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ABSTRACT: Due to the large anomalous Hall effect, magnetic Weyl
semimetals can support nonreciprocal surface plasmon polariton
modes in the absence of an external magnetic field. This implies that
magnetic Weyl semimetals can find novel application in (thermal)
photonics. In this work, we consider the near-field radiative heat
transfer between two magnetic Weyl semimetal slabs and show that the
heat transfer can be controlled with a relative rotation of the parallel
slabs. Thanks to the intrinsic nonreciprocity of the surface modes, this
so-called twisting method does not require surface structuring like
periodic gratings. The twist-induced control of heat transfer is due to
the mismatch of the surface modes from the two slabs with a relative
rotation.

KEYWORDS: near-field radiative heat transfer, nonreciprocity, magnetic Weyl semimetals, anomalous Hall effect, twist,
surface plasmon polaritons

Near-field radiative heat transfer (NFRHT) can largely
exceed the Planckian limit of blackbody radiation1 due

to the contribution from surface electromagnetic modes2−12

and attracts particular scientific interest triggered by exper-
imental advances.13−23 For novel applications, it is important
to actively control NFRHT. Several strategies have been
proposed, such as applying an electric field to phase-change
materials24 or ferroelectric materials,25 applying an external
magnetic field to magneto-optical materials,26−31 drift
currents,32,33 and regulating the chemical potential of
photons.34 Another active control strategy is to utilize the
rotational degree of freedom.35−42 In analogy to the twistronic
concept in low-dimensional materials43−45 and photonics,46−49

this control strategy is also called the twisting method. So far,
most of the proposals for the realizations of the twisting
method require nanometer-sized periodic gratings to create
anisotropic patterns.35,38−41

Due to inherent time-reversal symmetry breaking, magnetic
Weyl semimetals (WSMs), such as Co3Sn2S2,

50,51 Ti2MnAl,52

EuCd2As2,
53 Co2MnGa,54 and Co2MnAl,55 can exhibit a large

anomalous Hall effect so that the dielectric tensor has large off-
diagonal components. This leads to the existence of non-
reciprocal surface plasmon polaritons (SPPs)56−59 and breaks
the Lorentz reciprocity. The broken Lorentz reciprocity
violates Kirchhoff’s law of radiation and opens opportunities
for a variety of radiative applications.60−66 Compared to
magneto-optical materials, magnetic WSMs break Lorentz
reciprocity intrinsically in the absence of external magnetic
fields and this has been studied from the perspective of
(thermal) radiation very recently.67−71 Moreover, it has been

shown that magnetic WSMs can exhibit nonreciprocal
reflectivity without surface structuring using a planar inter-
face.69

In this Letter, we employ the intrinsic nonreciprocity of the
surface modes in magnetic WSMs and demonstrate that
NFRHT between magnetic WSMs can be actively controlled
via twist. We will first show how the nonreciprocal dispersion
of SPPs changes with the incidence plane of the light. Using
fluctuational electrodynamics, we will study the implications of
nonreciprocity on NFRHT and the twisting effects between
two WSM slabs.

Surface Plasmon Polaritons. In WSM, either inversion or
time-reversal symmetry needs to be broken to split a doubly
degenerate Dirac point into a pair of Weyl nodes with opposite
chirality.72,73 Each pair of Weyl nodes are separated in
momentum space (denoted by wave vector 2b) by breaking
time-reversal symmetry or with an energy of 2ℏb0 by breaking
the inversion symmetry. The presence of Weyl nodes changes
the electromagnetic response and the displacement electric
field for WSM in the frequency domain is written as74
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with ω the angular frequency. The dielectric function ϵd is
expressed as ϵd = ϵb + iσ/ω, where ϵb is the background
permittivity and σ is the bulk conductivity. It is seen from eq 1
that b0 gives rise to the chiral magnetic effect and b is the
anomalous Hall effect. This implies that magnetic WSMs with
a broken time-reversal symmetry can give rise to the
anomalous Hall effect. Considering 2b along the y-direction
in momentum space (b = bq̂y) and the inversion symmetric
system with b0 = 0, we have = ϵ ϵD E0 in the Cartesian
coordinate system where the dielectric tensor is
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with ϵa = be2/(2π2ϵ0ℏω). It has been reported that ϵa can be
comparable to ϵd in the infrared region, which is of most
interest for thermal applications.67−70

We first discuss the dispersion relations of SPPs at the planar
interface between WSM and air by considering only one WSM
slab. With the incidence plane at the azimuthal angle ϕ with
respect to the x-axis, which is the x′−z plane shown in Figure
1d, the dielectric tensor is transformed to

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

ω ω

ϕ

ϕ

ϕ ϕ

ϵ′ = ϵ =

ϵ ϵ

ϵ ϵ

− ϵ − ϵ ϵ

i

i

i i

( ) ( )

0 cos

0 sin

cos sin

T
d a

d a

a a d

(3)

where is the rotation matrix of angle ϕ. We start from
Maxwell curl equations

∇ × = −∂ ∇ × = ∂E B H D,t t (4)

with B = μ0μH and = ϵ ϵ′D E0 . Since the SPP is the transverse
magnetic (or p-polarized) mode, the magnetic fields in air
(H0) and in WSM (H1) are written in the forms as

β′ = ̂′ <β ω′− −x z t y He eH ( , , ) , Im( ) 0iqx i z i t
0 0

0 (5)

β′ = ̂′ <β ω′+ −x z t y He eH ( , , ) , Im( ) 0iqx i z i t
1 1

1 (6)

where q is the in-plane wave vector. The out-of-plane wave
vectors in air and WSM are denoted as β0 and β1, respectively.
Using Maxwell equations in the WSM and air, respectively, one
has

β β μ+ = + = ϵq k q k,0
2 2

0
2

1
2 2

eff 0
2

(7)

with k0 = ω/c, the wave vector in air and the dielectric function
ϵeff = ϵd − (cos ϕϵa)

2/ϵd. Using the interface condition of the
electric field, the implicit dispersion relation for the SPP is
obtained as

β β ϕϵ + + ϵ ϵ =i qcos / 0a deff 0 1 (8)

It can be seen from eq 8 that the dispersion is nonreciprocal as
long as cos ϕ ≠ 0 and is reciprocal in the Faraday
configurations with ϕ = π/2 or ϕ = 3π/2. From eqs 7 and
8, the dispersion relation of SPP can be numerically obtained.
The bulk plasmon dispersion is found as μ= ± ϵq keff 0 with
ϵeff > 0. We consider the case with the relative permeability μ
to be 1.
The bulk conductivity σ can be obtained using the Kubo−

Greenwood formalism to a two-band model with spin
degeneracy as57,75
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Here, g is the number of Weyl nodes, rs = e2/(4πϵ0ℏvF) is the
effective fine-structure constant with Fermi velocity vF, Ω = ω
+ i2πτ−1 with the Drude damping rate τ−1, G(E) = n(−E) −
n(E) with the Fermi distribution function n(E), EF is the
chemical potential, and Ec is the cutoff energy. Following refs,
67−70, we take the parameters b = 2 × 109 m−1, ϵb = 6.2, g = 2,
vF = 0.83 × 105 m/s, τ = 1000 fs, EF = 0.15 eV at temperature
T = 300 K, and Ec = 3EF. The parameters are close to the
reported values for Co3Sn2S2

50,51 and the room temperature
WSM Co2MnGa.54

Figure 1a−c shows the dispersions of SPPs at different
incidence planes characterized by the azimuthal angle ϕ. The
gray regions show the continua of bulk plasmon modes that are
reciprocal. At ϕ = 0 (Voigt configuration), the nonreciprocity
of the SPPs is clearly identified by the asymmetry with respect
to the wave vector q. There are two continua of bulk plasmon
modes: one is lower in frequency and the other higher. The
low-frequency continuum separates the SPPs into two
branches. With increasing the azimuthal angle from ϕ = 0 to
ϕ = π/2 (Faraday configuration), the low-frequency
continuum shrinks and the degrees of nonreciprocity
decreases. At ϕ = π/2, the low-frequency continuum vanishes,
and the SPP dispersion becomes strictly reciprocal.

Figure 1. Dispersion of surface plasmon polaritons (magenta lines)
with different azimuthal angles of incidence: (a) ϕ = 0, (b) ϕ = π/4,
and (c) ϕ = π/2. The black lines are the linear dispersion relation in
air (or vacuum). The gray regions show the continua of the bulk
plasmon modes in Weyl semimetal. (d) Schematic setup for near-field
heat radiation between two Weyl semimetals with gap separation d
and twist angle θ. The twist angle is defined as the angle between the
Weyl node separations in the bottom and top Weyl semimetals.
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Here, we only show the dispersions of SPPs that are p-
polarized. There exist s-polarized surface modes as well. As it
was shown in ref 70, the s-polarized modes are nonreciprocal
between Voigt and Faraday configurations. Since it is the p-
polarized modes that dominate the NFRHT in WSM, the
twist-induced near-field thermal control is mainly due to the
nonreciprocity of SPPs.
Near-Field Radiative Heat Transfer. We now consider

the NFRHT between two magnetic WSM slabs of the same
properties with temperatures T1(2) = T ± ΔT/2. The two slabs
are placed in parallel and separated by an air gap with distance
d (see Figure 1d). The twist angle θ is the angle between the
Weyl node separations in the two slabs and can be changed by
rotating one of the WSMs. From the fluctuational electro-
dynamics,3,11 the radiative heat transfer coefficient (HTC)
h(θ) at temperature T is given by

∫ ∫ ∫θ ω
π

ω
π

ϕ
π

ξ ω ϕ= ℏ ′
π∞ ∞

h N
q

q q( )
d
2

d
2

d
2
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2
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where q is the in-plane wave vector and N′ is the derivative of
the Bose−Einstein distribution = [ − ]ωℏN e1/ 1k T/( )B with
respect to the temperature and is expressed as
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The photonic transmission coefficient ξ(ω, q, ϕ) is
expressed as

l
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The identity matrix is denoted as I. The reflection coefficient
matrix Rn at the interface between air and WSM n with n = 1, 2
has the form
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and is provided in the Supporting Information. Furthermore,
= − β− −eD I R R( )i d

1 2
2 10 is the Fabry−Perot-like denominator

matrix. The near- and far-field regimes are defined by the

conditions q > k0 and q < k0, respectively. Here, we consider
the situation of T = 300 K, which can be achieved using room
temperature WSMs discovered recently, such as Co2MnGa54

and Co2MnAl.55 We consider the HTC to be scaled by the
corresponding blackbody limit hb = 4σSBT

3 with the Stefan−
Boltzmann constant σSB = π2kB

4/(60ℏ3c2). One can calculate
that hb is 6.12 W/m2K under T = 300 K.
In Figure 2a, we show the scaled HTC h(θ)/hb versus the

twist angle θ at different gap distances d. Since h(θ) is
symmetric with respect to θ = π, only the part of θ ∈ [0, π] is
shown. The HTC is maximal at θ = 0, decreases with
increasing θ to θ = π/2 and remains almost unchanged for π/2
≤ θ ≤ π. The corresponding thermal switch ratios, which are
defined as R(θ) = h(θ)/h(θ = 0), are shown as an inset.
Compared to the HTC, the thermal switch ratio is less
sensitive to the gap distance. The tunability reported here can
be comparable to those by gratings35,39−41 and by rotating a
magnetic field in the case of magneto-optical materials.28

Figure 2b shows the dependence of HTC on gap separation d.
The heat transfer diverges as d−2 at very small distances, as
shown in dashed lines, which was predicted by Loomis and
Maris.76

The spectral function κ(ω) of HTC is defined through

∫ κ ω ω=
∞

h ( )d
0

and its behaviors for different twist angles θ

are shown in Figure 2c. We first focus on the parallel case (θ =
0), of which the photonic transmission coefficients ξ(ω, q, ϕ)
against ℏω and q for different ϕ in Figure 3a−c, with d = 100
nm. Close to or in the far-field regions, ξ(ω, q, ϕ) are less than
or equal to 2, which is due to the contributions from both p-
and s-polarized modes. The contributions to ξ in the near-field
are dominated by the SPPs that are p-polarized. This is
confirmed by Figure S1 in the Supporting Information, where
the contribution from the p-polarized mode [rn

pp in eq 13] on
the spectral function is very close to that from all modes. For θ
= 0, the individual SPP from the two WSMs are identical so
that they couple with each other for the whole range of ϕ, with
ϕ ∈ [0, 2π]. This explains that HTC is maximal at θ = 0. The
near-field regions, where ξ is close to 1, are consistent with the
odd (dashed lines) and even (dash-dotted lines) SPP modes,
which are given by eqs 14 and 15, respectively:

β β β ϕϵ + | | + ϵ ϵ =d i qcoth( /2)( cos / ) 0a deff 0 0 1 (14)

β β β ϕϵ + | | + ϵ ϵ =d i qtanh( /2)( cos / ) 0a deff 0 0 1 (15)

Figure 2. (a) Scaled heat transfer coefficient h/hb vs twist angle θ at different gap separations d. (b) Scaled heat transfer coefficient h/hb vs gap
separation d under different twist angles. The corresponding dashed lines are plotted using h ∝ d−2. The thermal switch ratios R(θ) are shown as
the inset in (a) and (b). (c) Spectral function κ(ω) at different twist angles θ with d = 100 nm.
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Similarly to Figure 1a−c, the degrees of nonreciprocity for
both the odd and the even modes decrease from ϕ = 0 to ϕ =
π/2, at which the modes become reciprocal. Due to the
nonreciprocity of the SPPs, the resonant frequency ranges are
different for different ϕ, with 0 ≤ ϕ ≤ π at a given wave vector
q. This can be seen from Figure 3d, where ξ(ω, q, ϕ) is shown
against ℏω and ϕ at q = 107 m−1 under d = 100 nm. Because of
the large nonreciprocity of the SPPs, the whole resonant
frequency range is very broad (from about 90 meV at ϕ = 0 to
about 220 meV at ϕ = π). This can be seen from the spectral
function at θ = 0 shown in Figure 2c as well.
Now we analyze the twisting effects. In Figure 4, the

photonic transmission coefficients ξ(ω, q, ϕ) are plotted
against ℏω and ϕ for different twist angles at q = 107 m−1. The
red lines are plotted using the SPP dispersion relation, eq 8,
and the blues lines are obtained by performing the shift ϕ → ϕ
+ θ. Due to the twist, the red and blue lines cross at two points.
The surface modes from each interface can only couple around
the two crossing points in the ω−ϕ space and this results in
two resonant regions with ξ being close to 1 (see Figure 4).
The resonant regions correspond to the resonant peaks in the
spectral function shown in Figure 2c. Due to the mismatch of
the surface modes from the two interfaces, the spectral
function is reduced and so is the HTC.
To conclude, we have considered the situation where the

near-field radiative heat transfer between two magnetic Weyl
semimetals is dominated by the nonreciprocal surface plasmon
polaritons. Due to the intrinsic nonreciprocity, the heat
transfer can be effectively controlled by a relative rotation of
parallel slabs (or twist) without surface structuring or external
field.
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Figure 3. Photonic transmission coefficients ξ(ω, q, ϕ) are plotted
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ϕ) plotted against ℏω and ϕ at twist angle θ = 0 and q = 107 m−1. The
red line is obtained using eq 8. The gap separation is d = 100 nm.

Figure 4. Photonic transmission coefficients ξ(ω, q, ϕ) are plotted
against ℏω and ϕ at different twist angles with (a) θ = π/4, (b) θ = π/
2, (c) θ = 3π/4, and (d) θ = π at q = 1/d = 107 m−1, with d = 100 nm.
The red lines are the same as the one in Figure 3d. The blue lines are
obtained by shifting the red lines using ϕ → ϕ + θ.
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