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Abstract: Laser speckle reduction with a macro refractive optical element (mROE) is restricted
by the limited entrance facet size of light pipe. Here, we have fabricated a micro-ROE (µROE)
that incorporates three-dimensional micro-optical structures. The µROE with 2 × 2 duplicated
multi-level cells is made of SU-8 photoresist with the help of multi-exposure lithography process.
When the µROE works together with the mROE, objective speckle contrast is reduced to 0.2,
where the light source is a low-coherence multimode laser diode. In principle, more speckle
reduction can be obtained by fabricating µROEs with more cells and larger height differences
among the cells.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Compared with wide bandwidth illumination light sources, for example, lamps and light emitting
diodes, lasers in projection displays can extend color gamut. Other distinguished features of
lasers are that they can provide extremely bright images, and they have very long lifetime etc [1].
Though lasers have the aforementioned superiorities, their temporal and spatial coherences cause
speckle which degrades the image quality [2]. Speckle reduction, as a necessary technology in
laser displays, can be obtained by polarization diversity, angle diversity, changing diffusers, and
vibrating screens etc. [3−13] The co-shared speckle reduction mechanism of these time-varying
methods is by generating different speckle patterns and summing them together during the
integration time of human eyes (∼50 ms) [14], i.e., temporal integration [2]. Actuators are
required to introduce the temporal disturbances, which are bulky, energy-consumed, and noisy. It
is therefore highly demanded for the development of passive speckle reduction technologies to
avoid the use of actuators.

Passive speckle reduction can be achieved using binary phase codes, Hadamard matrix diffusers,
and diffractive optical elements [15−17]. Though these diffractive optical devices can effectively
reduce speckle, they increase optical system etendue due to light diffractions and may cause extra
optical power loss. Passive speckle reduction can also be obtained by generating uncorrelated
laser sub-beams with equivalent light intensity using multiple reflections [18,19]. Optical path
differences among the laser sub-beams are larger than laser coherence length, and hence speckles
are suppressed when the laser sub-beams are spatially homogenized. In order to make light
intensities among the laser sub-beams equivalent to maximize speckle reduction efficiency,
complicated optical coatings to realize partial reflection areas with different reflectivity are
required in [18], and polarization rotators such as spatial light modulators are demanded in
[19]. Recently, we have reported a simpler uncorrelated laser sub-beams realization approach by
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introducing a macro-refractive optical element (mROE) [20]. The mROE was composed by two
groups of glasses which were assembled along horizontal and vertical directions. For each piece
of glass, its planar dimensions were 1 mm in width and 18 mm in length. Along the direction
of light propagation, the glasses had different heights varying from 0.5 mm to 2.5 mm with the
same increment of 0.5 mm and from 3 mm to 15 mm with the same increment of 3 mm for the
horizontally and vertically aligned groups, respectively. We found that the mROE in together
with a light pipe for spatial homogenization purpose could reduce speckle. The entrance facet of
the light pipe, however, had fixed dimensions of 4 mm × 4 mm, which constrained the maximum
number of uncorrelated laser sub-beams obtained by the mROE because the planar dimensions
of the mROE cells were 1 mm × 1 mm. In order to increase the number of the uncorrelated laser
sub-beams being achieved, the planar dimensions of the mROE cells should be decreased.

In this paper, we have fabricated a micro-ROE (µROE) to increase the number of uncorrelated
laser sub-beams obtained by ROEs for laser speckle reduction. The µROE is consisted of
three-dimensional (3D) micro-optical structures that are fabricated by multi-exposure lithography
process with a feature dimension of hundreds of micrometres. Because of the height difference
among the 3D micro-optical structures, the spatial coherence of the laser passing through the
µROE is destroyed by destroying laser temporal coherence. The modulated laser sub-beams
illuminate a diffuser where speckles form. The speckles are superposed spatially, resulting in
an image with reduced speckle. We have studied the influence of laser sources with different
temporal coherence property on speckle reduction efficiency by a reassembled mROE, by the
µROE, and by the combination of the mROE and the µROE, where we have found that speckle
can be reduced more efficiently when a low-coherence laser diode is used. Compared with other
speckle reduction methods, the µROE has merits such as motionless, etendue preserved, and
facile et al.

2. Device fabrication and characterization

SU-8 is a high aspect ratio negative photoresist with high thermal and chemical stability and high
optical transparency above 360 nmwavelength. SU-8 is best suited for permanent applications after
exposing and curing [21]. Stacking multilayers of SU-8 layers can form complex 3D structures
using multiple exposures coupled with a single development step, i.e., multi-exposure lithography
[22−24]. Figure 1 illustrates the adopted multi-exposure lithography process to fabricate the
3D micro-optical structures. Combinations of spin coating/soft bake/exposure/post exposure
bake/planarization steps are implemented in a sequential manner whereby each subsequent SU-8
layer is coated on top of the previous exposed one. Finally, the three exposed SU-8 layers are
developed simultaneously, followed by a hard bake step.

Fig. 1. Fabrication process of the SU-8 3D micro-optical structures by multi-exposure
lithography.
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As shown in Fig. 1, the first step is substrate pretreatment. A two-inch double side polished
glass wafer (Borofloat 33 from Schott) is cleaned by acetone and isopropyl alcohol followed by a
deionized water rinse. The glass wafer is baked for dehydration to ensure a good adhesion of the
first SU-8 layer to the substrate. SU-8 (SU-8 2100 from Microchem) layers are spin-coated. The
spin coating program for the first SU-8 layer includes a first coating with a spin speed of 500
rpm for 8 seconds at acceleration of 100 rpm·s−1 and a second coating with a spin speed of 1300
rpm for 30 seconds at acceleration of 300 rpm·s−1; for the second and third SU-8 layers, similar
spin parameters are used, but the spin speed for the second coating is increased to 1500 rpm.
Thicknesses of the coated SU-8 layers are measured using a micrometer screw gauge, where the
thickness of each SU-8 layer is about 230 µm. Soft bake is implemented with a contact hotplate,
where the bake condition for the first coated SU-8 layer is 65°C for 7 minutes and 95°C for 45
minutes. In order to achieve the same bake effect for the upper SU-8 layers, longer soft bake time
is used for the second and third SU-8 layers in comparison with the first one. The patterns on
the photomasks are transferred to the SU-8 negative photoresists by a mask aligner (MA/BA6
from SUSS MicroTec), where an ultraviolet exposure dose of 9 mW·cm−2 for 62 seconds is
used for all the three SU-8 layers. Reduced post exposure bake time is introduced due to the
subsequent SU-8 layer soft bake time being generally longer than the prior layers soft bake time.
In order to suppress the edge bead effect during the spin coating step and the surface curvature
caused by the surface tension during the soft bake step, we have adopted a planarization step
using chemical mechanical polishing including mechanical lapping and mechanical polishing
[24]. The particle suspensions used for mechanically lapping and mechanically polishing are
6 µm and 0.1 µm in diameters, respectively. Planarization is stopped at a designed remaining
layer thickness for each SU-8 layer. After the planarization step of the final SU-8 layer, a
propylene-glycol-monomethyl-ether-acetate developer (from Microchem) is used to develop the
exposed SU-8 multilayers with gentle agitation, where the development time is 40 minutes. The
exposed SU-8 areas are left after development. A hard bake step is performed to increase the
hardness and chemical resistance of the photoresist, where the hard bake temperature is 150 °C
for 5 minutes.

By using the process flow presented in Fig. 1, we have fabricated a µROE with 2 × 2 duplicated
3D micro-optical structures. Considering that the minimum feasible dimension of the mROE
cell in our lab is 0.4 mm, the planar dimensions of µROE cell are designed as wd = 200 µm
in width and ld = 200 µm in length. Because SU-8 2100 has a recommended maximum film
thickness at about 260 µm by single coat, the thickness of each SU-8 layer is designed as td = 200
µm, which is determined by thinning the 230 µm thick single spin-coated SU-8 layer using the
aforementioned planarization step. Figure 2 shows the scanning electron microscope (SEM,
SU8010 from Hitachi) and laser confocal microscope (LCM, OLS5000 from Olympus) images
of the fabricated µROE with 3D micro-optical structures.

Fig. 2. Scanning electron microscope (a) and laser confocal microscope (b) images of the
fabricated µROE with 3D micro-optical structures.
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Both the SEM and LCM images in Fig. 2 confirm that the fabricated µROE have planar
cell dimensions almost the same as the designed parameters. However, lateral expansion is
observed for the underlying SU-8 layers, where Fig. 2(a) clearly shows the existence of the lateral
expansion for the second SU-8 layer. Lateral expansion is mainly caused by the reabsorption of
the base solvent into the underlying exposed SU-8 layers before it is fully crosslinked during
the soft bake process [23]. The existence of lateral expansion affects the size of the µROE cell,
which in turn causes inequivalent light intensities for the laser sub-beams and results in a higher
reduced speckle contrast by the µROE. The LCM measurement in Fig. 2(b) indicates that the
lateral expansion is not severe and is negligible. From Fig. 2(b), we can find that the average
thicknesses of the SU-8 layers are different, which are t1 = 136 µm, t2 = 192 µm and t3 = 202 µm
for the first, second and third SU-8 layers, respectively. The significant thickness decrease of the
first SU-8 layer is attributed to the insufficient developing; though the upper SU-8 layers have
wider openings, the uncrosslinked photoresist in the first SU-8 layer cannot be fully dissolved
by the solvent because of the openings are deep. The lateral expansion of the underlying SU-8
layers may also contribute to the thickness decrease for the underlying SU-8 layers, where the
thickness of the second SU-8 layer t2 is lower than the third SU-8 layer t3.

3. Experiments and discussions

Figure 3 schematically shows the experimental setup for objective speckle measurement. A
rotatable linear polarizer (53344 from Edmund Optics) is employed to adjust the light intensity of
a linearly polarized and collimated laser beam. The laser beam is expanded by a beam expander,
where a Φiris = 2 mm in diameter iris is used to redefine the expanded laser beam size. An mROE
composed by two orthogonal groups of glasses is placed after the iris, where the width and length
of each piece of glass are 0.4 mm and 8 mm, respectively. The heights of the glasses arranged
horizontally are 0.8 mm, 1.6 mm, 2.4 mm, and 3.2 mm, while these values are 4 mm, 8 mm, 12
mm, and 16 mm for the glasses positioned vertically. The two-inch µROE follows the mROE,
and a sandblasted glass diffuser is used as light scattering rough object. Speckles formed on the
diffuser are recorded by a charge-coupled device (CCD) camera (59356 from Edmund Optics).
The CCD camera has a resolution of 2208 × 3000 and a pixel size of 3.5 µm × 3.5 µm. The
exposure time of the CCD camera is a constant value of 50 ms, which is the same value as
the integration time of human eyes [14]. In order to maintain the CCD camera working in its
linear region, the linear polarizer is rotated correspondingly on different experimental conditions.
The distance from the diffuser to the CCD camera is 500 mm. In case for subjective speckle
measurement, a semitransparent object composed by another sandblasted glass diffuser and a
plastic film with printed “SXU” logo is introduced after the first sandblasted glass diffuser (D in
Fig. 3). In order to illuminate a large area on the semitransparent object, the distance between
the first sandblasted glass diffuser and the semitransparent object is 50 mm. An imaging lens is
mounted on the CCD camera, where the focal length and the F-number of the imaging lens are
35 mm and 22, respectively. The distance between the semitransparent object and the imaging
lens is 200 mm.

A 0.8 mW HeNe laser (HNL008L from Thorlabs) and a multimode laser diode (LD, L520P50
from Thorlabs) with maximum output power of 50 mW are used as the laser light sources shown
in Fig. 3. During the experiment, the driving current of the multimode LD is set at 120 mA,
and the working temperature of the multimode LD is stabilized at 15 °C using a thermoelectric
controller. The spectrums of the lasers are measured by a spectrometer (Aryelle Butterfly from
LTB), where the results are shown in Fig. 4(a). From Fig. 4(a), we can find that the HeNe
laser has a Gaussian spectral profile with the central wavelength of λHeNe = 632.8 nm and the
spectral width (full width half maximum) of ∆λHeNe ≈ 0.03 nm; the multimode LD has a multiline
spectrum profile with the central wavelength of λLD = 525.2 nm and the longitudinal mode spacing
of ∆λLD ≈ 0.08 nm. Figures 4(b)–4(i) show objective speckles captured by the CCD camera
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Fig. 3. Schematic of experimental setup for objective speckle measurement. LP: linear
polarizer, BE: beam expander, mROE: macro-refractive optical element, µROE: micro-
refractive optical element, D: diffuser, CCD: charge-coupled device.

under different experimental conditions. In case for the HeNe laser being used as the laser light
source, we have not used ROEs in Fig. 4(b), and we have used mROE in Fig. 4(c), µROE in Fig.
4(d), and mROE and µROE in Fig. 4(e). Figures 4(f)–4(i) correspond to the conditions without
ROEs, with mROE, with µROE, and with mROE and µROE, respectively. In Figs. 4(f)–4(i),
the multimode LD is used as the laser light source. Figures 4(j)–4(m) show subjective speckles
captured by the CCD camera under the corresponding experimental conditions to Figs. 4(f)–4(i).
Speckle contrasts C for the objective speckle images shown in Figs. 4(b)–4(i) are calculated

by using C= σ/<I>, where σ and <I> represent the standard deviation and mean value of
speckle intensity, respectively. This equation is also introduced for calculating speckle contrasts
for subjective speckle images shown in Figs. 4(j)–4(m), where we have selected the regions
without “SXU” logo for calculation. For fully developed speckles, speckle contrast C equals
to 1/21/2 = 0.71, where the degree of two is attributed to the depolarization of the rough object
[2,3]. The speckle images shown in Figs. 4(b), 4(f), and 4(j) have speckle contrasts C higher
than 0.71 because of diffuser partial depolarization. As shown in Fig. 4(a), the multimode LD
has a more complicated spectrum distribution than the HeNe laser, thus, wavelength diversity
results in lower speckle contrast of CLD_without_o = 0.79 in Fig. 4(b) and CLD_without_s = 0.94 in
Fig. 4(j) for the multimode LD than CHeNe_without_o = 0.96 in Fig. 4(f) for the HeNe laser.

In order to explain the speckle reduction mechanism by the ROEs, Fig. 5 schematically shows
the mth and nth speckle patterns modulated by the corresponding ROE cells with heights of
hm and hn, where speckles captured by the CCD camera are the spatial superposition of these
speckle patterns.

For each ROE cell, it can generate a fully developed speckle pattern after passing through the
diffuser with a speckle contrast of C0 = 1 if there are no speckle reduction mechanisms being
introduced. The sum of the N fully developed speckle patterns because of the N ROE cells has a
reduced speckle contrast C∑ given by [3]

C∑ =
√∑N

m=1
∑N

n=1 σmσnρm,n∑N
n=1 〈In〉

=

√∑N
m=1

∑N
n=1 〈Im〉 〈In〉 ρm,n∑N
n=1 〈In〉

, (1)

where σm, σn, <Im> and< In> represent the standard deviations and mean values of the mth and
nth speckle intensities, respectively, ρm,n is the correlation coefficient between the mth and nth
speckle patterns that are generated by the corresponding mth and nth cells, and we have used
the relationships of σm = <Im> and σn = <In> for fully developed speckles [2]. Because the



Research Article Vol. 28, No. 23 / 9 November 2020 / Optics Express 34602

Fig. 4. Spectrums of the HeNe laser and the multimode laser diode (a). Objective speckles
formed on the diffuser are captured by the CCD camera when the HeNe laser is used as the
light source without ROEs (b), with mROE (c), with µROE (d), and with mROE and µROE
(e). Objective speckles formed on the diffuser are captured by the CCD camera when the
multimode laser diode is employed as the light source without ROEs (f), with mROE (g),
with µROE (h), and with mROE and µROE (i). Subjective speckles when the multimode
laser diode is employed as the light source without ROEs (j), with mROE (k), with µROE (l),
and with mROE and µROE (m).

Fig. 5. Speckles capatured by the CCD camera are the spatial superpositon of the speckle
patterns modulated by the ROE cells. D: diffuser.
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expanded laser beam after transmitting through the iris has an almost uniform light intensity
distribution across its cross section, the mean value of the speckle intensity <I> formed by an
individual ROE cell is proportional to the ROE cell area A; considering that the ROE cells have
similar planar dimensions, i.e., Am =An for the mth and nth ROE cells, we have< Im>= and
<In>

CΣ =

√∑N
m=1

∑N
n=1 ρm,n

N
. (2)

From Eq. (2), it is reasonable that speckle can be reduced by the ROEs. This is because the
value of ρm,n fulfils the relationship of ρm,n < 1 due to the optical path difference between the mth
and nth ROE cells having different heights of hm and hn for m , n. For the mROE schematically
shown in Fig. 3, the laser beam with Φiris = 2 mm in diameter beam width covers 5 × 5 mROE
cells whose heights increases from hmROE_1 = 0 mm to hmROE_25 = 19.2 mm with an equivalent
increment of 0.8 mm. As shown in Figs. 2 and 3, there are four cell heights for the µROE
with 2 × 2 duplicated 3D micro-optical structures, which are hµROE_1 = 0 µm, hµROE_2 = t1 = 136
µm, hµROE_3 = t1+t2 = 328 µm and hµROE_4 = t1+t2+t3 = 530 µm. Therefore, comparing with
the µROE, the mROE can generate more laser sub-beams having larger optical path delays,
i.e., NµROE < NmROE and ρm,n_µROE > ρm,n_mROE. The resulting effect is that speckle reduction
achieved by the mROE is more efficient than by the µROE according to Eq. (2). Experimental
results shown in Figs. 4(c) and 4(d), Figs. 4(g) and 4(h), and Figs. 4(k) and 4(l) are consistent
with expectation. As we have mentioned above, the average thickness of each SU-8 layer is
different, where t1 = 136 µm is significantly lower than t2 = 192 µm, t3 = 202 µm and the expected
layer thickness of td = 200 µm. The thinner SU-8 layer results in higher ρm,n_µROE, which causes
a higher reduced speckle contrast than the expected value according to Eq. (2).

The fact that the multimode LD has more efficient speckle reduction than the HeNe laser after
introducing the ROEs can be explained as follows. As shown in Fig. 4(a), it is obvious that the
equivalent linewidth of the multimode LD ∆νc_LD is larger than that of the HeNe laser ∆νc_HeNe,
i.e., ∆νc_LD > ∆νc_HeNe. Thus, the HeNe laser has shorter coherence time τc and longer coherence
length lc than the multimode LD because τc = 1/ ∆νc and lc = cτc, where c is the speed of light
[25]. When the laser beam transmits through the mROE or the µROE, the spatial coherence
among the ROE cells are destroyed by destroying the temporal coherence of the lasers with the
help of the optical path differences caused by the ROE cells with different heights. The spatial
correlation coefficient between the mth and nth ROE cells with determinate height difference
for the HeNe laser ρm,n_HeNe is always larger than that for the multimode LD ρm,n_LD because
the relationship of lc_HeNe > lc_LD holds. Therefore, from Eq. (2), we can also conclude that the
reduced speckle contrast for the HeNe laser CΣ_HeNe is always higher than that for the LD CΣ_LD
because the relationship of ρm,n_HeNe > ρm,n_LD holds. This is confirmed by the experimental
results shown in Figs. 4(c), 4(g), 4(d), and 4(h).
Another observation from Fig. 4 is that the combination of the mROE and the µROE shown

in Figs. 4(e), 4(i), and 4(m) has higher speckle reduction efficiency than the mROE or the
µROE alone. This is straightforward because NmROE+µROE = 10 × 10= 100 laser sub-beams are
generated by the combination of the mROE and the µROE, while this numbers are NmROE = 5 ×
5= 25 and NµROE = 2 × 2= 4 by using the mROE and the µROE, respectively. According to Eq.
(2), a larger number of N results in a lower reduced speckle contrast C∑

.
Comparing the objective speckle images shown in Figs. 4(f)–4(i) and the corresponding

subjective speckle images shown in Figs. 4(j)–4(m), we can find that the subjective speckle
images always have higher speckle contrasts than the corresponding objective speckle images.
This is because of the formation of compound speckle (or speckled speckle) [2]. In subjective
speckle measurement, the first sandblasted glass diffuser (D in Fig. 3) causes the first speckle,
and the semitransparent object creates another speckle. When the CCD camera captures the
subjective speckle images formed on the semitransparent object, the two speckles (compound
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speckle) increase the speckle contrast comparing with the condition when only a single speckle
is formed (the condition for measuring objective speckles) [2].

The optical power loss after the introductions of the mROE and the µROE is about 20%. This
is mainly caused by the reflections happened at the air/glass/air interfaces and the air/SU-8/air
interfaces [25]. An additional antireflection coating process of the mROE and the µROE can
suppress the optical power loss, but the cost of manufacturing ROEs will be increased.

4. Conclusions

In summary, we have fabricated a µROE which is consisted of 3D micro-optical structures by
multi-exposure lithography for laser speckle reduction. We have experimentally investigated the
speckle reduction ability of the µROE by using two kinds of laser sources: a high-coherence
HeNe laser and a low-coherence multimode LD. The spatial coherence of the lasers is destroyed
with the help of the µROE, thus, speckle is reduced when the speckle patterns generated by the
µROE cells are spatially homogenized. We have studied the speckle reduction efficiency by the
mROE, by the µROE, and by the combination of the mROE and the µROE. Because the number
of the laser sub-beams and the optical path differences brought by the µROE are lower than those
generated by the mROE, the µROE has lower speckle reduction efficiency than the mROE; while
the µROE in together with the mROE is the best choice than by using the mROE or the µROE
alone because of its highest speckle reduction efficiency.

The speckle contrasts obtained by the devices presented here is considerably higher than what
has been reported for conventional speckle reduction methods, but optimization of the µROE, for
example, by increasing the µROE cell number with larger cell height differences, is expected to
improve device performance. Meanwhile, µROEs have advantages of being motionless, etendue
preserved, and facile et al. In general, the technology concept by using multi-exposure lithography
to fabricate µROEs is successfully demonstrated, and steps towards commercialization of the
device are feasible.
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