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Driven-dissipative systems have recently attracted great attention due to the existence of novel physical
phenomena with no analog in the equilibrium case. The Keldysh path-integral theory is a powerful tool to
investigate these systems. However, it has still been a challenge to study strong nonlinear effects implemented by
recent experiments, since in this case the photon number is few and quantum fluctuations play a crucial role in
the dynamics of the system. Here we develop an approach for deriving exact steady states of driven-dissipative
systems by introducing the Keldysh partition function in the Fock-state basis and then mapping the standard
saddle-point equations into Keldysh-Heisenberg equations. We take the strong Kerr nonlinear resonators with
and without the nonlinear driving as two examples to illustrate our method. It is found that, in the absence of the
nonlinear driving, the exact steady state obtained does not exhibit bistability and agrees well with the complex
P-representation solution. While in the presence of the nonlinear driving, the multiphoton resonance effects are
revealed and are consistent with the qualitative analysis. Our method provides an intuitive way to explore a
variety of driven-dissipative systems especially with strong correlations.
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I. INTRODUCTION

In recent years, the driven-dissipative systems have gotten
a lot of attention both theoretically and experimentally. In
these systems, the nonlinear interactions can be significantly
enhanced by controlling both the driving and dissipation
processes. For example, strong optical nonlinearities at the
single-photon level have already been observed in cavity
quantum electrodynamics (QED) [1,2], Rydberg atomic sys-
tems [3–5], optomechanical systems [6], and superconducting
circuit QED systems [7–12]. These advances in experimental
methods have greatly promoted the development of quantum
metrology, quantum information, and quantum optical devices
[13,14]. On the other hand, they also provide good platforms
for studying novel nonequilibrium physical phenomena, such
as the dynamical critical phenomena [15–17], time crystals
[18], and driven-dissipative strong correlations [19,20]. In this
context, how to understand the nonlinear effects in nonequi-
librium phenomena has become an important topic.

The Keldysh functional integral formalism in the coherent-
state basis is a general approach to study nonequilibrium
physics [21]. This technique provides a well-developed tool-
box of perturbation techniques to study the nonlinear effects
[22–24]. For example, in some systems such as the polari-
ton condensates [15,16] and atomic ensembles in cavities
[25–30], the single-particle actions are quadratic and the
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diagrammatic perturbation theory, based on Wick’s theorem,
can be performed. However, for coherently driven systems
such as optomechanical systems [31–34], the single-particle
actions are no longer quadratic and Wick’s theorem cannot
be applied directly. Fortunately, when the coherent driving is
strong and the nonlinear interaction is weak, the mean photon
number is large and the standard saddle-point approximation
can be well introduced. In this approach, the mean values of
operators are mainly determined by the classical path, which
satisfies the saddle-point equations, and quantum fluctuations
are treated as perturbations [22–24]. However, recent re-
searches have focused on the strongly nonlinear effects at the
level of individual photons, which are a benefit for processing
quantum information [14]. Experimentally, these require the
systems to be weakly driven and the nonlinear interactions
to be strong. As a result, the mean photon number is few
and quantum fluctuations play a crucial role in the dynamics
of the system. This indicates that the standard saddle-point
approximation is not reasonable.

To solve this crucial problem, we develop the Keldysh
path-integral theory in the Fock-state basis, from which the
standard saddle-point equations are mapped into quantum
Hamiltonian equations named as Keldysh-Heisenberg equa-
tions. As a result, the exact steady states induced by the
quantum fluctuation effect can be well derived. We take the
strong Kerr nonlinear resonators with and without nonlinear
driving as two examples to illustrate our method. It is found
that, in the absence of the nonlinear driving, the exact steady
state obtained does not exhibit bistability and agrees well with
the complex P-representation solutions. While in the presence
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of the nonlinear driving, the multiphoton resonance effects
are revealed and are consistent with the qualitative analysis.
Our method offers an effective way to explore a variety of
driven-dissipative systems, especially with strongly correlated
photons, based on the powerful toolbox of quantum field
theory.

II. STANDARD SADDLE-POINT APPROXIMATION

We begin to consider a dissipative Kerr nonlinear resonator
with a coherent driving term, in which the Hamiltonian is
written as (h̄ = 1 hereafter)

Ĥ = �câ†â + χ â†2â2 + i�(â† − â), (1)

where â (â†) is the annihilation (creation) operator of the
resonator, �c = ωc − ωp is the detuning with ωc and ωp being
respectively the frequencies of the resonator and driving field,
χ is the Kerr nonlinearity, and � is the driving amplitude.
We assume that the resonator is coupled to a zero-temperature
bath. Therefore, the dynamics of such a system are described
by the Lindblad master equation [35,36]

d

dt
ρ̂(t ) = Lρ̂(t ) = −i[Ĥ, ρ̂(t )] + γD[â]ρ̂(t ), (2)

where ρ̂(t ) is the density matrix, L is the Liouville super-
operator, γ is the one-photon decay rate, and D[ô]ρ̂(t ) =
ôρ̂(t )ô† − [ô†ôρ̂(t ) + ρ̂(t )ô†ô]/2 is the standard dissipator in
the Lindblad form. This Lindblad master equation can be
investigated by the Keldysh nonequilibrium quantum field
theory [22–24], in which the evolution takes place along the
closed time contour.

We suppose |α〉 as a coherent state, which is the eigenstate
of the annihilation operator â with the complex eigenvalue a
(i.e., â|α〉 = a|α〉). Note that the Keldysh close contour can be
divided into a sequence of infinitesimal time steps, as shown
in Fig. 1(a). Then the completeness relation in terms of the
coherent state, 1̂coh = ∫∫

(da∗da/π )e−|a|2 |α〉〈α|, is inserted in
between consecutive time steps [24]. In this coherent-state ba-
sis, the partition function, which corresponds to the Lindblad
master equation (2), is given by

Z =
∫

D[a+, a−] exp (iS), (3)

where + and − denote the forward and backward branches
and the action

S =
∫ +∞

−∞
dt

{
a∗

+(i∂t − �c)a+ − χa∗2
+ a2

+ − i�(a∗
+ − a+)

−a∗
−(i∂t − �c)a− + χa∗2

− a2
− + i�(a∗

− − a−)

−iγ a+a∗
− + i

γ

2
(a∗

+a+ + a∗
−a−)

}
. (4)

Note that the operators acting on the left- and right-hand sides
of the density matrix in Eq. (2) are corresponding to the fields
on the forward (+) and backward (−) time branches in the
Keldysh formalism [24]. This leads to characteristics of the
Keldysh functional integral with the doubling of degrees of
freedom. Therefore, the time evolution can be interpreted as
occurring along the closed Keldysh contour.

FIG. 1. (a) The Keldysh closed time contour in the coherent-state
basis (1̂coh). (b) Schematic diagram of the classical path (black solid
line) and its quantum fluctuations (gray dashed lines). The classi-
cal path satisfies the saddle-point equations and has the action S0,
while the quantum fluctuations have the action δS. In the context
of quantum optics, the operator â can be split into â → 〈â〉 + δâ,
where 〈â〉 describes the classical path, and δâ governs the quantum
fluctuation effect. (c) When the coherent driving is weak and the
nonlinear interaction is strong, the saddle-point equations may have
two solutions.

It is more convenient to discuss Eq. (4) in the Keldysh
basis,

acl = 1√
2

(a+ + a−), aq = 1√
2

(a+ − a−), (5)

where acl and aq are the classical and quantum fields [22–24].
After a straightforward calculation, the action is rewritten as

S =
∫ +∞

−∞
dt

{
a∗

cl (i∂t − �c)aq + a∗
q(i∂t − �c)acl

−i
γ

2
(a∗

claq − acla
∗
q ) + iγ a∗

qaq − i
√

2�(a∗
q − aq)

−χ
(
a∗2

cl aclaq + acla
∗2
q aq + a∗

cla
2
cla

∗
q + a∗

cla
∗
qa2

q

)}
. (6)

Note that in the presence of the coherent driving (� �= 0) the
first two lines of Eq. (6) are not quadratic. Therefore, we
cannot directly apply the diagrammatic perturbation theory,
which is based on Wick’s theorem, to calculate the nonlinear
term. Fortunately, when the coherent driving is strong and the
nonlinear interaction is weak, the mean photon number circu-
lating inside the resonator is large and the light field behaves
as a semiclassical field [35]. In such a case, the saddle-point
approximation can be well used to investigate the dynamics
of the system [22–24]. As show in Fig. 1(b), the mean values
of operators are mainly determined by the classical path and
quantum fluctuations are treated as perturbation. The classical
path is determined by the principle of least action:

δS

δa∗
cl

= 0,
δS

δa∗
q

= 0, (7)

which lead to two saddle-point equations

i∂t aq = 1
2 (2�c + iγ )aq + χ

(
2a∗

claclaq + a2
cla

∗
q + a∗

qa2
q

)
, (8)

i∂t acl = i
√

2� − iγ aq + 1
2 (2�c − iγ )acl
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FIG. 2. The steady-state mean photon number 〈â†â〉 as a func-
tion of the coherent driving amplitude �/γ , when �c/γ = 5 and
χ/γ = −0.25. The red solid lines are the stable solutions of Eq. (11),
while the red dash-dotted line is its unstable solution. These mean-
field solutions reflect the optical bistability phenomenon. The blue
dashed line is the exact steady-state solution from Eq. (26), which
has considered the quantum fluctuation effect.

+χ
(
2acla

∗
qaq + a∗

cla
2
cl + a∗

cla
2
q

)
. (9)

Equation (8) is always solved by

aq = a∗
q = 0. (10)

By substituting aq = a∗
q = 0 into Eq. (6), we find the action

S = 0 in the steady-state case. The more physical reason of
these results is that in the steady state the action on the forward
part of the contour is canceled by that on the backward part
[22–24]. As a result, S = 0 and a+ = a−, i.e., aq = a∗

q = 0.

In addition, we also obtain acl = √
2a0, where a0 = a+ = a−

is the steady-state mean value of â, i.e., a0 = 〈â〉 [25]. By
substituting aq = 0 and acl = √

2a0 into Eq. (9) and mak-
ing i∂t acl = 0, we obtain a0 = −2i�/(2�c − iγ + 4χ |a0|2),
from which the mean photon number

〈â†â〉 = |a0|2 = 4�2

4(�c + 2χ |a0|2)2 + γ 2
. (11)

This solution is identical to the mean-field solution of the
steady state [35,36]. In fact, the saddle-point approximation
is equivalent to the mean-field approach, named the lineariza-
tion approximation, in quantum optics [35]. In the spirit of
the linearization approximation, the operator â can be split
into an average amplitude and a fluctuation term, i.e., â →
〈â〉 + δâ, where 〈â〉 is determined by the mean-field equation.
The correspondence between these two methods is shown in
Fig. 1(b). As pointed out in Ref. [36], when the sign of �c is
opposite to that of χ , Eq. (11) may have two stable solutions
(see the red lines of Fig. 2). In other words, the action of the
system has two classical paths [see Fig. 1(c)]. As a result, the
perturbation calculation around the classical path may be not
reasonable. This phenomenon, called the optical bistability,
signals the failure of both the linearization approximation and
the saddle-point approximation. On the contrary, Drummond
and Walls derived a complex P-representation solution for the
steady state [36]. In that method, they considered the quantum

FIG. 3. The Keldysh closed time contour in the Fock-state basis
(1̂F = ∑

n |n〉〈n|).

fluctuation effect and found that the exact steady-state solution
does not exhibit bistability.

III. KELDYSH-HEISENBERG EQUATIONS

We note that the standard saddle-point equations are based
on the coherent-state basis. The coherent state is the closest
quantum-mechanical state to a classical description of the
field. It is a suitable representation for optical fields when
the total photon number is large and quantum fluctuations
are weak [35]. Obviously, this condition is not satisfied in the
bistable region. As shown in Fig. 2, in that region the coherent
driving is weak and the Kerr nonlinearity is the same order
as the other parameters. Therefore, the mean photon number
is not so large and quantum fluctuations induced by the Kerr
nonlinearity cannot be ignored. To overcome this shortcom-
ing, we introduce the Fock state, which is the eigenstate of the
photon number operator. In the Fock-state basis, we develop a
method using Keldysh-Heisenberg equations that governs the
quantum fluctuation effect.

In the Fock-state basis, the completeness relation inserted
in between consecutive time steps of the Keldysh close time
contour becomes 1̂F = ∑

n |n〉〈n| (see Fig. 3). In this case,
the Keldysh partition function for stationary states reads (see
Appendix A for details)

Z = Tr[exp(iŜ)], (12)

where Tr denotes the trace operation which connects the two
time branches, giving rise to the closed Keldysh contour [24].
Ŝ is the quantum action (like a time-evolution operator), where

Ŝ = −
∫ +∞

−∞
Ĥ dt . (13)

In Eq. (13), Ĥ is a generalized Hamiltonian operator. As
shown in Appendix A, Ĥ consists of operators acting on
different branches of the Keldysh closed time contour. For
the driven-dissipative Kerr nonlinear resonator described in
Eq. (2), the generalized Hamiltonian operator has the form

Ĥ = �câ†
+â+ + χ â†2

+ â2
+ + i�(â†

+ − â+)

−�câ†
−â− − χ â†2

− â2
− − i�(â†

− − â−)

+iγ â+â†
− − i

γ

2
(â†

+â+ + â†
−â−), (14)

where â± (â†
±) are the annihilation (creation) operators and

the subscript + (−) means that the operator only acts
on the forward (backward) time branch. These operators
obey the commutation relations: [â+, â†

+] = [â−, â†
−] = 1 and

[â+, â−] = 0. Note that Ĥ is a non-Hermitian operator and,
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however, is fundamentally different from the usual one in
quantum mechanics [37–39]. As we discussed above, the
degrees of freedom are doubled in the Keldysh formalism.
Therefore, the Hilbert space of Ĥ is a doubling Hilbert space
H+ ⊗ H−, where H+ and H− are the Hilbert spaces cor-
responding to â+ and â−, respectively. Comparing Eq. (13)
with Eq. (4), it can be found that we only need to replace the
complex variable a+ (a−) by the corresponding operator â+
(â− ) and omit the derivative with respect to time.

The time evolution of â± can be governed by (see
Appendix B for details)

i
d

dt
â± = [±â±, Ĥ]. (15)

We further define âcl = (â+ + â−)/
√

2 and âq = (â+ −
â−)/

√
2 as the annihilation operators of the classical and

quantum fields, respectively. Immediately, these operators
obey the commutation relations: [âcl , â†

cl ] = [âq, â†
q] = 1 and

[âq, âcl ] = 0. And the quantum action in Eq. (13) is changed
to Ŝ = − ∫ +∞

−∞ Ĥdt = − ∫ +∞
−∞ (Ĥ↑ + Ĥ↓)dt , where

Ĥ↑ = i
√

2�â†
q + 1

2 (2�c − iγ )â†
qâcl

+χ (â†
cl âcl + â†

qâq − 1)â†
qâcl , (16)

Ĥ↓ = −i
√

2�âq − iγ â†
qâq + 1

2 (2�c + iγ )â†
cl âq

+χ (â†
cl âcl + â†

qâq − 1)â†
cl âq. (17)

Through these transformations, the Hilbert space of Ĥ is
changed to Hq ⊗ Hcl , where Hq and Hcl are the Hilbert
spaces corresponding to âq and âcl , respectively. And the time
evolutions of âq and âcl can be governed by the following
equations:

i
d

dt
âq = [âcl , Ĥ] (18)

= 1

2
(2�c + iγ )âq + χ

(
2â†

cl âcl âq + â2
cl â

†
q + â†

qâ2
q

)
,

i
d

dt
âcl = [âq, Ĥ]

= i
√

2� − iγ âq + 1

2
(2�c − iγ )âcl

+χ
(
2âcl â

†
qâq + â†

cl â
2
cl + â†

cl â
2
q

)
. (19)

Since Eqs. (18) and (19) are formally similar to the Heisen-
berg equations for an equilibrium system, we can call them
Keldysh-Heisenberg equations. Interestingly, it is easy to
verify that the Keldysh-Heisenberg equations can also be ob-
tained by replacing acl and aq in the saddle-point equations
(8) and (9) with the corresponding operators. It means that the
Keldysh-Heisenberg equations can also be obtained by quan-
tizing the semiclassical saddle-point equations. In contrast
to the standard saddle-point equations, Keldysh-Heisenberg
equations can completely capture the information induced by
quantum fluctuations. Therefore, we use them to obtain the
exact steady-state solution.

We assume the steady-state wave function as |�0〉, which
is a vector in the doubling Hilbert space Hq ⊗ Hcl . Note
that, in the steady state, the expectation values of opera-

tors do not evolve over time; i.e., i d
dt 〈�0|âq|�0〉 = 0 and

i d
dt 〈�0|âcl |�0〉 = 0. Using these conditions and Eqs. (18) and

(19), we obtain the following equations:

0 = 〈�0|[âcl , Ĥ]|�0〉 (20)

= 〈�0| 1
2 (2�c + iγ )âq

+χ
(
2â†

cl âcl âq + â2
cl â

†
q + â†

qâ2
q

)|�0〉,
0 = 〈�0|[âq, Ĥ]|�0〉

= 〈�0|i
√

2� − iγ âq + 1
2 (2�c − iγ )âcl

+χ
(
2âcl â

†
qâq + â†

cl â
2
cl + â†

cl â
2
q

)|�0〉. (21)

If |�0〉 is defined as a coherent state, i.e., âq|�0〉 = aq|�0〉 and
âcl |�0〉 = acl |�0〉, where aq and acl are constants, we recover
the mean-field saddle-point solutions by substituting aq and
acl into Eqs. (20) and (21), as discussed in Sec. II. However,
these solutions cannot capture the information induced by
quantum fluctuations and should be omitted. Instead, we find
Eq. (20) can be solved by âq|�0〉 = 0, i.e., â+|�0〉 = â−|�0〉.
As a result, the steady-state wave function can be assumed as

|�0〉 = |0〉q

+∞∑
m=0

βm|m〉cl , (22)

where |m〉cl is the Fock state in the occupation number
basis and βm is the expansion coefficient. Interestingly, us-
ing Eqs. (18) and (19) we find |�0〉 satisfies a generalized
Schrödinger equation,

i∂t |�0〉 = Ĥ|�0〉. (23)

Substituting Ĥ and the form of |�0〉 in Eq. (22) into the
eigenequation Ĥ|�0〉 = h|�0〉 where h is the eigenvalue, we
find it can be fulfilled only for h = 0, i.e., Ĥ|�0〉 = 0. Using
Ĥ|�0〉 = 0, it is also straightforward to verify 〈�0|Ŝ|�0〉 = 0.
It means that the action on the forward part of the contour is
canceled by that on the backward part. Therefore, the wave
function in Eq. (22) is reasonable.

Using Ĥ|�0〉 = 0 [or Eq. (21)], we can get a recursion
relation for the expansion coefficient as

βm =
√

2

m

ε

x + m − 1
βm−1, (24)

with ε = �/(iχ ) and x = (2�c − iγ )/(2χ ). Based on this
recursion relation, the steady-state wave function

|�0〉 = 1√
N

|0〉q

+∞∑
m=0

(
√

2ε)m

√
m!

�(x)

�(x + m)
|m〉cl , (25)

where �(x) is the gamma special function and N =
0F2(x∗, x; 2|ε|2) is the normalization constant with

0F2(x∗, x; 2|ε|2) = ∑+∞
m=0

�(x∗ )�(x)
�(x∗+m)�(x+m)

(2|ε|2 )m

m! being the
generalized hypergeometric function. According to the
relation âcl = (â+ + â−)/

√
2, we obtain the steady-state

correlation function

〈â†l âk〉 = 〈â†l
− âk

+〉 = 1√
2l+k

〈�0|â†l
cl â

k
cl |�0〉

= (ε∗)lεk�(x∗)�(x)

�(x∗ + l )�(x + k)
0F2(x∗ + l, x + k; 2|ε|2)

0F2(x∗, x; 2|ε|2)
, (26)
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which is equivalent to the complex P-representation solution
in Ref. [36]. In Fig. 2, we plot the steady-state mean photon
number 〈â†â〉 as a function of the coherent driving amplitude
�. Obviously, the exact steady state does not exhibit bistabil-
ity (see the blue dashed line).

IV. NONLINEAR DRIVING CASE

In this section, we extend our method to the two-photon
nonlinear driving case implemented recently in superconduct-
ing quantum circuits [40]. The effective Hamiltonian reads

Ĥ =�câ†â + χ â†2â2 + i�(â†−â) + 1
2(�â†2+�∗â2), (27)

where � is the complex amplitude of the two-photon driving
term. The Lindblad master equation becomes

d

dt
ρ̂(t ) = −i[Ĥ, ρ̂(t )] + γD[â]ρ̂(t ) + κD[â2]ρ̂(t ), (28)

where κ is the two-photon loss rate.
In the presence of the two-photon driving and loss terms,

we rewrite Ĥ = Ĥ↑ + Ĥ↓ as

Ĥ↑ = 1

2
(2�c − iγ )â†

qâcl + χ (â†
cl âcl + â†

qâq − 1)â†
qâcl

+i
√

2�â†
q − i

κ

2
(â†

cl âcl − â†
qâq + 1)â†

qâcl

+�â†
qâ†

cl , (29)

Ĥ↓ = 1

2
(2�c + iγ )â†

cl âq + χ (â†
cl âcl + â†

qâq − 1)â†
cl âq

−i
√

2�âq + i
κ

2
(â†

cl âcl − â†
qâq + 1)â†

cl âq

−(iγ + 2iκ â†
cl âcl )â

†
qâq + �∗âcl âq. (30)

Similar to the discussion in Sec. III, we formally define
the steady-state wave function as |�0〉. Using the Keldysh-
Heisenberg equations, we also find that âq|�0〉 = 0. There-
fore, we can also define |�0〉 as |�0〉 = |0〉q

∑∞
m=0 βm|m〉cl .

It is also easy to verify that Ĥ|�0〉 = 0 and 〈�0|Ŝ|�0〉 = 0.
Finally, using Ĥ|�0〉 = 0 we get a recursion relation for the
expansion coefficient as

[(2�c − iγ ) + (2χ − iκ )(m − 1)]
√

mβm

= − i2
√

2�βm−1 − 2�
√

m − 1βm−2. (31)

The last term in Eq. (31), which corresponds to the term
�â†

qâ†
cl in Ĥ↑, makes the recursion relation difficult to solve.

To simplify the calculation, we use a displacement transfor-
mation Ĥ′ = eλâ†

cl (Ĥ↑ + Ĥ↓)e−λâ†
cl = Ĥ′

↑ + Ĥ′
↓. Under this

transformation, âq is not changed (eλâ†
cl âqe−λâ†

cl → âq), but âcl

has a displacement (eλâ†
cl âcl e−λâ†

cl → âcl − λ). When choosing
λ = i

√
2�/(2χ − iκ ), the term �â†

qâ†
cl can be eliminated and

the condition Ĥ|�0〉 = 0 is thus equivalent to Ĥ′|�0〉 = 0
with |�0〉 = eλâ†

cl |�0〉 = |0〉q

∑∞
m=0 φm|m〉cl , where φm is also

the expansion coefficient. Since Ĥ↓ is proportional to âq, the

equation Ĥ′|�0〉 = 0 reduces to Ĥ′
↑|�0〉 = 0, where

Ĥ′
↑ = χ [â†

cl âcl âcl − 2λâ†
cl âcl + (âcl − λ)(â†

qâq − 1)]â†
q

−i
κ

2
[â†

cl âcl âcl − 2λâ†
cl âcl − (âcl − λ)(â†

qâq − 1)]â†
q

+i
√

2�â†
q + 1

2 (2�c − iγ )(âcl − λ)â†
q. (32)

And the recursion relation for the expansion coefficient is
given by

φm = 2λ√
m

y + m − 1

z + m − 1
φm−1, (33)

where y = [−i2
√

2� + λ(2�c − iγ )]/[2λ(2χ − iκ )] and
z = (2�c − iγ )/(2χ − iκ ). This recursion relation is solved
by φm = (2λ)m√

m!
�(y+m)
�(z+m) , from which the steady-state wave

function |�0〉 = e−λâ†
cl |�0〉 is obtained by (see Appendix C

for details)

|�0〉= 1√
N

|0〉q

+∞∑
m=0

(−λ)m 2F1(−m, y; z; 2)√
m!

|m〉cl , (34)

where N = ∑+∞
m=0

|λ|2m

m! |2F1(−m, y; z; 2)|2 is the normalization

constant and 2F1(−m, y; z; 2) = ∑+∞
n=0

(−m)n(y)n
(z)n

2n

n! is the gen-
eralized hypergeometric function with (r)n = �(r + n)/�(r).
Based on Eq. (34), the steady-state correlation function is

〈â†l âk〉 = 1

N
√

2l+k

+∞∑
m=0

1

m!
F∗

m+lFm+k, (35)

where Fm+k = (−λ)m+k
2F1[−(m + k), y; z; 2]. It can be veri-

fied that Eq. (35) is equivalent to the complex P-representation
solution in Ref. [41].

Using Eq. (35), we can study the influence of different
driving processes on the nonlinear effects. For example, we
consider the multiphoton resonances in the weak driving
regime, which are easy to observe in experiments and can be
used to measure the photon-photon interactions [42]. In this
situation, the mean photon number is small and the mean-
field approach is not reasonable. We first make a qualitative
prediction from the Hamiltonian (27). When the energy of
n incident photons is equivalent to the energy of n pho-
tons inside the resonator, that is, nωp = nωc + χn(n − 1),
the absorption of n pumping photons is favored. Expressed
in terms of the detuning �c = ωc − ωp, this relation reads
�c/χ = −(n − 1). On the other hand, the parity of n depends
on the driving processes. In the absence of the one-photon
driving (� = 0 and � �= 0), an even number of pumping
photons is favored (n is even) and �c/χ = −1,−3,−5, . . .,
while in the presence of both the one- and two-photon driving
(� �= 0 and � �= 0), n can be any integer greater than 0 and
�c/χ = 0,−1,−2,−3,−4, . . .. In Fig. 4, we plot the steady-
state mean photon number 〈â†â〉 as a function of the detuning
�c/χ , based on Eq. (35). This figure shows clearly that, in
the absence of the one-photon pumping (see the blue dashed
line), the photon resonances arise around �c/χ = −1 and −3,
while in the presence of both the one- and two-photon driving
(see the red solid line), the photon resonances arise around
�c/χ = 0, −1, −2, and −3. These results are consistent with
the qualitative analysis.
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FIG. 4. The steady-state mean photon number 〈â†â〉 as a function
of the detuning �c/χ , when �/χ = 0 (blue dashed line) and �/χ =
0.1 (red solid line). The other parameters are chosen as γ /χ = 0.1,
κ/χ = 0.1, and �/χ = 0.2.

V. CONCLUSIONS

In summary, we have established the Keldysh path-integral
theory in the Fock-state basis, from which the Keldysh-
Heisenberg equations are successfully introduced. In contrast
to the standard saddle-point equations, these quantum op-
erator equations can well describe the quantum fluctuation
effect and thus present the exact steady-state solutions. We
have also considered two examples of the driven-dissipative
Kerr nonlinear resonators with and without the two-photon
nonlinear driving. Our results agree well with the qualitative
analysis and those obtained by the complex P-representation
method [36,41] and the coherent quantum-absorber method
[43,44].

Before ending this paper, we compare our method with
the complex P-representation method [36] and the coher-
ent quantum-absorber method [43,44], both of which have
also considered the quantum fluctuation effect. For the com-
plex P-representation method, an operator master equation
has been transformed to a c-number Fokker-Planck equa-
tion, and many complicated integration operations have to
be faced. While for the coherent quantum-absorber method,
an auxiliary resonator, which has the same Hilbert space
dimension as the original resonator, should be introduced.
By constructing the Hamiltonian for the auxiliary resonator
appropriately, this cascaded system has a “dark” state. Then,
one can get the steady state of the original system by tracing
out the auxiliary cavity. Our developed Keldysh functional-
integral method with the Keldysh-Heisenberg equations is
more physical and intuitive. Moreover, it has the potential to
deal with more complex problems, such as the nonequilibrium
strong-correlated systems that have attracted much attention
in both theory [17,45–48] and experiment [19,20]. How-
ever, the complex P-representation method and the coherent
quantum-absorber method are not suitable for these prob-
lems. For the complex P-representation method, the form of
c-number Fokker-Planck equation should satisfy the potential
conditions. However, these conditions are usually not satisfied
in the presence of interactions between different modes [35],
whereas for the coherent quantum-absorber method, it is diffi-
cult to construct auxiliary resonators to simulate the coupling
between strongly correlated systems and the environment.

Instead, the Keldysh-Heisenberg equations could solve these
complex problems since it can be easy to combine with pow-
erful tools of quantum field theory, such as the linked-cluster
expansion approach and the renormalization group method
[22]. For example, we just need to divide the quantum action
Ŝ as Ŝ = Ŝ0 + ŜI = − ∫ +∞

−∞ Ĥ0dt − ∫ +∞
−∞ ĤI dt , where Ĥ0 is

the solvable part of the generalized Hamiltonian Ĥ and ĤI is
the perturbation part. Then we can take the steady-state wave
function of Ĥ0 as the unperturbed steady state and calculate
the influence of ĤI by the perturbation theory. We also noticed
that in the previous literature of strong-correlated systems,
the Keldysh path functional integral is in the coherent-state
basis [17,46,47]. Therefore, the quantum fluctuation effects
are still not been fully studied. In the near future, we hope our
method can be extended to explore nonequilibrium phenom-
ena induced by quantum fluctuations.
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APPENDIX A: KELDYSH PARTITION FUNCTION IN
THE FOCK-STATE BASIS

In this Appendix, we derive the Keldysh partition function
in the Fock-state basis in detail. A general Lindblad master
equation reads

d

dt
ρ̂(t ) = Lρ̂(t ) = −i[Ĥ, ρ̂(t )] + γD[ô]ρ̂(t ), (A1)

where Ĥ is any Hamiltonian of the system. For a one- or two-
photon loss process, ô can be chosen as â or â2. Without loss of
generality, we set ô = â hereafter. Using the master equation
(A1), the time evolution of the density matrix from t0 to t f is
formally solved by

ρ̂(t f ) = e(t f −t0 )Lρ̂(t0) = lim
N→∞

(1 + δtL)N ρ̂(t0), (A2)

where we have decomposed the time evolution into a sequence
of infinitesimal steps of duration δt = (t f − t0)/N . We focus
on a single time step, and denote the density matrix after the
jth step (t j = t0 + jδt) by ρ̂ j = ρ̂(t j ). Then we have

ρ̂ j+1 = eδtLρ̂ j = (1 + δtL)ρ̂ j + O(δt2). (A3)

Since the Liouville superoperator L acts on the density
matrix “from both sides,” it is more convenient to represent the
density matrix in the Keldysh closed time contour. As shown
in Fig. 3 of the main text, this can be achieved by projecting
the density matrix into the two time branches [24]:

ρ̂ j ≡ P̂+, j ρ̂ j P̂−, j, (A4)

where P̂+, j (P̂−, j) is the projection operator on the forward
(backward) branch at the time t j . Obviously, if we choose
P̂ as a unit operator of the coherent state, i.e., P̂ = 1̂coh =∫∫

(da∗da/π )e−|a|2 |α〉〈α|, we can get the partition function
in Sec. II [24]. Instead, here we choose P̂ as the identity in the
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Fock space, i.e., P̂± = 1̂F = ∑
n |n±〉〈n±|. In this case, ρ̂ j can

be written as

ρ̂ j ≡
∑
m,n

|m+〉〈m+|ρ̂ j |n−〉〈n−|

=
∑
m,n

〈m+|ρ̂ j |n−〉|m+〉〈n−|. (A5)

We now consider ρ̂ j+1 ≡ ∑
k,l 〈k+|ρ̂ j+1|l−〉|k+〉〈l−| in

terms of the corresponding matrix element at the previous
time step t j . Inserting Eq. (A5) into Eq. (A3), we obtain

〈k+|ρ̂ j+1|l−〉
=

∑
m,n

〈k+|[(1 + δtL)(〈m+|ρ̂ j |n−〉|m+〉〈n−|)]|l−〉

=
∑
m,n

(δk,mδl,n − iδtHk,l,m,n)〈m+|ρ̂ j |n−〉, (A6)

where

Hk,l,m,n = i〈k+|L(|m+〉〈n−|)|l−〉
= 〈k+|Ĥ |m+〉〈n−|l−〉 − 〈k+|m+〉〈n−|Ĥ |l−〉

+iγ 〈k+|â|m+〉〈n−|â†|l−〉
−i

γ

2
〈k+|â†â|m+〉〈n−|l−〉

−i
γ

2
〈k+|m+〉〈n−|â†â|l−〉. (A7)

Equation (A7) shows that the operators act on the forward
or backward time branch, respectively. Therefore, we can
introduce a generalized Hamiltonian operator:

Ĥ = Ĥ+ − Ĥ− + iγ â+â†
− − i

γ

2
(â†

+â+ + â†
−â−), (A8)

where Ĥ± are the Hamiltonians of the forward and backward
time branches, respectively. Based on Eqs. (A7) and (A8),
Hk,l,m,n can be seen as a matrix element of Ĥ, i.e.,

Hk,l,m,n = 〈n−|〈k+|Ĥ|l−〉|m+〉, (A9)

and the trace of ρ̂ j+1 can thus be expressed as a simple form:

Trρ̂ j+1

= Tr
∑

k,l,m,n

(δk,mδl,n − iδtHk,l,m,n)〈m+|ρ̂ j |n−〉|k+〉〈l−|

= Tr
∑

k,l,m,n

(δk,mδl,n − iδtHk,l,m,n)|n−〉|k+〉〈l−|〈m+|ρ̂ j

= Tr
(
1 − iδtĤ

)
ρ̂ j

= Tr
(
e−iδtĤρ̂ j

) + O(δt2). (A10)

By iteration of Eq. (A10), the density matrix evolves from
ρ̂(t0) at t0 to ρ̂(t f ) at t f = tN . This implies that in the limit
N → ∞ (and hence δt → 0 ),

Zt f ,t0 = Trρ̂(t f ) = Tr[exp(iŜ)ρ̂(t0)], (A11)

with Ŝ = − ∫ t f

t0
Ĥdt .

Finally, we perform the limit, t0 → −∞ and t f → +∞, to
get the Keldysh partition function for stationary states. Since
in a Markov process, the initial state in the infinite past does

not affect the stationary state [24], we can ignore the boundary
term, i.e., ρ̂(t0) in Eq. (A11), and obtain the final expression
of the Keldysh partition function as

Z = Tr[exp(iŜ)], (A12)

with the quantum action

Ŝ = −
∫ +∞

−∞
Ĥdt . (A13)

APPENDIX B: DERIVING THE KELDYSH-HEISENBERG
EQUATIONS

In this Appendix, we derive the Keldysh-Heisenberg equa-
tions by considering the average values of operators. For
example, we define 〈â+〉 j as the average value of â+ at time
t j . Using Eq. (A10), we find

〈â+〉 j+1 − 〈â+〉 j

= Trâ+ρ̂ j+1 − Trâ+ρ̂ j

= Tr
∑

k,l,m,n

(−iδtHk,l,m,n)〈m+|ρ̂ j |n−〉â+|k+〉〈l−|

= Tr
∑

k,l,m,n

(−iδtHk,l,m,n)|n−〉(â+|k+〉)〈l−|〈m+|ρ̂ j

= Tr
∑

k,l,m,n

(−iδtHk,l,m,n)â+|n−〉|k+〉〈l−|〈m+|ρ̂ j

+(iδtHk,l,m,n)|n−〉|k+〉〈l−|〈m+|â+ρ̂ j

= Tr{−iδt[â+, Ĥ]ρ̂ j}
= −iδt〈[â+, Ĥ]〉 j . (B1)

Obviously, Eq. (B1) can be expressed as a simple form

i
d

dt
〈â+〉 = 〈[â+, Ĥ]〉. (B2)

Similarly, we also find

〈â−〉 j+1 − 〈â−〉 j

= Trρ̂ j+1â− − Trρ̂ j â−

= Tr
∑

k,l,m,n

(−iδtHk,l,m,n)〈m+|ρ̂ j |n−〉|k+〉〈l−|â−

= Tr
∑

k,l,m,n

(−iδtHk,l,m,n)|n−〉|k+〉(〈l−|â−)〈m+|ρ̂ j

= Tr
∑

k,l,m,n

(−iδtHk,l,m,n)|n−〉|k+〉〈l−|〈m+|â−ρ̂ j

+(iδtHk,l,m,n)â−|n−〉|k+〉〈l−|〈m+|ρ̂ j

= Tr{−iδt[Ĥ, â−]ρ̂ j}
= −iδt〈[−â−, Ĥ]〉 j . (B3)

Thus, the dynamic equation of 〈â−〉 can be expressed as

i
d

dt
〈â−〉 = 〈[−â−, Ĥ]〉. (B4)

Comparing with Eq. (B2), we find Eq. (B4) has a minus
sign. The physical reason for this result is that â− is on the
backward time branch that has antitime ordering [22–24].
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Therefore, the dynamics of â+ and â− in the Heisenberg
picture are described by

i
d

dt
â± = [±â±, Ĥ]. (B5)

Finally, by defining âcl = (â+ + â−)/
√

2 and âq = (â+ −
â−)/

√
2, we obtain the Keldysh-Heisenberg equations in the

main text, i.e.,

i
d

dt
âq = [âcl , Ĥ], i

d

dt
âcl = [âq, Ĥ]. (B6)

APPENDIX C: STEADY-STATE WAVE FUNCTION FOR
THE NONLINEAR DRIVING CASE

We present the detailed derivation of Eq. (34) of the main
text. The steady-state wave function is

|�0〉 = e−λâ†
cl |�0〉 = 1√

N
e−λâ†

cl |0〉q

+∞∑
k=0

φk|k〉cl

= 1√
N

|0〉q

+∞∑
j=0

(−λâ†
cl )

j

j!

+∞∑
k=0

φk|k〉cl

= 1√
N

|0〉q

+∞∑
j,k=0

(−λâ†
cl )

j

j!

(2λ)k

√
k!

(y)k

(z)k
|k〉cl

= 1√
N

|0〉q

+∞∑
j,k=0

(2λ)k (−λ) j√( j + k)!

j!k!

× (y)k

(z)k
| j + k〉cl . (C1)

Letting j + k = m, we obtain

|�0〉 = 1√
N

|0〉q

+∞∑
m=0

m∑
k=0

(2λ)k (−λ)m−km!√
m!(m − j)!k!

(y)k

(z)k
|m〉cl

= 1√
N

|0〉q

+∞∑
m=0

m∑
k=0

(2λ)k (−λ)m−km!√
m!(m − j)!k!

(y)k

(z)k
|m〉cl

= 1√
N

|0〉q

+∞∑
m=0

m∑
k=0

2k (−λ)m(−1)km!√
m!(m − j)!k!

(y)k

(z)k
|m〉cl

= 1√
N

|0〉q

+∞∑
m=0

+∞∑
k=0

2k (−λ)m(−m)k√
m!k!

(y)k

(z)k
|m〉cl

= 1√
N

|0〉q

+∞∑
m=0

(−λ)m 2F1(−m, y; z; 2)√
m!

|m〉cl . (C2)
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