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Dynamical Zeeman resonance in spin-orbit-coupled spin-1 Bose gases
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We predict a dynamical resonant effect, which is driven by externally applied linear and quadratic Zeeman
fields, in a spin-orbit-coupled spin-1 Bose-Einstein condensate. The Bose-Einstein condensate is assumed to be
initialized in some superposed state of Zeeman sublevels and subject to a sudden shift of the trapping potential.
It is shown that the time-averaged center-of-mass oscillation and the spin polarizations of the Bose-Einstein
condensate exhibit remarkable resonant peaks when the Zeeman fields are tuned to certain strengths. The
underlying physics behind this resonance can be traced back to the out-of-phase interference of the dynamical
phases carried by different spin-orbit states. By analyzing the single-particle spectrum, the resonant condition is
summarized as a simple algebraic relation, connecting the strengths of the linear and quadratic Zeeman fields.
This property is potentially applicable in quantum information and quantum precision measurement.
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I. INTRODUCTION

The impacts of gauge fields on quantum matters have been
a central research topic for many areas of physics, ranging
from statistical mechanics [1,2], condensed-matter physics
[3–5], to atomic physics [6,7], etc. Among various forms
of gauge fields, the spin-orbit (SO) coupling is of particular
interest as it is naturally owned by electrons in solids and
responsible for vast fundamental physics such as topological
insulators and superconductors [4,5]. However, to some ex-
tent, a deep understanding of the SO-coupling-related physics
is hindered by the impurities and uncontrolled parameters in
solid state materials. In this context, ultracold atoms with
synthetic SO coupling have received much attention in re-
sent years [8–10]—not only because it provides a versatile
platform to simulate various novel quantum phases, with pre-
cisely controllable parameters setting [11–24], but also due
to its ability to engineer the interplay between spin and orbit
dynamics [25–30], which is of potential usage for applications
in atomtronics and spintronics.

While electrons moving in solids are intrinsically spin-half
systems, neutral atoms with rich hyperfine states could have
higher spins, from which one can construct not only the rank-1
spin vector, but also the rank-2 spin-quadruple tensor [31–37].
This greatly enriches the SO-coupling-related physics emerg-
ing from the spinor character of high-spin systems [38–46].
Indeed, the SO coupling for spin-1 Bose-Einstein condensates
(BECs) has been experimentally realized through Raman cou-
pling among three hyperfine states [47] or with the use of a
gradient magnetic field [48]. Theoretical interest in this field
is also tremendous. Notable examples include the prediction
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of competing spin and nematic orders [39], multiroton struc-
tures [40], and quantum multicriticalities [41]. Recently, by
coupling the rank-2 spin tensor to linear [43,44] or orbital
angular momentum [46], more exotic quantum states have
been unveiled [45,46].

As a convenient experimental knob in atomic and molec-
ular physics, the Zeeman field has been widely used in
manipulating spin states [34,35], whereas its impacts on or-
bital states are usually limited. However, the SO coupling
essentially connects spin and motional degrees of freedom,
which endows orbital states with ability to respond to spin
operations and vice versa. It has been shown that, exploiting
SO coupling, target spin states can be efficiently accessed
via relevant manipulations on motional degrees of freedom
[49–53]. It is thus anticipated that, in the presence of SO
coupling, the motional character of quantum particles may
be predominantly affected by external Zeeman fields. In fact,
some recent works have demonstrated that the orbital dynam-
ics of a soliton in spin-half Bose gases, with [54] or without
SO coupling [55], can be sensitive to the Zeeman-like field.
Given that the SO-coupled spin-1 quantum gases are naturally
subject to both linear and quadratic Zeeman fields [38–42], an
interesting question is what are the respective effects of the
two fields on the atomic orbital and spin dynamics?

In this paper, we investigate the orbital and spin dynamics
of a SO-coupled spin-1 BEC under the action of both the
linear and quadratic Zeeman fields. The dynamics of the BEC
is switched on by a sudden shift of the trapping potential. It
turns out that the Zeeman fields impose crucial impacts on
both the spin and motional degrees of freedom of the BEC.
Specifically, the time-averaged center-of-mass (COM) oscilla-
tion and spin polarizations exhibit remarkable resonant peaks
at some special Zeeman field strengths. The physics underly-
ing this resonant effect can be traced back to the out-of-phase

2469-9926/2020/102(6)/063311(9) 063311-1 ©2020 American Physical Society

https://orcid.org/0000-0001-5941-2921
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.102.063311&domain=pdf&date_stamp=2020-12-07
https://doi.org/10.1103/PhysRevA.102.063311


JINGTAO FAN, GANG CHEN, AND SUOTANG JIA PHYSICAL REVIEW A 102, 063311 (2020)

1

1

1 1

1
0

1

(a) (b)

BEC

z

y

x

FIG. 1. (a) Schematic of the system. A spin-1 BEC is illuminated
by three Raman lasers so as to generate SO coupling. (b) The atomic
level structure.

interference of the dynamical phases carried by different spin-
orbit states. By analyzing the single-particle spectrum, the
resonant condition is found to be the level avoided crossing
points, which is summarized as a simple algebraic relation.
This relation connects the strengths of the linear and quadratic
Zeeman fields and provides a promising scheme to calibrate
parameters associated with these fields.

II. SYSTEM AND HAMILTONIAN

As illustrated in Fig. 1, the system under consid-
eration is similar to that of Ref. [47], where the
hyperfine ground states | + 1〉 = |F = 1, mF = 1〉, |0〉 =
|F = 1, mF = 0〉, and | − 1〉 = |F = 1, mF = −1〉 of 87Rb
atoms define the three different spin components of the BEC.
A magnetic field along the z axis produces an energy splitting
between | − 1〉 and |0〉 (|0〉 and | + 1〉) by h̄ωZ . The pair of
counterpropagating laser beams with frequencies ω− and ω+

+1
(ω+

−1) induces a two-photon Raman transition between |0〉
and | + 1〉 (| − 1〉) and transfers 2h̄kr recoil momentum to
the atoms at the same time. In the pseudo-spin-1 basis � =
(ψ+1, ψ0, ψ−1), the single-particle Hamiltonian is written as
[38–41]

ĤS = P2

2m
+ VT(r) + �̃(x) · F + δFz + εF 2

z , (1)

where P2/2m and VT(r) are, respectively, the kinetic energy
and harmonic trapping potential, �̃(x) = �R[cos(2krx)ex −
sin(2krx)ey] is a space-dependent effective field, �R is the Ra-
man Rabi frequency, F = (Fx, Fy, Fz ) denotes the spin-1 Pauli
matrices, and δ = ω− − (ω+

+1 + ω+
−1)/2 − ωZ contributes the

linear Zeeman shift. Note that besides δ, a quadratic Zee-
man field which is not associated with any spatial direction,
ε = �0 + (ω+

−1 − ω+
+1)/2 with �0 being the energy shift of

state |0〉 emerges. Both Zeeman terms δ and ε can be indepen-
dently tuned from the positive to the negative by, for example,
varying the frequencies of Raman lasers or the technique of
microwave dressing [56,57]. Since �̃(x) plays a role only
along the spatial x direction, the motional degrees of free-
dom along other directions are thus irrelevant as long as we
focus on the physics along the x axis. After integration over
the y and z degrees of freedom and the unitary transforma-
tion ψ± −→ ψ±e±2ikr x, we obtain the Hamiltonian in a form

explicitly exhibiting SO coupling,

HS = p2
x

2m
+ V (x) + �Fx + αpxFz + δFz

+
(
ε + 1

2
h̄mα2

)
F 2

z , (2)

where V (x) = mω2x2/2 is the harmonic trapping potential
with ω being the trapping frequency in the x direction, � =
�R/

√
2 is the transverse-Zeeman potential, and α = 2kr/m

quantifies the SO coupling strength.
Incorporating the interatomic collisional interactions, the

dynamics of the BEC are governed by the Gross-Pitaevskii
(G-P) equation

ih̄
∂�

∂t
= (HS + HI )�, (3)

where HI is the mean-field Hamiltonian accounting for the
nonlinear interaction between atoms,

HI =
(

�+1 0 0
0 �0 0
0 0 �−1

)
. (4)

Here �±1 = (c0 + c2)(|ψ+1|2 + |ψ0|2 + |ψ−1|2) − 2c2|ψ∓1|2
and �0 = (c0 + c2)(|ψ+1|2 + |ψ0|2 + |ψ−1|2) − c2|ψ0|2. The
coefficients c0 and c2 describe density-density and spin-spin
interaction strengths, respectively. Note that c0,2 can be fea-
sibly tuned through Feshbach resonances. In the following
numerical calculations, we fix c0

√
m/h̄3ω = 0.05 and take the

typical ratio c2/c0 = −0.005 for 87Rb.

III. SINGLE-PARTICLE SPECTRUM

We first analyze the single-particle spectrum of the system.
Notice that in the absence of the transverse potential (� =
0), the Hamiltonian (2) is exactly solvable, giving rise to the
eigenstates

|ψn,χ 〉 = ∣∣ψχ
n

〉|χ〉, (5)

where the spin part |χ〉 is the eigenstate of the spin operator
Fz, obeying Fz|χ〉 = χ |χ〉 with χ = 0,±1, and the orbital
part satisfies |ψχ

n 〉 ≡ exp(−iχmαx/h̄)|φn〉. Here |φn〉 is the
nth eigenstate of a harmonic oscillator whose oscillation fre-
quency is ω. The eigenvalues of states (5) are given by

En,χ = nh̄ω − χ (h̄δ − χ h̄ε). (6)

It is thus clear that, due to the spin-1 nature of the BEC, the
spectra are grouped as three different branches labeled by χ ,
each of which contains a series of equally distributed orbital
levels. Moreover, without the linear and quadratic Zeeman
fields, the orbital levels with the same quantum number n
appear to be triply degenerate with respect to the spin varia-
tion χ −→ χ ± 1. A nonzero quadratic Zeeman field opens
an energy splitting between En,0 and En,±1 by h̄ε, and the
degeneracy of the doublet En,+1 and En,−1 is lifted by the
linear Zeeman field [see Fig. 2(a) for an illustration]. It is to
be noted that, by further increasing the quadratic and linear
Zeeman fields, there exists a possibility that the eigenstates
with different spin and orbital quantum numbers become de-
generate again, namely, En,χ = En+k,χ ′ , where k is a nonzero
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FIG. 2. (a) Schematic energy levels of the nth orbit and their
splitting under the action of the quadratic and linear Zeeman fields.
(b) Schematic illustration of the single-particle spectrum (blue solid
curve) as functions of the linear Zeeman field δ with certain fixed ε.
The red and blue circles indicate the level avoided crossing and level
crossing points, respectively. The green dashed lines are intentionally
added to pinpoint the resonant values of δ.

integer and χ �= χ ′. This degeneracy may dramatically affect
the dynamics of the BEC, as will be clarified in Sec. IV.

Let us now turn to the transverse potential (� �= 0) and
inspect its influences on the spectrum. Since the transverse
term �Fx does not commute with the Hamiltonian, no ex-
act solution exists. We work on the regime where �/ω 	 1
so that the transverse potential can be treated perturbatively.
Based on the standard perturbation theory, the eigenstates,
which are accurate up to first order in �, are summarized as

|ψ̃n,χ 〉 =
∞∑

n′=1

(
Cn,n′

χ,−1

∣∣ψ−1
n′

〉|−1〉 + Cn,n′
χ,0

∣∣ψ0
n′
〉|0〉

+Cn,n′
χ,+1

∣∣ψ+1
n′

〉|+1〉), (7)

where the detailed expressions of Cn,n′
χ,χ ′ are given in the

Appendix. It can be seen that the states |ψ̃n,χ 〉 are no longer
spin-orbit separable but in a form that spin and orbital parts
are dressed together. Without the transverse potential (� = 0),
we have Cn,n′

χ,χ ′ = δχ,χ ′ · δn,n′ and the dressed state reduces to

the bare one, |ψ̃n,χ 〉 = |ψn,χ 〉. Observing 〈ψn,χ |Fx|ψn′,χ ′ 〉 =
〈ψχ

n |ψχ ′
n′ 〉(δχ,χ ′+1 + δχ,χ ′−1)h̄/

√
2, the first-order corrections

of eigenvalues are generally zero so that corresponding
eigenenergies remain the same as those without transverse
potential, Ẽn,χ = En,χ . However, when energy levels differing
by one unit of spin angular momentum get close to each
other, |En,0 − En+k,±1| 	 h̄ω, the coupling between them

is intensively enhanced, leading to the breakdown of the
nondegenerate perturbation formula. Employing a degenerate
perturbation method, an avoided crossing between energy lev-
els with |χ − χ ′| = 1 appears, producing⎧⎪⎨

⎪⎩
Ẽn+k,0 = (n + k)h̄ω + 1√

2
h̄�|η|

Ẽn,+1 = (n + k)h̄ω − 1√
2
h̄�|η|

Ẽn,−1 = En,−1

, (8)

for En,+1 = En+k,0, and⎧⎪⎨
⎪⎩

Ẽn,+1 = En,+1

Ẽn+k,0 = (n + k)h̄ω + 1√
2
h̄�|η|

Ẽn,−1 = (n + k)h̄ω − 1√
2
h̄�|η|

, (9)

for En,−1 = En+k,0, with transverse-potential-induced splitting√
2h̄�|η| and η = 〈ψ+1

n |ψ0
n+k〉 [see Fig. 2(b) for an illus-

tration]. Note that since Fx does not couple states with spin
angular momentum +1 and −1, the nondegenerate perturba-
tion theory still applies for the case of En,+1 = En+k,−1, at
which a level crossing occurs instead.

IV. DYNAMICAL RESONANCE

Armed with the knowledge of eigenstates and eigenener-
gies, we are at the right stage to study the collective dynamics.
We first focus on the COM motion of the condensate subject
to a sudden shift of the harmonic trapping potential. It is well
known that for a regular BEC without SO coupling, the COM
motion turns out to be a sinusoidal oscillation whose period
depends only on the trapping frequency and is not affected by
other parameters such as nonlinearity, shifting distance, and
external Zeeman fields [58]. The SO coupling, on the other
hand, embeds the spin character of the BEC into its motional
degrees of freedom [26–28]. In view of this, the COM motion
here is expected to respond to typical spin manipulations,
which, for instance, can be achieved by applying effective
magnetic fields such as the linear and quadratic Zeeman fields.

We assume the external Zeeman fields are switched off
initially (δ = ε = 0), and the BEC is prepared in a given state
of the lowest orbital level, say, |�(0)〉 = ∑+1

χ=−1 Cχ |ψχ

0 〉|χ〉,
with Cχ being some superposition coefficient. The dynamics
is activated at some time t0 by a sudden shift of the trapping
potential [26,28]. Moreover, the trap shift is accompanied
by an abruptly applied linear and quadratic Zeeman fields,
as schematically illustrated in Fig. 3. Given this, the wave
function for t > t0 can be expanded in terms of the eigenstates
|ψ̃n,χ 〉 as

|�(t )〉 =
∞∑

n=1

1∑
χ=−1

An,χ e
i
h̄ pxD|ψ̃n,χ 〉e− i

h̄ Ẽn,χ , (10)

where An,χ = 〈ψ̃n,χ | exp(−ipxD/h̄)|�(0)〉 with D being the
shifting distance. With this wave function, the time evolution
of the COM is expressed as

〈x(t )〉=
∞∑

n=1

∞∑
n′=1

1∑
χ=−1

1∑
χ ′=−1

√
mω

h̄
X n,n′

χ,χ ′e− i
h̄ (Ẽn,χ −Ẽn′ ,χ ′ )t + D,

(11)
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FIG. 3. Schematic description of the proposed dynamical
scheme for the Zeeman resonance. Top panel: Trapping potential
and the corresponding COM motion of the BEC at different times.
Bottom panel: Timing of the external Zeeman fields.

where 〈· · ·〉 stands for the spacial average over the condensate
wave function, and we have introduced the dimensionless
term X n,n′

χ,χ ′ = √
h̄/mωA∗

n′,χ ′An,χ 〈ψ̃n′,χ ′ |x|ψ̃n,χ 〉. Note that in
Eq. (11), while terms multiplied by the dynamical phase
factors, exp[−i(Ẽn,χ − Ẽn′,χ ′ )t/h̄], are responsible for the
time-dependent oscillation, the shifting distance D appearing
in the last term represents a constant equilibrium position
around which the BEC oscillates. As we are interested only
in the dynamical part of the oscillation, it is more convenient
to focus on the redefined COM motion in which the con-
stant shifting distance is deducted, i.e., 〈x(t )〉 = 〈x(t )〉 − D.
Inspired by the fact that quantum particles in a given state are
essentially nonlocal in their spacial dimensions, it is expected
that there may be some physical information nonlocally hid-
den in the time dimension of wave functions. This motivates
us to investigate the time-averaged quantity

Q(O) = 1

T

∣∣∣∣
∫ t0+T

t0

〈O〉dt

∣∣∣∣, (12)

where T is a long-time span and O is the physical observable
over which the average is taken [29,59–63]. Equation (12)
can be treated as a kind of coarse-grained averaging, as the
dynamical details at any specific time become irrelevant. Nev-
ertheless, potential dynamical effects accumulated through
a long-time evolution are remarkably highlighted under this
framework.

As depicted in Fig. 4(a), the long-time-averaged COM
motion, Q[x(t )], as a function of δ for various ε with the initial
state |�(0)〉 = (|ψ−1

0 〉| − 1〉 + |ψ0
0 〉|0〉 + |ψ+1

0 〉| + 1〉)/
√

3,
is obtained by numerically solving the G-P equation (3). An
intriguing finding is that a series of resonant peaks are formed
at some specific linear Zeeman fields, whose values appear
to be affected by the strength of the quadratic Zeeman field.
That is, for ε/ω = 1, the resonance occurs at integer values
of δ/ω, whereas for ε/ω = 0.5, the resonant points of δ/ω

become half-integer. This phenomenon can be viewed as a
consequence of the out-of-phase interference among different
spin-orbit states.

To understand this clearly, attention should be turned to the
dynamical phase factors exp [−i(Ẽn,χ − Ẽn′,χ ′ )t/h̄] and the
corresponding terms X n,n′

χ,χ ′ in Eq. (11). Note that the dynamical

FIG. 4. The long-time-averaged quantity (a) Q[x(t )] and
(b) Q[Fx (t )] as functions of the linear Zeeman field δ for ε/ω = 0.5
(blue-solid curve) and ε/ω = 1 (red-dashed curve), with the ini-
tial state |�(0)〉 = (|ψ−1

0 〉| − 1〉 + |ψ0
0 〉|0〉 + |ψ+1

0 〉| + 1〉)/
√

3. The
other parameters are T = 70/ω, D/

√
mω/h̄ = 2, �/ω = 0.05, and

α = 2.

phases in the form (Ẽn,χ − Ẽn′,χ ′ )t/h̄ with χ �= χ ′ strongly
depend on both Zeeman fields δ and ε, whereas those possess-
ing a single spin subscript χ , namely, −i(Ẽn,χ − Ẽn′,χ )t/h̄,
do not. It is thus expected that the former should play the
key role in any Zeeman-field-related responses. In fact, for
general values of δ and ε, the diagonal terms X n,n

χ,χ are neg-
ligibly small since they are shown to be proportional to
(�/ω)2 (see the Appendix for details), and it is the energy
differences, Ẽn,χ − Ẽn′,χ ′ (n �= n′ and χ �= χ ′), which are on
the order of a few h̄ω, that dominate the time evolution
of the BEC. As a result, the dynamical parts in Eq. (11)
oscillate fast over time, making Q[x(t )] tend to vanish due
to the out-of-phase interference. However, tuning Zeeman
fields to the level avoided crossing point with En,0 = En+k,±1,
we get a maximally minimized energy difference, satisfy-
ing |Ẽn,χ − Ẽn′,χ ′ |/h̄ω = √

2|η|�/ω 	 1, which dramatically
slows down the time oscillation of the phase factors. Hence,
the out-of-phase interference is suppressed to the largest ex-
tent, giving rise to a considerable nonzero contribution to
Q[x(t )]. It follows that the level avoided crossing point, at
which the Zeeman fields δ and ε satisfy

δ ± ε = kω, (13)

063311-4



DYNAMICAL ZEEMAN RESONANCE IN … PHYSICAL REVIEW A 102, 063311 (2020)

FIG. 5. Plot of resonance condition in the ε-δ plane. The blue
solid curves correspond to the analytical relation in Eq. (13). The red
circles (yellow diamonds) come from numerical results of Q[x(t )]
(Q[Fx (t )]) obtained by solving the G-P equation (3). The initial state
and other parameters used in the numerical calculations are the same
as those in Fig. 4.

is nothing but the point at which the dynamical resonance
occurs. The resonant condition Eq. (13) is the main result of
this paper.

Along this reasoning, it seems that there should exist sim-
ilar resonant peaks at the level crossing point with En,+1 =
En+k,−1 as well [see, for example, the blue circles in Fig. 2(b)].
However, a straightforward calculation shows that, at this
point, X n,n+k

+1,−1 is on the order of (�/ω)2A∗
n′,χ ′An,χ , which turns

out to be vanishingly small in the perturbation regime. Thus,
the suppression of out-of-phase interference can generate little
contribution to Q[x(t )], resulting in the absence of the ex-
pected dynamical resonance. Figure 5 plots the coordinates
of resonant peaks in the ε- δ plane, which is obtained by
numerically solving the G-P equation (3). It is shown that the
numerical results are in quantitative agreement with Eq. (13).
The resonance condition in Eq. (13) is simple and quite
generic in the sense that it bridges between the linear and
quadratic Zeeman fields via only the trapping frequency ω

and is independent of other parameters such as the shifting
distance D, the time span T , and the SO coupling strength α.
This property offers interesting opportunities for the Zeeman-
fields-based quantum metrology.

Instead of responding linearly to the Zeeman fields, as is
known for systems without SO coupling, the spin polarization
here may exhibit similar resonant behavior. The physics fol-
lows that of the COM motion. Invoking the wave function in
Eq. (10), the ith component (i = x, y, z) of the spin polariza-
tion is written as

〈Fi(t )〉 =
∞∑

n=1

∞∑
n′=1

1∑
χ=−1

1∑
χ ′=−1

h̄J (i),n,n′
χ,χ ′ e− i

h̄ (Ẽn,χ −Ẽn′ ,χ ′ )t , (14)

with J (i),n,n′
χ,χ ′ = A∗

n′,χ ′An,χ 〈ψ̃n′,χ ′ |Fi|ψ̃n,χ 〉/h̄. As described
above, one of the key points of the Zeeman resonance lies in

the fact that the off-diagonal terms J (i),n,n′
χ,χ ′ dominate over the

diagonal ones J (i),n,n
χ,χ outside the level avoided crossing points.

This motivates us to focus on the spin polarization along
the transverse directions (i.e., directions in the x-y plane),
since in this case J (i),n,n

χ,χ is negligible compared to J (i),n,n′
χ,χ ′

in the sense that J (i),n,n
χ,χ /J (i),n,n′

χ,χ ′ ∼ �/ω. Following the same
derivation as that used in analyzing the COM motion,
we can reproduce the resonance condition in Eq. (13)
straightforwardly. Figure 4(b) shows the numerical results of
Q[Fx(t )] as a function of δ for various ε, whose peak positions
are well described by Eq. (13). More numerical results of
peak positions in the ε-δ plane are shown in Fig. 5, which
agree with Eq. (13) as expected.

It is worth noting that, unlike the conventional dynamical
phase transitions whose transition points are sensitive to the
initial state of the considered system [61–63], our discussion
about the proposed Zeeman resonance is not affected by dif-
ferent choices of |�(0)〉, provided that it is a superposition
of the three Zeeman sublevels | + 1〉, |0〉, and | − 1〉. Easy to
be satisfied in the current experiment with cold atoms, this
constraint on |�(0)〉 guarantees the off-diagonal terms Rn,n′

χ,χ ′

and J (x),n,n′
χ,χ ′ nonzero, which is necessary to support visible

resonant peaks.
We emphasize that although the transverse potential � is

not explicitly involved in Eq. (13), it plays a significant role
in inducing the dynamical Zeeman resonance of the COM
motion. This becomes immediately clear if we look at the
velocity of the COM,

υ(t ) = d〈x(t )〉
dt

= 〈px(t )〉
m

+ α〈Fz(t )〉. (15)

It follows from Eq. (15) that the SO coupling gives rise to
an anomalous spin-dependent velocity term, α〈Fz(t )〉, through
which the Zeeman-like fields can influence the orbital dy-
namics of the BEC [54]. Notice that for � = 0, the spin
component Fz is conserved such that the anomalous velocity
term remains constant during the time evolution. Therefore,
the COM motion is unaffected by both the linear and quadratic
Zeeman fields. The conservativeness of Fz is, however, broken
by the appearance of the transverse potential �. The two
Zeeman terms δFz and εF 2

z in Hamiltonian (2) can thus alter
the dynamics of the COM by directly affecting the anomalous
velocity α〈Fz(t )〉, as can be clearly seen in the equations of
motion of the spin vector 〈F〉. In fact, in the absence of �, the
off-diagonal terms, X n,n′

χ,χ ′ with χ �= χ ′, vanish, owing to the
orthogonality between different spin states. This further erases
the corresponding phase factors, exp [−i(Ẽn,χ − Ẽn′,χ ′ )t/h̄],
in Eq. (11) so that the dynamical resonant effect disappears. A
nonzero transverse potential, on the other hand, dresses orbital
states in different spin branches, as described by Eq. (7). This
renders X n,n′

χ,χ ′ to acquire finite values and thus validates the

resonance condition in Eq. (13). In Fig. 6(a) we plot Q[x(t )]
versus δ for different � with ε/ω = 0.5. This figure shows
that each peak of Q[x(t )] increases in height as � increases.
Especially for � = 0, no peaks can be found. Indeed, around
the level avoided crossing point, the leading order of terms
X n,n′

χ,χ ′ are shown to be �/ω. This signals that the peak values

of Q[x(t )] may scale as � when the transverse potential is
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FIG. 6. The long-time-averaged quantity, Q[x(t )] (a) and
Q[Fx (t )] (b), as functions of the linear Zeeman field δ for ε/ω = 0.5
(blue-solid curve) and different transverse potentials �. Inset: The
peak values of Q[x(t )] as a function of �/ω. The initial state and the
other parameters are the same as those in Fig. 4.

weak enough. In the inset of Fig. 6(a), we numerically plot
various peak values of Q[x(t )] as functions of �/ω. It is
found that these peak values can be well described by linear
functions of � for �/ω � 0.03. Interestingly, in contract to
the COM motion, the resonant peaks of spin polarizations
appear to have no explicit dependence on �, and they persist
even for � = 0 [see Fig. 6(b)]. This is because Fx couple states
with different spin angular momentum, yielding J (x),n,n′

χ,χ ′ �= 0,
regardless of the explicit value of �.

V. CONCLUSIONS

In conclusion, we have investigated the orbital and spin
dynamics of a SO-coupled spin-1 BEC and unraveled a
Zeeman-field-induced resonant effect in this system. The
resonant signature is encoded in the time-averaged COM
oscillation and spin polarizations, which exhibit remarkable
peaks when the Zeeman fields are tuned to certain strengths.
The underlying physics behind this resonance can be at-
tributed to the out-of-phase interference of the dynamical
phases carried by different SO states. We have also derived
an analytical expression for the resonant condition. This ex-
pression sets a connection between the linear and quadratic
Zeeman fields and may thus facilitate applications in quantum
information and quantum precision measurement.
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APPENDIX: PERTURBATION CALCULATIONS

In this Appendix, we provide the detailed derivation of
the eigenstates in Eq. (7) and eigenenergies (8) and (9),
based on the perturbation theory. For general parameters, the
unperturbed eigenenergies are nondegenerate, and thus the
nondegenerate perturbation formula applies. The eigenstates,
which are accurate up to first order in h̄�, are obtained as

|ψ̃n,±1〉 = ∣∣ψ±1
n

〉| ± 1〉

+ h̄�√
2

∞∑
n′=1

〈
ψ0

n′
∣∣ψ±1

n

〉
(n − n′)h̄ω ∓ h̄δ + h̄ε

∣∣ψ0
n′
〉|0〉, (A1)

|ψ̃n,0〉 = ∣∣ψ0
n

〉|0〉

+ h̄�√
2

∞∑
n′=1

〈
ψ+1

n′ |ψ0
n 〉

(n − n′)h̄ω + h̄δ − h̄ε

∣∣ψ+1
n′

〉|+1〉

+ h̄�√
2

∞∑
n′=1

〈
ψ−1

n′ |ψ0
n 〉

(n − n′)h̄ω − h̄δ − h̄ε

∣∣ψ−1
n′

〉|−1〉. (A2)

The corresponding eigenenergies are Ẽn,χ = En,χ +
h̄�〈ψn,χ |Fx|ψn,χ 〉 = En,χ . With the states in Eqs. (A1) and
(A2), we can readily make the following estimation of orders:
X n,n

χ,χ/(A∗
n′,χ ′An,χ ) ∼ (�/ω)2, X n,n′

0,±1/(A∗
n′,χ ′An,χ ) ∼ �/ω,

J (x/y),n,n
χ,χ /(A∗

n′,χ ′An,χ ) ∼ �/ω, and J (x/y),n,n′
0,±1 /(A∗

n′,χ ′An,χ ) ∼ 1.
However, when the energy levels are tuned to the

level avoided crossing point where |En,χ − En+k,χ ′ | 	 h̄ω,
we should employ the degenerate perturbation theory. As-
suming, for instance, En,+1 = En+k,0, the degenerate sub-
space is spanned by |ψn,+1〉 and |ψn+k,0〉. The secu-
lar equation of the perturbation matrix in this subspace,
det|h̄�〈ψn,χ |Fx|ψn+k,χ ′ 〉 − E (1)δχχ ′ | = 0, is expressed explic-
itly as ∣∣∣∣∣−E (1) h̄�√

2
η

h̄�√
2
η∗ −E (1)

∣∣∣∣∣ = 0, (A3)

where η = 〈ψ+1
n |ψ0

n+k〉. Note that since η is generally small,
we have neglected its dependence on n and k for simplicity.
It follows that the first-order corrections of the eigenenergies
are E (1)

± = ±h̄�|η|/√2, giving rise to⎧⎪⎨
⎪⎩

Ẽn+k,0 = En,0 + E (1)
+ = (n + k)h̄ω + 1√

2
h̄�|η|

Ẽn,+1 = En,+1 + E (1)
− = (n + k)h̄ω − 1√

2
h̄�|η|

Ẽn,−1 = En,−1

, (A4)

and the proper zeroth-order eigenstates are⎧⎪⎨
⎪⎩

∣∣ψ (0)
n,+1

〉 = 1√
2
( η

|η| |ψn,1〉 + |ψn+k,0〉)∣∣ψ (0)
n,0

〉 = 1√
2
(− η

|η| |ψn,1〉 + |ψn+k,0〉)∣∣ψ (0)
n,−1

〉 = |ψn,−1〉
. (A5)
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With the states in Eq. (A5), it is straightforward to derive the first-order perturbative eigenstates using the nonperturbation theory.
The resulting eigenstate takes the form of Eq. (7),

|ψ̃n,χ 〉 =
∞∑

n′=1

(
Cn,n′

χ,−1

∣∣ψ−1
n′

〉|−1〉 + Cn,n′
χ,0

∣∣ψ0
n′
〉|0〉 + Cn,n′

χ,+1

∣∣ψ+1
n′

〉|+1〉), (A6)

where

Cn,n′
+1,+1 =

√
2

2

η

|η| + h̄�

2

〈
ψ+1

n′
∣∣ψ0

n+k

〉
(n − n′ + k)h̄ω + h̄�/

√
2 + h̄δ − h̄ε

,

Cn,n′
+1,0 =

√
2

2
+ h̄�

2

η

|η|
(

1 +
√

2

2
δn′,n+k

) 〈
ψ0

n′
∣∣ψ1

n

〉
(n − n′ + k)h̄ω + h̄�/

√
2
,

Cn,n′
+1,−1 = h̄�

2

〈
ψ−1

n′
∣∣ψ0

n+1

〉
(n − n′ + k)h̄ω + h̄�/

√
2 − h̄δ − h̄ε

,

Cn,n′
0,+1 = −

√
2

2

η

|η| + h̄�

2

〈
ψ+1

n′
∣∣ψ0

n+k

〉
(n − n′ + k)h̄ω − h̄�/

√
2 + h̄δ − h̄ε

,

Cn,n′
0,0 =

√
2

2
− h̄�

2

η

|η|
(

1 +
√

2

2
δn′,n+k

) 〈
ψ0

n′
∣∣ψ1

n

〉
(n − n′ + k)h̄ω − h̄�/

√
2
,

Cn,n′
0,−1 = h̄�

2

〈
ψ−1

n′
∣∣ψ0

n+1

〉
(n − n′ + k)h̄ω − h̄�/

√
2 − h̄δ − h̄ε

,

Cn,n′
−1,+1 = 0, Cn,n′

−1,−1 = 1, Cn,n′
−1,0 =

√
2h̄�

2

〈
ψ0

n′
∣∣ψ−1

n

〉
(n − n′)h̄ω + h̄δ + h̄ε

.

Following exactly the same procedure, we can readily obtain the eigenenergies and eigenstates for the case of En,−1 = En+k,0.
Accurate up to first order in �, the eigenenergies are given by

⎧⎪⎨
⎪⎩

Ẽn,+1 = En,+1

Ẽn+k,0 = (n + k)h̄ω + 1√
2
h̄�|η|

Ẽn,−1 = (n + k)h̄ω − 1√
2
h̄�|η|

, (A7)

and the coefficients Cn,n′
χ,χ ′ in the eigenstate |ψ̃n,χ 〉 become

Cn,n′
+1,+1 = 1, Cn,n′

+1,−1 = 0, Cn,n′
+1,0 =

√
2h̄�

2

〈
ψ0

n′
∣∣ψ+1

n

〉
(n − n′)h̄ω − h̄δ + h̄ε

,

Cn,n′
0,+1 = h̄�

2

〈
ψ+1

n′
∣∣ψ0

n+k

〉
(n − n′ + k)h̄ω + h̄�/

√
2 + h̄δ − h̄ε

,

Cn,n′
0,0 =

√
2

2
+ h̄�

2

η

|η|
(

1 +
√

2

2
δn′,n+k

) 〈
ψ0

n′
∣∣ψ−1

n

〉
(n − n′ + k)h̄ω + h̄�/

√
2
,

Cn,n′
0,−1 = h̄�

2

〈
ψ−1

n′
∣∣ψ0

n+1

〉
(n − n′ + k)h̄ω + h̄�/

√
2 − h̄δ − h̄ε

,

Cn,n′
−1,+1 = h̄�

2

〈
ψ+1

n′
∣∣ψ0

n+k

〉
(n − n′ + k)h̄ω − h̄�/

√
2 + h̄δ − h̄ε

,

Cn,n′
−1,0 =

√
2

2
+ h̄�

2

η

|η|
(

1 +
√

2

2
δn′,n+k

) 〈
ψ0

n′
∣∣ψ−1

n

〉
(n − n′ + k)h̄ω − h̄�/

√
2
,

Cn,n′
−1,−1 =

√
2

2

η

|η| + h̄�

2

〈
ψ−1

n′
∣∣ψ0

n+1

〉
(n − n′ + k)h̄ω − h̄�/

√
2 − h̄δ − h̄ε

.
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