(θ1)T α

↑↓Rx

(
θ2

2

)
. (8)

The topological analysis of our DTQWs is based on co-
ordinate space |xα⟩ → |x⟩. Since the operators U1 and U2 in

coordinate space have chiral symmetry with the symmetry op-
erator Γ = σz, we rewrite the operators U1,2 as

U1 = e−iπ F ·Γ F†
Γ = e−iπŨ1, (9)

U2 = e−iπ
Γ F†

Γ ·F = e−iπŨ2, (10)

where F = Rx(θ1/2)T↑↓Rx(θ2/2). Thus, the complete topo-
logical invariants (ν0,νπ) for the operators U1,2 can be ob-
tained from the topological invariants (ν̃0, ν̃π) governed by
the operators Ũ1,2 with the relation (ν0,νπ) = (ν̃π , ν̃0) =

( ν̃1−ν̃2
2 , ν̃1+ν̃2

2 ).[26,28] Furthermore, it is straightforward to
show that the winding numbers ν̃1,2 obtained through the op-
erators Ũ1,2 are equivalent to the winding number ν1,2 ob-
tained through the operators U1,2. Using the Fourier trans-
formation |x⟩ = 1/

√
2π ∑k e−ikx|k⟩, the spin-dependent flip-

ping displacement operation can be written as T↑↓(k) =

[0, e−ik; e ik,0]. According to the Floquet theory, the one step
evolution operator can be written as U1 =

∫
π

−π
dk ·U1(k)⊗

|k⟩⟨k|= e−iHeff . The effective Hamiltonian Heff has the form

Heff =
∫

π

−π

dk[E(k)𝑛(k) ·σ ]⊗|k⟩⟨k|, (11)

where σ =(σx,σy,σz) is the vector of Pauli matrices, E(k) and
𝑛(k) characterize the eigenvalues and the spinor eigenstates. It
is straightforward to obtain

cosE(k) = −sin
θ2

2
sin

θ1

2
cos(2k)+ cos

θ2

2
cos

θ1

2
,

nx(k) =
sin θ2

2 cos θ1
2 cos(2k)+ cos θ2

2 sin θ1
2

sinE
,

ny(k) =
sin θ2

2 sin(2k)
sinE

,

nz(k) = 0. (12)

The winding number is defined as

ν1 =
1

2π

∫
π

−π

dk ·
(
𝑛× ∂𝑛

∂k

)
·𝐴, (13)

where the vector 𝐴= (0,0,1) is perpendicular to 𝑛(k) for the
whole first Brillouin zone. Similarly, we can obtain the wind-
ing number ν2. The difference in the winding number ν0 (νπ )
on either side of the boundary is equal to the number of edge
states with quasienergy 0 (π) on the boundary, which is the
bulk-edge correspondence for DTQWs. We have numerically
calculated the winding number ν1,2 and show the complete
phase diagram in Fig. 2.

Without loss of generality, in the following discussion, θ2

is fixed to 3π/2 and θ1 ∈ [0,2π] when we consider the topo-
logical invariants varying with the rotation angle, the transi-
tion points are at θ1 = π/2 and 3π/2. We fix θ1 = π/4, 3π/4
and θ2 = 3π/2 when we consider the topological invariants as
functions of the step t, see Fig. 2.
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Fig. 2. The phase diagram governed by U1,2. The DTQWs have effec-
tive Hamiltonians with gaps around both ε = 0 and ε = π , except at the
gapless points where gaps close at ε = 0 (dashed) or ε = π (dotted). For
each gapped phase, the corresponding pair of winding numbers {ν1,ν2}
as well as the pair of topological invariants (ν0,νπ ) are shown. The
dash-dotted line and the two symbols indicate the rotating parameters
for detecting the topological invariants.

From the previous research,[39] the topological invariants
can be obtained through the mean chiral displacement

𝒞(t) = ⟨Γ x⟩= ∑
x

x(Px,+−Px,−), (14)

where Px,± = |⟨x,±|Ψ(t)⟩|2, |±⟩ are the eigenstates of the chi-
ral operator Γ with the eigenvalues ±1, |Ψ(t)⟩ is the final
state after t steps of a DTQW. In the long-time limit t → ∞,
the mean chiral displacement 𝒞 becomes proportional to the
winding number ν ,

𝒞 ≃ ν

2
. (15)

Therefore, the topological invariants (ν0,νπ) can be di-
rectly obtained from the mean chiral displacements 𝒞1,2 with
(ν0,νπ) = (𝒞1 −𝒞2,𝒞1 +𝒞2).

In Fig. 3, we show the mean chiral displacements 𝒞1,2 and
the associated mean chiral displacements 𝒞1∓𝒞2 varying with
the rotation angle θ1 and the step t, respectively. The walker
is initially located at |Ψ0⟩ = |0⟩⊗ |↑⟩, where the different ini-
tial coin states have no influence on the behavior of the mean
chiral displacements. Though the mean chiral displacements
𝒞1,2 (the associated mean chiral displacements 𝒞1 ∓𝒞2) oscil-
late near the topological invariants ν1,2/2 (ν0,π ) of the system,
they are enough to have clear detections of the topological in-
variants since the centers of oscillation are always localized
at the corresponding topological invariants, see Figs. 3(a) and
3(b). When we increase the step t, the mean chiral displace-
ments 𝒞1,2 (the associated mean chiral displacements 𝒞1 ∓𝒞2)
will oscillate near the topological invariants ν1,2/2 (ν0,π ) with
decreasing oscillation amplitude, see Figs. 3(c) and 3(d).
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0
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(b)(a)

(d)(c)

0 π 2π

θ1

0 π 2π

θ1

0 10 20
t

0 10 20
t

Fig. 3. (a), (c) The mean chiral displacements 𝒞1,2 varying as functions
of the rotation angle θ1 and the step t with θ1 = 3π/4, the rotation angle
θ2 is fixed at 3π/2. The solid (dash-dotted) line indicates the mean chi-
ral displacement 𝒞1 (𝒞2), and the dotted (dashed) line corresponds to the
topological invariant ν1/2 (ν2/2) governed by U1 (U2). (c), (d) The as-
sociated mean chiral displacements 𝒞1 ∓𝒞2 varying as functions of the
rotation angle θ1 and the time step t with θ1 = 3π/4, the rotation angle
θ2 is fixed at 3π/2. The solid (dash-dotted) line indicates the associated
mean chiral displacement 𝒞1 −𝒞2 (𝒞1 +𝒞2), and the dotted (dashed)
line corresponds to the topological invariant ν0 (νπ ) of our DTQWs.

4. Experimental detection of topological invari-
ants
In ion-trap systems, the phonon number can be mea-

sured through Rabi flopping or blue-sideband driving,[53–55]

and has been detected experimentally for revealing rich phys-
ical phenomena.[56–58] Here we illustrate that the informa-
tion of bulk topological invariants can be extracted through
the average projective phonon number of final state, which
is convenient to measure in experiments. Since the follow-
ing analysis are identical for these two DTQWs governed
by Uα

1,2, we only consider Uα
1 for an example. We assume

that the final state after t steps of a DTQW has the form of
|Ψ α

f ⟩= (Uα
1 )t |Ψ α

0 ⟩= Σx,σ Ax,σ |xα,σ⟩, where σ is the spin in-
dex. We consider the average projective phonon numbers of
the final state N± = ⟨Ψf |a†aP±|Ψf ⟩, where a† (a) is creation
(annihilation) operator of phonon and P± = |±⟩⟨±| are projec-
tive operators (|±⟩ indicate the eigenstates of the chiral oper-
ator Γ ). In our DTQWs, the eigenstates of the chiral operator
Γ are exactly the coin states |↑⟩ and |↓⟩. This simple chiral
symmetry will make the measurement process more easier.

Thus, the average projective phonon numbers can be writ-
ten as

N↑↓ = ⟨Ψ α
f |a†aP↑↓|Ψ α

f ⟩
= ∑

x,x′,σ ,σ ′
A*

x,σ Ax′,σ ′⟨xα,σ |(a†a |↑↓⟩⟨↑↓|)|x′α,σ ′⟩

= ∑
x,x′

xx′A*
x,↑↓Ax′,↑↓|α|2 e−

(x′−x)2
2 |α|2 . (16)

Get rid of the sum over x′, N↑↓ can be rewritten as

N↑↓ = |α|2 ∑
x

x2|Ax,↑↓|2

070501-4



Chin. Phys. B Vol. 29, No. 7 (2020) 070501

+ |α|2 e−|α|2/2
∑
x

x(x+1)A*
x,↑↓Ax+1,↑↓+ c.c.

+ |α|2 e−2|α|2
∑
x

x(x+2)A*
x,↑↓Ax+2,↑↓+ c.c.

+ · · · , (17)

where c.c. is complex conjugation. It is clear to see that the
information of the mean chiral displacement 𝒞1 = x(|Ax,↑|2 −
|Ax,↓|2) is contained in N↑↓.

In the following discussions, we show the details about
how to extract the information of the mean chiral displacement
𝒞1 from the average projective phonon number. For complete-
ness, we consider two cases corresponding to different regions
of parameter |α|.

4.1. The case when |α| is large

When |α| is large enough, the average projective
phonon numbers have really simple expressions N↑↓ =

|α|2 ∑x x2|Ax,↑↓|2, where only the first term in Eq. (17) con-
tributes. We consider two DTQWs with different initial states,
|−mα⟩⊗ |ϕ0⟩ and |mα⟩⊗ |ϕ0⟩, where |ϕ0⟩ is the initial coin
state.

Thus, the average projective phonon numbers of these
two DTQWs are

N↑↓
1 = |α|2 ∑

x
(x−m)2|Ax,↑↓|2,

N↑↓
2 = |α|2 ∑

x
(x+m)2|Ax,↑↓|2, (18)

and the difference of the average projective phonon numbers
is defined as

∆N = (N↑
2 −N↑

1 )− (N↓
2 −N↓

1 )

= 4m|α|2 ∑
x

x(|Ax,↑|2 −|Ax,↓|2), (19)

which is exactly proportional to 𝒞1.
In Fig. 4, we show the difference of the average projec-

tive phonon numbers ∆N as functions of the rotation angle
θ1 and the step t. The initial states are prepared as |Ψ α

0 ⟩ =
|±2α⟩⊗ |↑⟩. When |α| is large, such as |α| = 1.5, ∆N is ex-
actly proportional to 𝒞1. However, if |α| is chosen smaller,
such as α = 0.5, ∆N will deviate from 𝒞1, see Figs. 4(a) and
4(b). That is, ∆N is a good observable quantity for charac-
terizing the topological invariants when the parameter of the
system |α| is large.

Furthermore, the novel topological features of a system
are robust against small perturbations. Here, we verify the
robustness of ∆N by introducing dynamical disorder and de-
coherence. For the situation with dynamical disorder,[39]

the rotation angle θ1 is chosen randomly from the interval
[θ̄1− π

20 , θ̄1+
π

20 ] at every step of a DTQW, where θ̄1 indicates
the corresponding parameter without disorder. This small fluc-
tuation on the rotation angle θ1 can be experimentally realized

by controlling the duration of the radio frequency pulse.[20]

After 50 times of independent DTQWs with dynamical dis-
order, the ensemble average of ∆N converges to the results
without disorder, see Figs. 4(c) and 4(d). For the situation
with decoherence,[21,53,59,61] we can randomize the phase be-
tween each step through a operator Ude = ∑x |x⟩⟨x| ⊗ e iδσz

with δ ∈ (−qπ,qπ). The parameter q describes the strength of
decoherence. After 50 times of independent DTQWs with de-
coherence q= 0.1, the ensemble average of ∆N also converges
to the results without decoherence, see Figs. 4(e) and 4(f). Our
numerical results show that ∆N is robust against small pertur-
bations, such as dynamical disorder and decoherence.
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Fig. 4. The difference of the average projective phonon numbers ∆N
governed by Uα

1 . The dashed lines correspond to the topological in-
variant ν1/2 of our DTQW governed by U1. (a), (b) The difference
of the average projective phonon numbers ∆N without dynamical dis-
order and decoherence, as functions of the rotation angle θ1 and the
step t with θ1 = π/4, the rotation angle θ2 is fixed at 3π/2. The solid
(dash-dotted) lines indicate |α|= 1.5 (0.5). (c)–(f) The difference of the
average projective phonon numbers ∆N with (c), (d) dynamical disorder
or (e), (f) decoherence, as functions of the rotation angle θ1 or the step
t with θ1 = π/4, the rotation angle θ2 is fixed at 3π/2 and |α| = 1.5.
The solid lines indicate the ensemble average over 50 times of DTQWs
with dynamical disorder or decoherence.

4.2. The case when |α| is small

When |α| is small, the contributions of higher terms in
Eq. (17) can not be neglected anymore. In this case, the dif-
ference of the average projective phonon numbers ∆N is not
appropriate for characterizing the topological invariants. In or-
der to find the new observable quantity, we consider modified
one step unitary operators

Ũα
1,2 = Rx(θ1,2/2)Rz(2φ)T α

↑↓Rx(θ2,1)Rz(2φ)T α

↑↓Rx(θ1,2/2),

where Rz(2φ) = e−iφσz . The coin operator Rz(φ) is able to be
easily performed in the system of single trapped ion, just like
Rx(θ). Compared with Uα

1,2, different phases can be accumu-
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lated for different position states after t steps of DTQWs gov-
erned by Ũα

1,2. We only consider Ũα
1 for an example. All of the

following analyses are the same for Ũα
2 . Thus, the new final

state of system is |Ψ̃ α
f ⟩= (Ũα

1 )t |Ψ̃ α
0 ⟩= ∑x,σ e ixφ Ax,σ |xα,σ⟩.

The average projective phonon numbers of the new final
state have the form

Ñ↑↓ = |α|2 ∑
x

x2|Ax,↑↓|2

+ |α|2 e−|α|2/2 e iφ
∑
x

x(x+1)A*
x,↑↓Ax+1,↑↓+ c.c.

+ |α|2 e−2|α|2 e i2φ
∑
x

x(x+2)A*
x,↑↓Ax+2,↑↓+ c.c.

+ · · · . (20)

When the step of DTQW t → ∞, Ñ↑↓ can be rewritten in an-
other form

Ñ↑↓ = |α|2 ∑
x

x2|Ax,↑↓|2

−2cos(2φ)|α|2 e−2|α|2ℒ↑↓(2)t2

−2cos(4φ)|α|2 e−8|α|2ℒ↑↓(4)t2

−·· · , (21)

where ℒ↑↓(m) ≈
∫

π

−π

dk
π

−sin2(θ1/2)sin2(2k)cos(mk)
2−[sin(θ1/2)cos(2k)+cos(θ1/2)]2 . We note

that ℒ↑↓(m = odd) = 0. The detailed derivation of Eq. (21)
will be shown in Appendix A.

Here, we consider the second and fourth terms, ignoring
the more higher terms. For extracting 𝒞1 from Ñ↑↓, two groups
of DTQWs are required. Each group contains two walks with
same initial state while φ = π/8, 3π/8, respectively. For the
first group, the initial state is |−mα⟩⊗|ϕ0⟩. As for the second,
we just change the initial state into |mα⟩⊗ |ϕ0⟩. The average
projective phonon numbers of these four walks are

Ñ↑↓
1,2

(
φ =

π

8

)
= |α|2 ∑

x
(x∓m)2|Ax,↑↓|2

−
√

2|α|2 e−2|α|2ℒ↑↓(2)t2, (22)

Ñ↑↓
1,2

(
φ =

3π

8

)
= |α|2 ∑

x
(x∓m)2|Ax,↑↓|2

+
√

2|α|2 e−2|α|2ℒ↑↓(2)t2. (23)

We define the combination of these average projective phonon
numbers as

δ Ñ↑↓ =

[
Ñ↑↓

2

(
φ =

π

8

)
+ Ñ↑↓

2

(
φ =

3π

8

)]
−
[

Ñ↑↓
1

(
φ =

π

8

)
+ Ñ↑↓

1

(
φ =

3π

8

)]
, (24)

and we have

δ Ñ = δ Ñ↑−δ Ñ↓

= 8m|α|2 ∑
x

x(|Ax,↑|2 −|Ax,↓|2), (25)

which is exactly proportional to 𝒞1. By now, we find the new
observable quantity to characterize the topological invariants
when |α| is small.

Using a numerical simulation, we demonstrate that the
combination of the average projective phonon numbers δ Ñ
agree fairly well with 𝒞1. In Fig. 5, we show δ Ñ governed
by Ũα

1 as functions of the rotation angle θ1 and the step t.
The initial states are prepared as |Ψ̃ α

0 ⟩ = |±2α⟩ ⊗ |↑⟩. It is
clear that δ Ñ is exactly proportional to 𝒞1 even if |α| is small
enough, see Fig. 5(a) and 5(b). The robustness of δ Ñ against
small perturbations is also demonstrated in Figs. 5(c)–5(f).
The rotation angle θ1 is also chosen randomly from the in-
terval [θ̄1 − π

20 , θ̄1 +
π

20 ] at every step of our DTQW, with θ̄1

indicating the corresponding parameter without disorder. Here
the strength of decoherence is chosen as q = 0.01.

(d)

(c)

(b)
(a)

(f)
(e)

1

0
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0 π 2π
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1
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0
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
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2

~
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t

0 10 20
t

0 10 20
t

Fig. 5. The combination of the average projective phonon numbers δ Ñ
governed by Ũα

1 . The dashed lines correspond to the topological invari-
ant ν1/2 governed by U1. (a) The combination of the average projective
phonon numbers δ Ñ as a function of the rotation angle θ1 with t = 19,
θ2 = 3π/2 and |α| = 0.3. (b) The combination of the average pro-
jective phonon numbers δ Ñ as a function of the step t with |α| = 0.3,
θ2 = 3π/2 and θ1 = π/4. For the situation with (c), (d) dynamical disor-
der or (e), (f) decoherence, the solid lines indicate the ensemble average
over 50 times of DTQWs with dynamical disorder or decoherence.

In a realistic ion-trap experiment,[58] the phonon number
can be detected varying with the interaction time. In other
ion-trap experiments for realizing DTQWs,[20,21] the system
can be detected at different steps of DTQWs. Thus, the mea-
surement of the projective phonon numbers at different steps
of DTQWs proposed in our scheme is possible in current ion-
trap techniques.

5. Conclusion
In summary, we have proposed experimental protocols to

realize topological DTQWs in the system of single trapped
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ion, where the walk takes place in coherent state space. We
demonstrate that the experimental measurement of bulk topo-
logical features can be easily monitored through the aver-
age projective phonon number. No more experimental tech-
nologies for reading out all position states or tomography are
required. In addition, the chiral symmetry owned by our
DTQWs further simplifies the experimental measurement pro-
cess. By introducing dynamical disorder and decoherence, we
verify the robustness of our results. This work gives a simple
method to directly measure bulk topological invariants using
discrete-time quantum dynamics of in coherent state space.

Appendix A
We denote the j+1-th term in Eq. (20) as 𝒯 ↑↓

j ( j ̸= 0) and
it can be written in the following form:

𝒯 ↑↓
j = |α|2 e− j2|α|2/2⟨Ψf |x(e i( jφ) e ik j

+ e−i( jφ) e−ik j)x |↑↓⟩⟨↑↓| |Ψf ⟩

= 2|α|2 e− j2|α|2/2{cos( jφ)⟨Ψf |xcos(k j)x |↑↓⟩⟨↑↓| |Ψf ⟩
− sin( jφ)⟨Ψf |xsin(k j)x |↑↓⟩⟨↑↓| |Ψf ⟩}, (A1)

where |Ψf ⟩ = ∑x,σ Ax,σ |x⟩ indicates the final state of DTQW
governed by U1. Following Eq. (A1) to calculate Ñ↑↓, we have

Ñ↑↓ = |α|2 ∑
x

x2|Ax,↑↓|2

−2|α|2
∞

∑
m=1

e−m2|α|2/2{cos(mφ)ℒ↑↓(m)

− sin(mφ)ℛ↑↓(m)}t2, (A2)

where

ℒ↑↓(m)≡
∫

π

−π

dk
2π

⟨ϕ0|U−t
1

∂

∂k
cos(mk)

∂

∂k
| ↑↓⟩⟨↑↓ |U t

1|ϕ0⟩/t2,

ℛ↑↓(m)≡
∫

π

−π

dk
2π

⟨ϕ0|U−t
1

∂

∂k
sin(mk)

∂

∂k
| ↑↓⟩⟨↑↓ |U t

1|ϕ0⟩/t2.

In the long-time limit t → ∞, by ignoring infinitesimal
terms, ℒ↑↓(m) have the form

ℒ↑↓(m)≈
∫

π

−π

dk
2π

cos(mk)
(

dE
dk

)2

×
{
− 1

2
∓ 1

2
cos(2Et)(|s↑|2 −|s↓|2)

± i
2

sin(2Et)nx(s*↑s↓− s*↓s↑)

± 1
2

sin(2Et)ny(s*↑s↓+ s*↓s↑)
}
, (A3)

where s↑ = ⟨↑|ϕ0⟩ and s↓ = ⟨↓|ϕ0⟩. We further ignore the last
three terms in Eq. (A3) since they only plus oscillatory contri-
butions whose amplitude and period generally decay rapidly
as t → ∞. Thus, we can arrive at

ℒ↑↓(m)≈−1
2

∫
π

−π

dk
2π

cos(mk)

×
2sin2

(
θ1

2

)
sin2(2k)

1− 1
2

(
sin

θ1

2
cos(2k)+ cos

θ1

2

)2 , (A4)

which satisfies ℒ↑↓(m = odd) = 0. Furthermore, ℛ↑↓(m) = 0
for all m, since the integrand for calculating ℛ↑↓(m) is an odd
function for k.
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[58] Maslennikov G, Ding S, Hablützel R, Gan J, Roulet A, Nimmrichter S,

Dai J, Scarani V and Matsukevich D 2019 Nat. Commun. 10 202
[59] Xu Y Y, Zhou F, Chen L, Xie Y, Xue P and Feng M 2012 Chin. Phys.

B 21 040304
[60] Kim K, Chang M S, Korenblit S, Islam R, Edwards E E, Freericks J K,

Lin G D, Duan L M and Monroe C 2010 Nature 465 590
[61] Alberti A, Alt W, Werner R and Meschede D 2014 New J. Phys. 16

123052

070501-8

https://doi.org/10.1038/ncomms1872
https://doi.org/10.1038/ncomms11439
https://doi.org/10.1038/ncomms11439
https://doi.org/10.1038/ncomms15516
https://doi.org/10.1103/PhysRevA.96.033846
https://doi.org/10.1103/PhysRevLett.120.260501
https://doi.org/10.1038/nphys4204
https://doi.org/10.1103/PhysRevLett.119.130501
https://doi.org/10.1103/PhysRevA.98.063847
https://doi.org/10.1038/s41467-019-10252-7
https://doi.org/10.1103/PhysRevLett.122.020501
https://doi.org/10.1103/PhysRevLett.122.020501
https://doi.org/10.1103/PhysRevLett.123.230401
https://doi.org/10.1103/PhysRevLett.121.100501
https://doi.org/10.1103/PhysRevLett.121.100502
https://doi.org/10.1103/PhysRevLett.123.150503
https://doi.org/10.1103/PhysRevLett.123.150503
https://doi.org/10.1103/PhysRevLett.103.183602
https://doi.org/10.1103/RevModPhys.75.281
https://doi.org/10.1103/RevModPhys.75.281
https://doi.org/10.1103/RevModPhys.87.1419
https://doi.org/10.1103/RevModPhys.87.1419
https://doi.org/10.1038/nature09800
https://doi.org/10.1038/nature09800
https://doi.org/10.1038/nature09721
https://doi.org/10.1038/s41467-018-08090-0
https://doi.org/10.1088/1674-1056/21/4/040304
https://doi.org/10.1088/1674-1056/21/4/040304
https://doi.org/10.1038/nature09071
https://doi.org/10.1088/1367-2630/16/12/123052
https://doi.org/10.1088/1367-2630/16/12/123052

	1. Introduction
	2. Spin-dependent flipping displacement operation
	3. Topological invariants
	4. Experimental detection of topological invariants
	4.1. The case when || is large
	4.2. The case when || is small

	5. Conclusion
	References
	References

