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Memory-critical dynamical buildup of phonon-dressed Majorana fermions
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We investigate the dynamical interplay between the topological state of matter and a non-Markovian dis-
sipation, which gives rise to a crucial timescale into the system dynamics due to its quantum memory. We
specifically study a one-dimensional polaronic topological superconductor with phonon-dressed p-wave pairing,
when a fast temperature increase in surrounding phonons induces an open-system dynamics. We show that when
the memory depth increases, the Majorana edge dynamics transits from relaxing monotonically to a plateau
of substantial value into a collapse-and-buildup behavior, even when the polaron Hamiltonian is close to the
topological phase boundary. Above a critical memory depth, the system can approach a new dressed state of the
topological superconductor in dynamical equilibrium with phonons, with nearly full buildup of the Majorana
correlation.
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I. INTRODUCTION

Exploring topological properties out of equilibrium is cen-
tral in the effort to realize, probe, and exploit topological states
of matter in the laboratory [1–15]. A paradigmatic scenario
is where the topological system is coupled to a Markovian
bath, inducing open-dissipative dynamics that is described by
a Lindblad-form master equation for the time-evolved reduced
system density operator [16–28]. Yet solid-state realizations
of topological matter, such as topological superconductors
[29–40], are often based on semiconductor nanostructures,
which are coupled to a structured phonon environment as
a result of the deformation of host materials and its lattice
vibrations. In this case, the Markovian approximation and thus
the Lindblad formalism usually fail. Compared to Markovian
scenarios, key differences arise from the presence of quantum
memory effects in non-Markovian processes: The information
is lost from the system to the environment but flows back
at a later time [41,42]. This generates a timescale into the
system dynamics that is strictly absent in a Markovian context
and raises the challenge as to what the unique dynamical
consequences of this interplay between the topological state
of matter and non-Markovian dissipation are.

Here, we demonstrate that the quantum memory from
a non-Markovian parity-preserving interaction of a topo-
logical p-wave superconductor with surrounding phonons
can give rise to intriguing edge mode relaxation dynam-
ics without a Markovian counterpart. Our study is based
on the polaron master equation, describing open-dissipative
dynamics of a polaronic topological superconductor with

*o.kaestle@tu-berlin.de

phonon-renormalized Hamiltonian parameters (see Fig. 1).
In contrast to Markovian decoherence that typically destroys
topological features for long times, we show that a finite
quantum memory allows for substantial preservation of topo-
logical properties far from equilibrium, even when the polaron
Hamiltonian is close to the topological phase boundary [see
Fig. 2(b)]. Depending on the memory depth (i.e., the charac-
teristic timescale of the quantum memory), the Majorana edge
dynamics can monotonically relax to a plateau, or it undergoes
a collapse-and-buildup relaxation [see Fig. 2(c)]. Remarkably,
when the memory depth increases above a critical value, the
edge correlation can nearly fully build up, corresponding to
a new polaronic state of the topological superconductor in
dynamical equilibrium with phonons.

II. POLARONIC KITAEV CHAIN

Concretely, we consider the paradigmatic Kitaev p-wave
superconductor [43], with super-Ohmic coupling to a three-
dimensional (3D) structured phonon reservoir. The total
Hamiltonian is denoted by H0 = Hk + Hb (h̄ ≡ 1). The
Kitaev Hamiltonian Hk =

∑N−1
l=1 [(−Jc†

l cl+1 + !clcl+1) +
H.c.] − µ

∑N
l=1 c†

l cl describes spinless fermions cl and c†
l on a

chain of N sites l , with a nearest-neighbor tunneling amplitude
J ∈ R, pairing amplitude ! ∈ R, and chemical potential µ.
When |µ| < 2J and ! ̸= 0, it is in the topological regime fea-
turing unpaired Majorana edge modes γL/R =

∑
j=1 fL/R, jb j

[here, we use the Majorana operators b2 j−1 = c j + c†
j and

b2 j = −i(c j − c†
j )], with fL/R, j being exponentially localized

near the left (L) and right (R) edges. The Majorana modes
exhibit a nonlocal correlation θ = −i⟨γLγR⟩ = ±1 that cor-
responds to the fermionic parity of the (degenerate) ground
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FIG. 1. Left: A polaronic Kitaev chain, with phonon-dressed
spinless fermions, exhibits a renormalized p-wave pairing ⟨B⟩! at
temperature T [see Eq. (1)]. In the topological ground state, two
unpaired Majorana edge modes, γL and γR, emerge. The coupling
gk to the structured phonon bath features mode dependence with
spectral width σ . Right: Gaussian profile of gk in momentum space
for σ = 0.2 (green) and σ = 0.6 (red).

states. The entire chain is coupled to a 3D structured phonon
reservoir with a parity-preserving interaction, described by
Hb =

∫
d3k [ωkr†

krk +
∑N

l=1 gkc†
l cl (r

†
k + rk)] [44–52]. Here,

the operator r (†)
k annihilates (creates) phonons with momen-

tum k and frequencies ωk = csk, where cs is the sound
velocity of the environment. This coupling is commonly ap-
plied for the description of polaron formation [53–58] and
in solid-state setups can represent the coupling of semicon-
ductor nanostructures to longitudinal acoustic phonons, which
typically feature a long wavelength. We choose a generic
super-Ohmic fermion-phonon coupling gk which features fre-
quency dependence modeled as a Gaussian function, gk =
fph

√
k/σ 2 exp (−k2/σ 2), with σ being the width and fph be-

ing a dimensionless amplitude. We consider the topological
superconductor and bath to be initially in equilibrium at low
temperatures, before a fast increase in the bath temperature
induces an open-system dynamics.

III. POLARON MASTER EQUATION

At the heart of our following solution lies the polaron
representation of the coupled system (see Fig. 1). We de-
rive a master equation in second-order perturbation theory
of the dressed-state system-reservoir Hamiltonian [59]. In
this dressed-state picture, the coherent process (i.e., higher-
order contributions) from the fermion-phonon interaction is
retained through phonon-renormalized Hamiltonian parame-
ters [53–58,60–64]. In this way, we efficiently account for the
non-Markovian character of the dynamics in the long-time
limit not accessible and not captured in the typical second-
order Born approximation of the bare-interaction Hamiltonian
Hb [44–47].

Defining collective bosonic operators R† =∫
d3k (gk/ωk )r†

k , we apply a polaron transformation
Up = exp[

∑N
l=1 c†

l cl (R† − R)] resulting in c†
l → e−(R−R† )c†

l ,
which describes phonon dressing of fermions. The
transformed total Hamiltonian Hp ≡ UpH0U −1

p is derived
as

Hp =
N−1∑

l=1

[−Jc†
l cl+1 + !e−2(R−R† )c†

l+1c†
l + H.c.]

− µ

N∑

l=1

c†
l cl +

∫
d3k ωkr†

krk. (1)

Thus, the considered fermion-phonon interaction results in a
polaronic Kitaev chain featuring phonon-dressed p-wave pair-
ing, with phonon-induced quantum fluctuations. In deriving
Eq. (1), we have ignored an arising energy renormalization
term Hshift =

∫
d3k (g2

k/ωk )(
∑N

l=1 c†
l cl )2, known as the po-

laron shift. In the context of non-Markovian dynamics, it
is standard practice to neglect this term if the initial condi-
tion is equilibrium [60,65], which is the case in the present
work, where the initial state is assumed to be the ground
state of an ideal Kitaev chain. However, to ensure validity
of our results even in the presence of this energy renormal-
ization, in Appendix A we provide additional numerically
exact calculations in the presence of the polaron energy shift,
demonstrating that its inclusion does not affect the essential
physics presented below. Before tracing out the phononic
degrees of freedom, we rewrite Eq. (1) as Hp = Hp,s + Hp,I +
Hp,b, with Hp,b =

∫
d3k ωkr†

krk for the reservoir. To recover
the bare Kitaev Hamiltonian dynamics for the limiting case
gk → 0, we introduce a Franck-Condon renormalization of
Hp,I satisfying TrB{[Hp,I, ρ(t )]} = 0, with ρ(t ) denoting the
total density operator. The renormalized system Hamiltonian
Hp,s is given by

Hp,s=
N−1∑

l=1

[−Jc†
l cl+1+!⟨B⟩c†

l+1c†
l +H.c.]−µ

N∑

l=1

c†
l cl , (2)

where the pairing renormalization factor ⟨B⟩ is given explic-
itly below. The system-reservoir interaction in the polaron pic-
ture reads Hp,I = !

∑N−1
l=1 [(e−2(R−R† ) − ⟨B⟩)c†

l+1c†
l + H.c.].

We will focus on the limit ⟨B⟩ ≪ 1, which allows us to treat
Hp,I perturbatively in second-order Born theory, as dynamical
decoupling effects cannot occur [57,60]. In Appendix B, we
provide a detailed derivation of the polaron master equation
for the reduced system density matrix ρS (t ) of the polaron
chain, obtaining

∂tρS (t ) = − i[Hp,s, ρS (t )] − ⟨B⟩2
∫ t

0
dτ

× ({cosh [φ(τ )] − 1} [Xa, Xa(−τ )ρS (t )]

− sinh [φ(τ )][Xb, Xb(−τ )ρS (t )] + H.c.). (3)

Here, Xa =−!
∑N−1

l=1 (c†
l c†

l+1 + cl+1cl ) and Xb =
!

∑N−1
l=1 (c†

l c†
l+1 − cl+1cl ) denote collective system

operators, whose dynamics obeys a time-reversed unitary
evolution governed by the renormalized Hamiltonian Hp,s,
Xa,b(−τ ) ≡ e−iHp,sτ Xa,beiHp,sτ . φ(τ ) represents the phonon
correlation function,

φ(τ ) =
∫

d3k |2gk (σ )/ωk|2

×
[

coth
(

h̄ωk

2kBT

)
cos (ωkτ ) − i sin(ωkτ )

]
, (4)

with kB being the Boltzmann constant. The renormalization
factor ⟨B⟩ in Eq. (2) is determined by the initial phonon cor-
relation, ⟨B⟩ = exp[−φ(0)/2], with temperature dependence
[66].

Equation (3) provides the key equation for our study. It fea-
tures a phonon-renormalized Hamiltonian Hp,s and a memory
kernel involving both reservoir and system correlators φ(τ )
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FIG. 2. Non-Markovian dynamics of the polaronic topological superconductor. (a) Phonon correlation function φ(τ ) for bandwidth σ =
0.2 (green) and σ = 0.6 (red) of the fermion-phonon coupling gk . (b) Comparisons of Majorana correlation θ (t ) calculated using the time-
independent Lindblad-type master equation for dephasing (solid black line) and Eq. (3) with fully accounting for memory (solid blue line).
The dashed black line shows asymptotic θ (t ) in a coherent quench scenario ! → !⟨B⟩. (c) Non-Markovian dynamics of θ (t ) for various
bandwidths σ of phonon coupling. The corresponding steady-state value θ (t∞) is shown as a function of σ in the inset. In all plots, we choose
N = 4, J = ! = 0.01, µ = 0; the amplitude of gk is taken to be fph = 0.1, and phonon modes within k ∈ [0.0, 4.0] nm−1 are considered.

and Xa,b(−τ ). Crucially, the correlation of a super-Ohmic
phonon bath has a finite lifetime [see Fig. 2(a)], φ(τ ) ≈ 0
for τ > τM . Therefore, at times t > τM , only those Xa,b(−τ )
within the past times τ ! τM contribute to the integral in
Eq. (3). That is, the memory has a finite depth ∼τM , so that
for t > τM the integral becomes essentially time independent.
The memory effect is substantial when Xa,b(−τ ) evolves on
a timescale, typically determined by E−1

! , where E! is the
bulk gap of Hp,s, comparable to τM . For given temperature
and sound velocity cs, φ(τ ) and τM critically depend on the
bandwidth σ of fermion-phonon coupling gk [see Fig. 2(a)]:
A larger σ yields a smaller τM and at the same time leads to a
smaller φ(0) and thus a larger ⟨B⟩.

Below we investigate the Majorana mode correlation
θ (t ) = −iTr[ρS (t )γLγ j] = −

∑2N
i,l=1 fL,i fR,l*il (t ) [24]. Here,

*il (t ) = i
2 Tr{ρ(t )[bi, bl ]}, and fL/R,i are the Majorana wave

functions of the initial Kitaev Hamiltonian in the Majorana
basis. For concreteness, we assume the system is initially in
the even-parity ground state of a perfect Kitaev chain with
! = J and µ = 0, where fL,i = δi,1 and fR,l = δl,2N , such
that θ (t ) reduces to θ (t ) = −*1,2N (t ). Then, a fast increase of
temperature to T = 4 K results in ! → !⟨B⟩ of the dressed
Hamiltonian, thus inducing the dynamics of the polaron chain
for times t > 0. Due to the numerically very expensive size of
the density matrix and its memory kernel, computations are
performed for N = 4 sites.

IV. MEMORY: LOSS VERSUS REPHASING OF
TOPOLOGICAL PROPERTIES

In Fig. 2(b), the solid blue line shows the non-Markovian
dynamics of θ (t ) for σ = 0.6 (corresponding to ⟨B⟩ = 0.07),
which decays to a substantial value. Compared to the Marko-
vian decoherence which eventually destroys Majorana modes
(solid black line), the long-lived and substantial Majorana
correlation seen in the non-Markovian dynamics is quite re-
markable, particularly given that Hp,s is near the topological
phase boundary due to a significantly suppressed renormal-
ized pairing ! ⟨B⟩ ≪ !. Indeed, without the dissipation in
Eq. (3), the dynamics formally reduces to that of a coherent
quench in the pairing from ! to ! ⟨B⟩. There, the Majorana

correlation would approach an asymptotic value determined
by the overlap of the edge mode wave functions for the pre-
and postquench topological Hamiltonians [24], which is small
if the postquench Hamiltonian is near the phase boundary
(dashed black line). This differs significantly from the non-
Markovian behavior in Fig. 2(b) and underscores the essential
role of the memory effect.

A unique feature of the memory effect is that it, be-
cause of the dependence on both φ(τ ) and the reversed
dynamics of system correlations Xa,b(−τ ), simultaneously
introduces decoherence and backflow of coherence. The dy-
namical consequence of these two competing processes can
be intuitively understood as follows: The dressed Kitaev
wire initially in its ground state is perturbed by a tem-
perature increase to T , resulting in a renormalization of
the polaron chain towards the phase boundary via φ(0) =∫

d3k |2gk (σ )/ωk|2 coth [h̄ωk/(2kBT )], which generates sig-
nificant bulk excitations and populates the Majorana edge
mode, changing the parity of Majorana states. Combined with
phonon-assisted dephasing, this leads to strong decoherence
in the polaronic Kitaev wire. On the other hand, the reversed
dynamics of Xa,b(−τ ) acts to reinstate the coherence of the
p-wave pairing that is the key ingredient for a topological
wire. Such a rephasing effect is marginal, at times smaller than
τM , so an irreversible loss of parity information dominates
the short-time dynamics. Once φ(τ ) decays to zero at large
times τ > τM , the memory reaches its full depth, and the
rephasing of topological properties grows due to Xa,b(−τ ),
giving a considerable Majorana correlation in Fig. 2(b). While
the calculated system is small, we remark that this asymptotic
nonlocal correlation is not due to phonon-mediated long-
range interaction and is of topological origin, as we can show
that the correlations decay with relative spacing, whereas the
edge-edge correlation is significant (see Appendix C).

V. CRITICAL MEMORY DEPTH

We find the edge dynamics can exhibit distinct relaxation
behavior depending crucially on the memory depth, tunable
through the bandwidth σ of fermion-phonon coupling. Fig-
ure 2(c) presents the non-Markovian dynamics of θ (t ) for
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various σ . Compared to σ = 0.6 [blue line in Fig. 2(b)], an
initial decrease of σ results in a steeper monotonic decay of
θ (t ) and a smaller asymptotic value [blue line in Fig. 2(c)].
However, when σ decreases further, the monotonic relax-
ation transits into a nonmonotonic one: While the short-time
decoherence is accelerated, a buildup of edge correlation
nonetheless occurs at some large times (purple line). Such a
buildup becomes stronger with decreasing σ , approaching an
asymptotic value larger than the σ = 0.6 case (turquoise and
green lines). Strikingly, once σ surpasses a critical value, the
asymptotic Majorana correlation approaches θ (t∞) → 1 (or-
ange and dashed red lines). The inset in Fig. 2(c) summarizes
the nonmonotonic variation of θ (t∞): When σ decreases from
a large value, θ (t∞) first decreases to a minimum and then
increases toward unity.

Insights into the above intriguing phenomena can be ob-
tained from the fact that reducing σ leads to an increased
lifetime of φ(τ ) and therefore increased memory, at the cost
of a smaller ⟨B⟩ = exp[−φ(0)/2] [see Fig. 2(a)]. The for-
mer enhances the timescale of the time-reversed evolution
of Xa,b(−τ ) and hence the rephasing of pairing, whereas the
latter further suppresses the bulk gap E! of Hp,s as well
as weakening the memory strength. When σ is initially de-
creased from 0.6, the latter effect dominates, aggravating
the decay. With further reduction of σ , however, the former
rephasing effect grows, allowing phonons and fermions to
synchronize and hence inducing backflow of parity informa-
tion. Consequently, a new dressed state manages to emerge,
with buildup of Majorana correlation starting to dominate
over decoherence. In general, we estimate the recovery of
correlation can begin at times t > τM if E!τM ! 1 is satisfied.
Importantly, the existence of a critical σ indicates a criti-
cal memory depth, above which the system asymptotically
approaches a new polaronic steady state in dynamical equilib-
rium with phonons at T = 4 K, which can remarkably exhibit
θ ≈ 1. The critical value of σ in our case is between 0.21 and
0.20, corresponding to ⟨B⟩ = 0.01, but it is model specific.
We note that the fermion-phonon coupling bandwidth can be
controlled, such as in solid-state setups with nanotechnologi-
cal design, e.g., alloys, impurities, and confinement potentials
[67–70].

VI. CONCLUDING DISCUSSION

The central results of our work shown in Fig. 2 are
found to be robust for initially nonideal Kitaev chains (see
Appendix D) and other forms of super-Ohmic coupling.
In the presence of perturbation caused by weak attrac-
tive p-wave interactions, we find a speedup of the revival
of Majorana correlation. Specifically, in Fig. 3, we cal-
culate the non-Markovian evolution of θ (t ) by including
Hint = U

∑N−1
l=1 (c†

l cl − 1/2)(c†
l+1cl+1 − 1/2) with interaction

strength |U | ≪ 1 in Hp,s of Eq. (3) for σ = 0.6. The inter-
action is treated exactly in our numerical solution, which is
mandatory since resorting to approximate descriptions such as
a mean-field approach would inevitably destroy entanglement
in the system over time. Compared to the U = 0 case (blue
line), we see that adding a weak attractive interaction U < 0
not only shortens the time needed to reach the steady state,
but it can further enhance, depending on |U |, the asymptotic
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FIG. 3. Non-Markovian Majorana dynamics for the renormal-
ized Hamiltonian Hp,s in the presence of weak p-wave interaction,
Hint = U

∑N−1
l=1 (c†

l cl − 1/2)(c†
l+1cl+1 − 1/2). Calculations are per-

formed at N = 4, J = ! = 0.01, µ = 0, and σ = 0.6.

Majorana correlation for subcritical memory depth (orange
and red lines). An intuitive understanding can be obtained
by noting that the attractive interaction is energetically fa-
vorable for coherent formation of superconductive pairing,
which provides a mechanism to counteract the aforemen-
tioned phonon-induced dephasing. This is consistent with the
observation that for U > 0, θ (t ) significantly declines from
the U = 0 case at long times (purple line), as repulsive inter-
actions energetically suppress pairing.

Summarizing, we have demonstrated memory-critical
edge dynamics in a topological superconductor with non-
Markovian interaction with phonons, resulting in a revival
of topological properties. We show this intriguing phe-
nomenon uniquely arises from the interplay between the
phonon-renormalized topological Hamiltonian and the quan-
tum memory effect that simultaneously induces dephasing
and information backflow. Our analysis is based on the Ki-
taev chain, but we expect the essential physics to occur for
a wide class of topological materials coupled to a super-
Ohmic reservoir. Currently, there are significant efforts in
the condensed-matter context aimed at realizing Majorana
fermions based on the hybrid superconductor and semicon-
ductor nanowires. The phonon-fermion coupling described
here is relevant for InAs nanowires [29–34], where the acous-
tic phonons of InAs are in the range of typical nanowire length
realization up to 100 nm and have super-Ohmic coupling as
investigated in our study. In a broader context, we anticipate
the fundamental non-Markovian feature of reservoir-induced
recovery of topological properties may also be seen in cold-
atom setups where phonons stem from the excitations of
the superfluid reservoir coupled to ultracold quantum gases
[71–73] or in setups where a coupling to bosons is inten-
tionally induced as long as such coupling is structured and
induces non-Markovian system-reservoir correlations. We fi-
nally note our work is different from some recent work on
topological systems which also considered non-Markovian
system-bath interactions. In Refs. [74–76] an impurity or a
qubit is employed as a non-Markovian quantum probe of a
topological reservoir, and Ref. [77] shows that a topological
phenomenon induced by a Markovian dissipation can persist
in non-Markovian regimes. In contrast, our study demon-
strated that tailoring the coupling to a super-Ohmic reservoir
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may suppress the loss of, and even fully restore, topologi-
cal properties, which opens an appealing prospect as to the
explorations and control of memory-dependent topological
phenomena.
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APPENDIX A: POLARON SHIFT

The polaron transformation of the open-system Hamilto-
nian yields an additional term,

Hshift =
∫

d3k
g2

k

ωk

(
N∑

l=1

c†
l cl

)2

, (A1)

which is known as the polaron shift describing a polaron-
induced energy renormalization. In the present study, we are
justified to neglect this polaron shift under proper conditions:
In the context of non-Markovian dynamics, it is standard
practice to neglect this polaron shift if the initial condition is
equilibrium, along the lines of Leggett (see, e.g., Refs. [60,65]
and references therein). In our study, the initial state is as-
sumed to be the ground state of a Kitaev chain, and therefore,
the polaron shift is ignored according to the convention. We
do not discuss a generic account of the polaron shift beyond
the aforementioned condition, which remains, to date, an open
question in the context of the non-Markovian community and
is, of course, beyond the scope of our current work.

Nonetheless, to demonstrate that our qualitative results are
invariant against this energy renormalization, we provide cal-
culations in the presence of the polaron energy shift, which are
treated numerically exactly. In Fig. 4, we show the resulting
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FIG. 4. Non-Markovian dynamics of the polaronic Majorana
correlation θ (t ) for various bandwidths σ of the phonon coupling.
Here, calculations include the polaron shift term Hshift . The corre-
sponding steady state value θ (t∞) is shown as a function of σ in the
inset, comparing the cases including the polaron shift (solid line) and
disregarding it (dashed line). We have used N = 4, J = ! = 0.01,
µ = 0, fph = 0.1, and phonon modes within k ∈ [0.0, 4.0] nm−1 are
considered.

non-Markovian dynamics of Majorana correlation including
Hshift . In addition, in the inset in Fig. 4, the steady-state
correlations for various σ are compared for the cases includ-
ing the polaron shift (solid line) and disregarding it (dashed
line). As can be seen from Fig. 4, including the polaron shift
does not change the qualitative behavior and memory-critical
buildup of the Majorana correlation. The polaron shift term
is proportional to the width σ of the coupling. However, this
merely affects the number of nonzero phonon modes taken
into account for the energy renormalization, resulting in a
plateau of the steady-state correlation at intermediate σ and
slightly decreased steady-state values at large σ (see the inset
plot in Fig. 4). This is not to be confused with the large impact
of σ on the correlation described in the main text, which
originates from the strong dependence of the lifetime of the
phonon correlation φ(τ ) on σ .

APPENDIX B: POLARON MASTER EQUATION

For the description of the non-Markovian open-system
dynamics, the polaron master equation is employed. It
is derived in second-order perturbation theory of the
polaron-transformed, dressed-state system-reservoir Hamilto-
nian. Phonon contributions are traced out in the process, while
higher-order contributions of the fermion-phonon interactions
by the phonon-renormalized Hamiltonian are still accounted
for [53–58,60,61]. For the derivation of the master equation
in the polaron picture, the perturbative expansion is performed
with respect to the phonon-renormalized superconducting gap
!⟨B⟩, with ⟨B⟩ ≪ 1. The parameter !⟨B⟩ is defined in the
polaronic frame and addresses the strong fermion-phonon cor-
relations in question.

The von Neumann equation ∂tρ(t ) = i/h̄[H, ρ(t )] is for-
mally solved by integration and reinserted into itself. First, it is
assumed that the environment is large compared to the system
and initially in a thermal equilibrium state, known as the bath
assumption. As a consequence, the reservoir is assumed to
be a Gaussian bath with a defined temperature. Under these
conditions, the Born approximation then is applied, assuming
a weak system-bath interaction. As a consequence of weak
coupling between the system and reservoir, the latter is not
perturbed by excitation transfer from the system. Hence, it
remains in its initial equilibrium state for all times, ρB(t ) ≈
ρB(0), and the density matrix factorizes under these assump-
tions [60]: ρ(t − τ ) ≈ ρS (t − τ ) ⊗ ρB(0), with indices S and
B denoting the system and reservoir parts of the density ma-
trix ρ(t ), respectively. Here, τ denotes past times that are
taken into account for the calculation of the current state
within the scope of the second-order perturbative treatment.
In addition, the first Markovian approximation is applied,
during which the history of the system part of the state is
disregarded: ρS (t − τ ) ≈ ρS (t ). It is assumed that the current
state is mainly determined by the previous system state alone,
which is again valid if the influence from the reservoir is
weak. However, the interaction between the system and the
reservoir itself maintains a history, as the influence of the
phonons is taken into account on their own timescale. As a
result, the interaction has a memory. Tracing out the phonon
degrees of freedom results in the non-Markovian Redfield
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master equation for the reduced system density matrix ρS [60],

∂tρS (t ) = − iTrB{[Hp,s + Hp,b + Hp,I, ρS (t ) ⊗ ρB]}

−
∫ t

0
dτTrB{[Hp,I, [Hp,I(−τ ), ρS (t ) ⊗ ρB]]}. (B1)

We define collective system and reservoir operators

Xa(t ) = −!

N−1∑

l=1

(c†
l c†

l+1 + cl+1cl ), (B2)

Xb(t ) = !

N−1∑

l=1

(c†
l c†

l+1 − cl+1cl ), (B3)

and

Ba(t ) = e2[R(t )−R†(t )] + e−2[R(t )−R†(t )], (B4)

Bb(t ) = e2[R(t )−R†(t )] − e−2[R(t )−R†(t )], (B5)

with R† =
∫

d3k (gk/ωk )r†
k . The Franck-Condon renormal-

ized, polaron-transformed interaction Hamiltonian then takes
the form

Hp,I(t ) = 1
2 Xa(t )[Ba(t ) − ⟨Ba⟩] + 1

2 Xb(t )Bb(t ). (B6)

As a next step, the integrand of Eq. (B1) is calculated.
Assuming the phonon number nk is a Bose distribution, result-
ing in (2nk + 1) = coth [h̄ωk/(2kBT )], and making use of the
Baker-Campbell-Hausdorff formula, the time-reversed bath
correlations of the form ⟨Ba,bBa,b(−τ )⟩, ⟨Ba,b(−τ )Ba,b⟩ can
be evaluated. We define the phonon correlation function

φ(τ ) =
∫

d3k |2gk (σ )/ωk|2

×
[

coth
(

h̄ωk

2kBT

)
cos (ωkτ ) − i sin(ωkτ )

]
(B7)

and arrive at the final form of the bath correlations,

⟨BaBa(−τ )⟩ = 4 exp [−φ(0)] cosh [φ(τ )],

⟨BbBb(−τ )⟩ = −4 exp [−φ(0)] sinh [φ(τ )], (B8)

with ⟨Ba,bBa,b(−τ )⟩ = ⟨Ba,b(−τ )Ba,b⟩∗. Inserting these ex-
pressions into Eq. (B1), we arrive at the polaron master
equation

∂tρS (t ) = − i[Hp,s, ρS (t )] − e−φ(0)
∫ t

0
dτ

× ({cosh [φ(τ )] − 1} [Xa, Xa(−τ )ρS (t )]

− sinh [φ(τ )][Xb, Xb(−τ )ρS (t )] + H.c.), (B9)

which, due to the limits of the applied approximations, is valid
for the case of weak system-reservoir interactions [41,42].
The initial separability of the system and reservoir is justified
by the assumed initial state featuring a Majorana correlation.
Afterwards, separability is ensured by the bath assumption
and Born approximation as long as we remain in the weak-
coupling regime ⟨B⟩ ≪ 1, where the polaron master equation
holds.

For the calculation of the full system-reservoir memory
kernel, the time evolution of the system correlators Xa,b(−τ )
is determined by the static part of the polaron Hamiltonian,

Xa,b(−τ ) = e−iHp,sτ Xa,beiHp,sτ . We get, for a specific matrix
element,

⟨m| Xa,b(−τ ) |n⟩ =
∑

{s}
⟨m|U (τ, 0)Xa,b |s⟩ ⟨s|U †(τ, 0) |n⟩

=
∑

{s}
⟨s|U †(τ, 0) |n⟩ ⟨m|︸ ︷︷ ︸

=:ρc (0)

U (τ, 0)Xa,b |s⟩

= Tr{ρc(−τ )Xa,b}, (B10)

with |n⟩ = |n1, n2, . . . , nN ⟩ and site occupations nl = {0, 1}.
Here, we introduced the conditional density matrix ρc(−τ ),
whose time evolution dynamics must be determined for
all possible initial conditions ρc(0) = |n⟩ ⟨m|, i.e., with
⟨n| ρc(0) |m⟩ = 1 and all other entries being zero. The dynam-
ics of ρc(t ) is provided by ∂tρc(t ) = −i[Hp,s, ρc(t )]. For the
numerical solution of the integro-differential polaron master
equation, we employ two nested fourth-order Runge-Kutta
algorithms: (i) The first time integration is required to eval-
uate the integral over all past times, which consists of the
system correlators Xa,b(−τ ) = e−iHp,sτ Xa,beiHp,sτ and the time-
dependent phonon correlation function φ(τ ). (ii) In a second
time integration, the reduced system time evolution dynamics
are calculated using the previously determined integral up to
the current time step.

To investigate the robustness of Majorana edge states in
the Kitaev chain, we calculate the Majorana edge-edge cor-
relation. In the case of an ideal Kitaev chain it is given by
−i ⟨γLγR⟩ (t ) = Tr{ρ(t )(c1 + c†

1)(c†
N − cN )}. Assuming even

parity conditions, i.e.,
∑N

l=1 nl = 2ν, ν ∈ N0 in the Jordan-
Wigner phase factor, this yields

⟨θ⟩ (t ) =
∑

{n}
[⟨1, n2, . . . , nN−1, 0| ρ(t ) |0, n2, . . . , nN−1, 1⟩

+ ⟨0, n2, . . . , nN−1, 1| ρ(t ) |1, n2, . . . , nN−1, 0⟩
+ ⟨0, n2, . . . , nN−1, 0| ρ(t ) |1, n2, . . . , nN−1, 1⟩
+ ⟨1, n2, . . . , nN−1, 1| ρ(t ) |0, n2, . . . , nN−1, 0⟩].

(B11)

APPENDIX C: TOPOLOGICAL CORRELATION

Due to the numerically expensive calculation of the density
matrix and the finite memory kernel of the polaron mas-
ter equation, the considered chain size is chosen at N =
4 sites. Here, we demonstrate that the observed Majorana
correlation at long times is genuinely of topological origin,
rather than caused by phonon-mediated long-range correla-
tions. To this end, we calculate the asymptotic correlation
limt→+∞{−iTr[ρS (t )b1b2 j]} between the Majorana operators
b1 and b2 j for lattice sites j = 2, 3, 4. Figure 5 shows the re-
sulting correlation dynamics for widths σ = {0.6, 0.2} of the
fermion-phonon coupling element. We see that the correlation
decays with the separation d = j − 1 and becomes vanish-
ingly small for d = 2 but increases to attain a significant value
at the right edge for d = 3. We see this phenomenon as a topo-
logical signature reflecting the nonlocal Majorana correlation
because if the beyond-nearest-neighbor correlation for sep-
aration d > 1 originates from phonon-mediated effects, one
would expect a monotonous decay with the two-site distance.
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FIG. 5. The asymptotic correlation −i⟨b1b2 j⟩(t∞) =
limt→+∞{−iTr[ρS (t )b1b2 j]} between Majorana operators b1

and b2 j for lattice sites j = 2, 3, 4 in a Kitaev chain of length
N = 4, respectively calculated at fermion-phonon coupling widths
σ = {0.6, 0.2}. We take J = ! = 0.01, µ = 0, fph = 0.1.

APPENDIX D: NONIDEAL KITAEV CHAIN

In the main text we showed our results with an initially
ideal Kitaev chain, where the overlap between the left and
right Majorana modes is strictly zero even for a small system
of four sites. If the initial Kitaev chain deviates away from the

0

0.5

1

0 1 2

θ(
t)

100 Jt

σ = 0.6
σ = 0.4

σ = 0.3

 0

 1

1 2 3 4site

fL
fR

FIG. 6. Dynamics of the edge-edge correlation −i⟨b1b2N ⟩(t ) =
−iTr[ρS (t )b1b2N ] for a nonideal Kitaev chain with J = !, µ = 0.1 J,
and N = 4. Results for several coupling widths σ are shown.

ideal case, the Majorana wave function fL/R,i extends into the
bulk. But for very small deviations, it is still possible to find
suitable parameter regimes to ensure a small overlap between
Majorana modes for a four-site system. In Fig. 6, we present
calculations for the edge-edge correlation −iTr[ρS (t )b1b2N ]
for an initially nonideal initial Kitaev Hamiltonian with J = !
and µ = 0.1J , and still, we observe revival of the correlation
when σ is tuned below a threshold value.
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