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We present resonance enhanced two-photon ionization (RETPI) spectrum between 14,500 and 

15850 cm 

−1 for ultracold ground state 85 Rb 133 Cs molecules. With an assistant of optical pumping from 

one 1070nm laser, (2) 1 �1 ← X 1 �+ electronic transition is distinguished from (4) 3 �+ ← a 3 �+ and 

(3) 3 � ← a 3 �+ transitions. Some observed RETPI spectra are globally assigned to vibrational transitions 

from X 1 �+ (v = 0 − 5) to (2) 1 �1 (v = 5 − 20) . Based on these assignments, the spectroscopic constants 

of X 1 �+ and (2) 1 �1 are simultaneously derived, including energy separation, harmonic and anharmonic 

constants. Then a map of Franck-Condon factors between vibrational transitions of X 1 �+ (v = 0 − 9) and 

(2) 1 �1 (v = 0 − 20) is plotted based on these constants. Our present work would be meaningful for con- 

tinuous accumulation of ultracold 85 Rb 133 Cs molecules in the lowest vibronic state with further optical 

pumping. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Ultracold polar molecules have attracted great interests for both

hysicists and chemists due to their rich rovibrational structures,

arge permanent electric dipole moments and long coherent times

1–5] . These characteristics allow potential applications in ultracold

hemistry [6,7] , quantum computation [8,9] , quantum simulation

10,11] , precise measurement [12,13] and degenerate quantum gas

14] . 

All of these applications require efficient production of

olecules in a well-defined ground state. Up to now such

olecules may be produced in a variety of ways. One approach is

o transfer pairs of ultracold atoms to a Feshbach state by ramping

 magnetic field, and then coherently transfer to a vibronic level of

olecular state by implementing stimulated Raman adiabatic pas-

age [15] . In favourable cases, this method can produce molecules

n a single hyperfine and Zeeman state [16–22] . However, this

pproach produce molecules only once during one experimen-

al cycle, which usually takes around one minute. Contrastively,

ther two alternative approaches, direct laser cooling [23] and
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30 0 06, China. 

E-mail addresses: jzh@sxu.edu.cn (Z. Ji), zhaoyt@sxu.edu.cn (Y. Zhao). 

e  

e  

s  

i  

i  

ttps://doi.org/10.1016/j.jqsrt.2020.107215 

022-4073/© 2020 Elsevier Ltd. All rights reserved. 
hort-range photoassociation (PA) [24] allow continuously produc-

ng molecules. The former method has a rapid develop recently

ith a milestone of realizing molecular magneto-optical trapping

25–27] . As this method requires nearly closed laser-cooling tran-

itions, it is still limited to a small class of molecules. The lat-

er depends on resonant coupling of PA excited states, which have

oth appropriate Franck-Condon (F-C) factors with initially scatter-

ng atomic state and deeply bound molecular state. In short-range

A, the formed molecules are distributed in several vibrational lev-

ls, that is unfavorable for producing a pure quantum state. If tran-

ition information between the distributed ground state and an

uitable excited state can be obtained, it can provide guides for im-

lementing optical pumping to continuously accumulate molecules

n one pure quantum state, just like the case of homonuclear Cs 2 
olecules [28] . 

In 2010 Stwalley et al. theoretically studied resonant coupling

tates for short-range PA in all 10 heteronuclear alkali metal

imers [24] . Since then such approach has been implemented in

iCs [29] , NaCs [30] , KRb [31] , RbCs [32] and LiRb [33] . Among

hese dimers, RbCs molecule, especially 85 Rb 133 Cs, attract inter-

sts benefiting from its special characteristics: sizable permanent

lectric dipole moment [34] enables easy alignment for quantum

imulation [11] ; avoidable immiscibility of its components, which

s different from its isotopic components [35] , provides possibil-

ty to realize molecular Bose-Einstein condensation; inelastic colli-
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Fig. 1. Formation and detection mechanisms of ultracold ground state 85 Rb 133 Cs 

molecules. The potential energy curves (PEC) come from Ref [46] . 
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sion with co-trapped Cs atom also supports molecule purification

in lowest vibronic state [36] . 

In Ref [24] ., the authors proposed that (2) 1 �1 electronic state,

which has resonant coupling with (1) 1 �1 (or ( B ) 1 �1 ) state, ap-

pears to be a quite promising path for producing ultracold RbCs

molecules in the lowest vibronic ground state. Over the past ten

years, several short-range PA electronic states [32,37–45] , including

the early proposed (2) 1 �1 state [43] , were used to produce ultra-

cold ground state 85 Rb 133 Cs molecules. Reference [43] also shows

that most vibrational levels of 2 1 �1 state have relatively strong

production rates, indicating that this state may provide a promis-

ing passway to implement optical pumping. Thus transition infor-

mation between (2) 1 �1 and X 1 �+ states is required. 

It is known that resonance enhanced two-photon ionization

(RETPI) spectroscopy is an easy and quick method to obtain such

information. In 2014 Bruzewicz et al . presented a portion of

(2) 1 � ← X 1 �+ RETPI spectrum for RbCs molecules. The scanning

range of photoionization (PI) laser frequency is 15180–15340 cm 

−1 .

They found that the formed molecules mainly distributed in

X 1 �+ (v = 0 − 5) levels. Except for the lowest vibronic state, other

vibrational transitions are not assigned in that work. The finite as-

signments are insufficient to derive transition information between

(2) 1 �1 and X 1 �+ states. 

In this paper, the RETPI spectrum of ultracold ground state
85 Rb 133 Cs molecules with a larger frequency range between 14,500

and 15850 cm 

−1 is presented. With an assistant of optical pump-

ing from a 1070nm laser, three electronic transitions, (4) 3 �+ ←
a 3 �+ , (2) 1 �1 ← X 1 �+ and (3) 3 � ← a 3 �+ are distinguished. On

the focused 2 1 �1 ← X 1 �+ transition where the formed molecules

are excited from the single ground state, vibrational transitions

among (2) 1 �(v = 5 − 20) ← X 1 �+ (v = 0 − 5) are assigned. The

energy separation between these two electronic states T e , har-

monic constant ω and anharmonic constants ωχ for each state, ωy

for (2) 1 �1 state, are derived simultaneously. Based on these de-

rived spectroscopic constants, a map of F-C factors is plotted. These

investigations would be meaningful for accumulating 85 Rb 133 Cs

molecules in the lowest vibronic ground state with further optical

pumping. 

2. Experimental setup 

Our experimental setup and operation procedure are nearly the

same as one of our publications [47] , in which RETPI spectrum

between 13,70 0 and 1460 0 cm 

−1 of ultracold RbCs molecules was

reported. In that paper molecules in the metastable ground state

a 3 �+ are photoionized, while here molecules lay in the single

ground state X 1 �+ . 
Fig. 1 shows the formation and detection mechanisms of ul-

tracold ground state 85 Rb 133 Cs molecules we use. In a vacuum

chamber with a pressure of 3 ×10 −6 Pa, 1 × 10 7 85 Rb atoms in

5 S 1/2 ( F = 2) state with a density of 8 × 10 10 cm 

−3 and 2 × 10 7

133 Cs atoms in 6 S 1/2 ( F = 3) state with a density of 1.5 × 10 11

cm 

−3 were produced using a space-adjustable dual-species dark

spontaneous force optical traps. Colliding atomic pair of 85 Rb and
133 Cs were photoassociated into 2 3 �0 + (v = 10 , J = 2) level which

is adiabatically correlated to Rb(5 P 3/2 )+Cs(6 S 1/2 ) dissociation limit

at long range [41] . The molecules in this level is not stable and

will soon decays to the X 1 �+ and a 3 �+ states, including but

not only X 1 �+ (v = 0) level. The formed molecules are then ex-

cited by a pulsed dye laser to vibrational levels of higher elec-

tronic states, containing (4) 3 �+ , (2) 1 �1 and (3) 3 � in this work.

The specific transitions depend on dye laser frequency. With the

Dichloromethane (DCM) molecule in a solvent of Dimethylsulfox-

ide (DMSO) we used, laser frequency can cover around 140 0 0–

160 0 0 cm 

−1 . Once excited, these molecules were photoionized by a

532 nm laser and detected by a pair of microchannel plates (MCPs)
nder a pulsed electric field. After amplification, the acquired sig-

al was integrated and averaged by a Boxcar (SRS-250) every 10

hots. 

. Results 

Fig. 2 (a) shows our measured RETPI spectrum between

4,500 and 15850 cm 

−1 of ultracold RbCs molecules formed via

 

3 �0 + (v = 10 , J = 2) rovibrational level. The PI laser frequency is

canned with a speed of 0.04 nm/s. As the linewidth of dye laser

s 3 GHz and rotational constant of RbCs molecules in ground state

s around 500 MHz [48] , RETPI can only resolve vibrational tran-

itions. Even there were published abundant literatures on struc-

ures and spectra of RbCs molecule, accurate assignments for such

 spectrum are still challenging because that vibrational transitions

f different electronic transitions may mix with each other. 

In our experiment we have a 1070 nm broadband fiber laser

IPG Photonics, YLR-300-AC) with an initial aim to optically trap

he formed molecules [49] . It is accidental to find that this

aser can strongly change vibrational distributions of the formed

olecules, even the beam is unfocused and the intensity is low.

ig. 2 (b) shows our measured spectrum under the same conditions

f Fig. 2 (a) but in the presence of one 1070 nm beam with a diam-

ter of around 500 μm and a power of around 100 mW. Compar-

ng with Fig. 2 (a), we find that molecular ion intensity in Fig. 2 (b)

ncreases below 15600 cm 

−1 but decreases over this value. The

ifferent tendency of molecule production exclude 1070 nm laser-

nduced PA. We attribute this vibrational redistribution to optically

umping of RbCs molecules. Considering the frequency of this op-

ically pumping laser, the formed RbCs molecules in a 3 �+ state

ay be excited to c 3 �+ 
0 −, 1 

state, which mixes with b 3 �0 + , 0 −, 1 , 2 

nd B 1 �1 states [50] , and spontaneously decay to lower vibra-

ional levels of single and triplet ground states. As the linewidth

f 1070nm laser is large as 2 nm and vibrational distribution of

ormed molecules in a 3 �+ state is uncertainty, it is impossible to

ddress particular vibrational transitions. 

With the observed vibrational redistribution in mind, we di-

ide this RETPI spectrum to three parts, separated with green
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Table 1 

Spectroscopic constants of RbCs molecules in X 1 �+ and (2) 1 �1 states. The unit is cm 

−1 . 

X 1 �+ (2) 1 �1 

References ω g ωχ g T e ω e ωχ e ωy e 

Theo [60] . 45.6 - 15003 40.33 - - 

Theo [46] . 51.35 - 15046 33.36 - - 

Theo [61] . 51.3 - 15039 35.2 - - 

Theo [62] . - - 14987 33.1 - - 

Theo [63] . 49.09 - 15287 30.72 - - 

Theo [64] . 50.23 0.105 15077 32.98 0.0165 - 

Expt [57] . 50.01 0.109 - - - - 

Expt [59] . - - 14963.62 32.93 0.025 -0.0023 

Expt [58] . 50.01 0.1095 - - - - 

This work 50.00(7) 0.11(1) 14964.4(7) 32.68(19) 0.013(16) -0.0023(4) 
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ashes in Fig. 2 . The electronic transition of left part (roughly from

4,500 to 14930 cm 

−1 ) is assigned to (4) 3 �+ ← a 3 �+ , middle part

14930 to 15570 cm 

−1 ) to (2) 1 �1 ← X 1 �+ and right part (15570

o 15850 cm 

−1 ) to (3) 3 � ← a 3 �+ . The main basis of these assign-

ents comes from Ref [51] ., in which some absorption bands of

bCs molecules under cold condition is calculated. In the Fig. 2 of

ef [51] ., the authors calculated FC factors between the lowest vi-

rational states of the ground states (containing triplet a 3 �+ and

ingle X 1 �+ state) and the allowed vibrational states of the lowest

our excited states (containing 1 �+ , 3 �+ , 1 �, 3 �) under a tem-

erature of 0.4 K. These calculations are strongly referenced for

ETPI spectra in cold molecular beam and short-range PA exper-

ments, where molecules distribute in low vibrational levels. The

uthors have verified the reliability of their calculations by tak-

ng (3) 1 � ← X 1 �+ RETPI spectrum as an example [52] . Besides of

his transition, electronic transitions of (4) 1 �+ ← X 1 �+ [52] and

(5) 1 �+ ← X 1 �+ [53] are also agreeable with their calculations. 

In these three transitions we are specially interested in

(2) 1 � ← X 1 �+ . Besides of the mentioned Ref [40] . in the in-

roduction part, the RETPI spectrum in cold molecular beam

54,55] also provide a basis for our assignment by addressing

(2) 1 �(v = 11 − 21) ← X 1 �+ (v = 0) vibrational transitions. How-

ver, all of these literatures assigned vibrational transition from

nly X 1 �+ (v = 0) level. To address all vibrational transitions, it is

ecessary to have a global assignment by simultaneously deriving

pectroscopic constants for these two electronic states. 

As our obtained RETPI spectrum only has vibrational resolution,

he energy expression for molecules can be written as [56] 

/hc = 

∑ 

i 

Y i 0 

(
v + 

1 

2 

)i 

(1) 

here v is vibrational number, h is the Planck constant, c is the

peed of light, Y i 0 is Dunham coefficient for vibrational terms in

hich Y 00 is the minimum point of PEC of electric state and other

oefficients can be established relationships to conventional spec-

roscopic constants ( e.g. Y 10 , Y 20 and Y 30 correspond harmonic con-

tant ω, anharmonic constants −ωχ and ωy respectively). The

able 1 of both Refs [57] . and [58] shows that for X 1 �+ state Y i 0 
ith i ≥ 3 are smaller than Y 20 by at least of 3 orders of magnitude,

hile for (2) 1 �1 state Y i 0 with i ≥ 4 smaller than Y 20 with the

ame magnitude, shown in Ref [59] . Here we ignore these tiny co-

fficients on the condition of large uncertainty in our RETPI spec-

rum. By convention we choose the minimum point of the X 1 �+ 

EC as reference point ( i.e. T g = 0), then transition energy between

 

1 �+ and (2) 1 �1 states is simplified as 

/hc = T e + ω e 

(
v e + 

1 

2 

)
− ωχe 

(
v e + 

1 

2 

)2 

+ ωy e 

(
v e + 

1 

2 

)3 

− ω g 

(
v g + 

1 

2 

)
+ ωχg 

(
v g + 

1 

2 

)2 

. (2) 
Based on this equation and the previous literatures [40,54,55] ,

e assign 76 vibrational transitions among (2) 1 �1 (v = 5 − 20)

tates, shown in Fig. 3 . We use different color lines to discriminate

ifferent vibrational series of ground state and for simplify we only

abel the vibrational numbers of excited states at two ends for each

erie. All the values of vibrational transitions can be found in Sup-

lemental Material. The uncertainty of frequency value is around

.3 cm 

−1 after considering the linewidth of PI laser and fluctuation

f photoionized signal. Those peaks unassigned from the start of

hown spectrum seem regular and are possible to belong to vibra-

ional transition of the nearby (4) 3 �+ ← a 3 �+ electronic transi-

ion. But it is difficulty to specify accurate transition and it is also

ut of the theme of this work. 

After assignments, we fit all the observed transitions with

q. (2) and list the derived spectroscopic constants in Table 1 ,

long with other available theoretical calculations [46,60–64] and

xperimental measurements [57–59] . Experiments in Refs [57–59] .

mplemented laser-induced fluorescence of hot RbCs molecules in

 heat-pipe. There are abundant uncontrolled vibrational transi-

ions with many high rotational numbers in this kind of experi-

ent. That make spectrum analysis complicated because that en-

rgy with low vibrational number and high rotational number may

e larger than the energy with the contrary case. In contrast, the

ibrational transition in RETPI spectrum we use can be easily cho-

en by laser frequency and there is no existence of high rotational

ransition. It is also convenient to simultaneously obtain spectro-

copic constants for both X 1 �+ and (2) 1 �1 states. The fitting val-

es in this work show well consistences with other available ex-

erimental measurements in view of measured uncertainty, except

or ωy e which we attribute the deviation to the lacks of coupled

erms between vibrational and rotational angular moment (see the

( J ) expression in table 3 in Ref. [59] ). Once obtaining spectro-

copic constants, one can easily obtain the predicted values by

ubstituting these constants to Eq. (2) . In the Supplemental Ma-

erial we have listed the residuals of observations from the pre-

icted values. Most residuals lay in less than 0.5 cm 

−1 , even there

re four relative large deviations around 2 cm 

−1 exist. The uncer-

ainty mainly comes from perturbation between vibrational tran-

itions, large linewidth from dye laser, power fluctuation and the

bsence of high terms in Eq. (1) that not included in Eq. (2) . 

Based on these derived spectroscopic constants, it is possible

o generate a Rydberg-Klein-Rees (RKR) PEC for both X 1 �+ and

2) 1 �1 states by using LeRoys RKR1 program [65] , shown in Fig. 4 .

o make a comparison, we also add PECs of these two states cal-

ulated in Ref [46] . The inner potential wall has been corrected by

he RKR1 program. The reference level of electronic energy is the

inimum value of the potential well of X 1 �+ ground state. It is

hown and unsurprised that the deviation of theoretical calcula-

ion from experimental measurement is larger for (2) 1 �1 excited

tate than the case of ground state. As the RETPI spectroscopy re-
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Fig. 2. RETPI spectrum of RbCs molecules between 14,500 and 15850 cm 

−1 in the absence (a) and presence (b) of one 1070nm beam. The electronic transitions of left, central 

and right parts (separated with green dashes) are assigned to (4) 3 �+ ← a 3 �+ , (2) 1 �1 ← X 1 �+ and (3) 3 � ← a 3 �+ respectively. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Enlargement of Fig. 2 (b) between 150 0 0–1550 0 cm 

−1 . There are 76 assigned vibrational transitions among (2) 1 �1 (v = 5 − 20) and X 1 �+ (v = 0 − 5) states. Different 

color lines discriminate different vibrational series of ground state and for simplify we only label the vibrational numbers at two ends of each serie. 
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Fig. 4. The obtained RKR PECs of (2) 1 �1 (dashes) and X 1 �+ electronic states 

(lines). The red curves indicate the values calculated by RKR method while the black 

for the ab initio values from Ref [46] . The energy is relative to the lowest PEC of 

X 1 �+ electronic state. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 5. F-C factors of vibrational transitions between X 1 �+ (v = 0 − 9) and 

(2) 1 �1 (v = 0 − 25) . 
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ects directly transition information between coupled two states,

e are confident with our derived PEC. 

With the revised PECs of (2) 1 �1 and X 1 �+ states, we can

urther quantify transition probability for their transition. Fig. 5

ketches the F-C factors of vibrational transitions for (2) 1 �(v =
 − 20) − X 1 �+ (v = 0 − 9) of 85 Rb 133 Cs molecules. Numerical val-

es are listed in the Supplemental Material. It is presented that the

ocal optimal values in this graph distribute in a < shape. Even

he upper part of < shape has larger values than the bottom por-

ion, the bottom part of < shape should be used when one would

mplement optical pumping for that it can avoid redistribution of

igher vibrational levels. 

. Conclusions 

The RETPI spectrum of ultracold ground state 85 Rb 133 Cs

olecules between 14,500 and 15850 cm 

−1 has been investigated.

ptical pumping from one 1070 nm laser is used to distinguish

(4) 3 �+ ← a 3 �+ , (2) 1 �1 ← X 1 �+ and (3) 3 � ← a 3 �+ electronic

ransitions. Vibrational transitions among (2) 1 �1 (v = 5 − 20) ←
 

1 �+ (v = 0 − 5) have been assigned. Based on these assignments,
he following spectroscopic constants have been obtained simul-

aneously for both X 1 �+ and (2) 1 �1 states: harmonic constant

 and anharmonic constants ωχ for each state, ωy for (2) 1 �1 

tate. These spectroscopic constants allows us to plot a F-C fac-

ors map between vibrational transitions of X 1 �+ (v = 0 − 9) and

(2) 1 �1 (v = 0 − 20) . That would be meaningful for accumulating

bsolute ground state molecules with further optical pump. 
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