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Topological nodal rings as the simplest topological nodal lines recently have been extensively studied in
optical lattices. However, the realization of complex nodal line structures like nodal chains in this system remains
a crucial challenge. Here we propose an experimental scheme to realize and detect topological nodal chains
in optical Raman lattices. Specifically, we construct a three-dimensional optical Raman lattice which supports
next-nearest-neighbor spin-orbit couplings and hosts topological nodal chains in its energy spectra. Interestingly,
the nodal chains realized are protected by mirror symmetry and could be tuned into a large variety of shapes,
including the inner and outer nodal chains. We also demonstrate that the shapes of the nodal chains could be
detected by measuring spin polarizations. Our study opens up the possibility of exploring topological nodal-chain
semimetal phases in optical lattices.
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I. INTRODUCTION

The study of topological nodal line semimetals have re-
cently emerged as a new frontier in condensed-matter physics
[1,2]. Nodal line semimetals are systems where the conduc-
tion and the valence bands touch along closed nodal lines in
the Brillouin zone [1,2]. Intriguingly, such a gapless phase
also possesses topological properties, such as a quantized
Berry phase and topologically protected drumhead surface
states [3]. Nodal lines have more topological structures than
nodal points, including nodal rings [4–11], nodal chains
[12–19], nodal links [20–24], and nodal knots [25,26]. In
particular, the nodal chains are formed by the nodal rings
located on mutually orthogonal high-symmetry planes and
touch each other at isolated points [12–14], which are the
basics of generating nodal links and knots [14,19]. Thus,
nodal chains have much richer topological properties waiting
to be explored and observed, such as the unusual topolog-
ical electromagnetic responses [12] and distinct topological
surfaces states [14,17,18]. Experimental efforts recently have
been devoted to searching materials with different nodal lines
[27,28]. Unfortunately, the nodal lines showing there are often
not exactly located at the Fermi level as the ideal one, mixed
with the trivial bulk bands, making the experimental detection
very challenging.

Meanwhile, ultracold atoms trapped in optical lattices pro-
vide a clean and controllable platform for realizing, manipu-
lating, and probing topological phases of matter [29–31]. This
has been well demonstrated by the recent experimental im-
plementation of spin-orbit coupling [32–38] and topological
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insulator phases [39–43] in low-dimensional ultracold atomic
systems. The state-of-the-art optical lattice technology devel-
oped in these experiments further paves the way for exploring
high-dimensional gapless topological phases [44]. In partic-
ular, a lot of optical lattice models have been constructed
for realizing topological nodal rings [45–51]. Since optical
lattices naturally have clean environments, the realized nodal
rings are exactly located at the Fermi level and not mixed
with trivial bulk bands. However, how to realize more exotic
nodal line structures like nodal chains in this system is still
unknown.

Very recently, two experiments reported the realization and
detection of topological nodal lines [52] and Weyl points [53]
with ultracold atoms trapped in optical Raman lattices. Mo-
tivated by these experiments, we present a three-dimensional
optical Raman lattice system that could generate next-nearest-
neighbor spin-orbit couplings, which has not been reported
before. Moreover, the corresponding tight-binding Hamilto-
nian has not been previously discovered in solid-state material
or optical lattice systems. Distinct from previous nodal-ring
studies in optical lattices [45–51], our system could host a lot
of nodal rings which are located on mirror-invariant planes
and protected by the mirror symmetry. By tuning the laser
intensities and frequencies to vary the hopping rates and effec-
tive Zeeman field, the nodal rings on the mutually orthogonal
mirror invariant planes are connected together to form various
shapes of topological nodal chains, including the inner and
outer nodal chains. In addition, we also demonstrate that the
shapes of the nodal chains could be detected through the
measurement of spin polarizations.

The paper is organized as follows. Section II presents
an optical Raman lattice model with next-nearest-neighbor
spin-orbit couplings. Section III shows the energy spectra
hosts mirror-symmetry protected topological nodal rings and
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FIG. 1. (a) Schematics of the laser configuration used to realize
two-photon Raman coupling. Such coupling is generated by two laser
beams with Rabi frequencies �1 and �2. � is the detuning from
the auxiliary excited state and δ is the two-photon detuning in the
Raman transition. (b) In the cubic optical lattice with the Raman
coupling, the spin-orbit couplings are generated only between the
lattice sites j and j′ = j + ev (v = 1, 2, 3, 4, 5, 6, 7, 8). Moreover, the
generated synthetic spin-orbit couplings are position-dependent, i.e.,
the strengthes of the spin-orbit couplings along ev for v = 1, 2, 3, 4
(v = 5, 6, 7, 8) are tso (−tso).

chains. Section IV discusses the experimental detection of the
nodal chains. Section V summarizes the main results of this
paper.

II. OPTICAL RAMAN LATTICES
WITH NEXT-NEAREST-NEIGHBOR SPIN-ORBIT

COUPLINGS

We consider using the experimental setup reported for
observing ideal Weyl points [53]. This setup is made up of
ultracold atoms trapped in optical Raman lattices. In addition
to conventional optical lattice trapping potentials, an effective
Raman lattice potential is also applied in optical Raman lattice
systems [54–56]. Suppose a spin is encoded by two atomic
internal states. The effective Raman potential is generated
through a two-photon Raman transition which couples spin
up and spin down [54–56]. Here we find that, by changing
the Raman potential applied in Ref. [53], the resulting optical
Raman lattice could generate next-nearest-neighbor spin-orbit
couplings and support various topological nodal rings and
chains.

The experimental setup is shown in Fig. 1(a), where
ultracold 87Rb atoms are trapped in a three-dimensional
optical Raman lattice. The spin is encoded by two mag-
netic sublevels |↑〉 = |1,−1〉 and |↓〉 = |1, 0〉 [53], with an
energy difference ω0. The conventional cubic optical lat-
tice is generated by applying three standing-wave lasers in
the three real-space directions, leading to a trapping poten-
tial (spin-independent) Vu=x,y,z = V̄u cos2(k0u), where V̄u ∝
|Eu|2 and Eu is the amplitude of the standing-wave laser in
the u direction. Furthermore, the two-photon Raman tran-
sition between spin up and spin down is generated by
applying two standing-wave lasers with frequency ω1 in
the x-y plane and one standing-wave laser with frequency
ω2 in the z direction. The corresponding Rabi frequencies
are �1 = �̄1 cos(k0x) cos(k0y) and �2 = �̄2 cos(k0z), respec-
tively, leading to a Raman coupling potential (spin-dependent)
Vsoσx, where Vso = �so cos(k0x) cos(k0y) cos(k0z) and �so =

�̄1�̄2/�. Then the total Hamiltonian of the system reads

Hs =
∑

u=x,y,z

(
p2

u

2m
+ Vu

)
+ Vsoσx + mzσz, (1)

where mz = δ/2 is the effective Zeeman field and δ = ω1 +
ω0 − ω2 is the two-photon Raman detuning.

In the second quantization, the continuum Hamiltonian Hs

is written into the following form:

H =
∫

drψ†(r)Hsψ (r), (2)

where ψ (r) = (ψ↑(r), ψ↓(r))T . Here we only study physics
in the ground band. Then the field operator can be
expanded as

ψσ (r) =
∑

j

W (r − j)Cjσ , (3)

where W (r − j) is the spin-independent Wannier function for
the ground band located at the lattice site j = ( jx, jy, jz ).
Throughout this work, we assume the lattice spacing a =
π/k0 = 1. Cjσ is the annihilation operator for an atom with
spin σ =↑,↓ at lattice site j. With the above expansion, we
get the tight-binding Hamiltonian

H = −
∑

j

∑
u=x,y,z

tu
(
C†

j↑Cj+eu↑ + C†
j↓Cj+eu↓ + H.c.

)

+
∑
j,j′

t j,j′
so (C†

j↑Cj′↓ + H.c.) + mz

∑
j

(C†
j↑Cj↑ − C†

j↓Cj↓),

(4)

where the vectors ex = (1, 0, 0), ey = (0, 1, 0), and ez =
(0, 0, 1), the nearest-neighbor hopping rate, and the spin-orbit
coupling strength are expressed as

tu = −
∫

duW ∗
u (u)

(
p2

u

2m
+ Vu

)
Wu(u − 1), (5)

t j,j′
so = �so

∏
u=x,y,z

t ju, j′u
so,u , (6)

with

t ju, j′u
so,u =

∫
duW ∗

u (u − ju) cos (k0u)Wu(u − j′u)

=
∫

duW ∗
u (u) cos [k0(u + ju)]Wu(u + ju − j′u)

= −(−1) ju

∫
duW ∗

u (u) sin (k0u)Wu(u + ju − j′u). (7)

Here we use the identities W (r − j) = Wx(x − jx )Wy(y −
jy)Wz(z − jz ) and cos2(k0 ju) = 0. The last identity is obtained
because the bottom of the lattice trapping potential is the lat-
tice site. In optical lattices, we usually only consider ju − j′u =
0,±1, because the integral in Eq. (7) for ju − j′u > 1 is much
smaller than the one for ju − j′u = 0,±1.

Considering that the Wannier function Wu for the ground
band has an even parity, based on Eq. (7), we obtain

t ju, ju
so,u = 0, (8)

t ju, ju+1
so,u = −t ju, ju−1

so,u . (9)
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Combining Eqs. (6) and (8), we further get

t j,j
so = 0,

t j,j+ex
so = t

j,j+ey
so = t j,j+ez

so = 0,

t
j,j+ex+ey
so = t j,j+ex+ez

so = t
j,j+ey+ez
so = 0. (10)

From the above equations, we can see that the spin-
orbit couplings are mainly generated between j = ( jx, jy, jz )
and j′ = ( jx ± 1, jy ± 1, jz ± 1). Specifically, as shown in
Fig. 1(b), the spin-orbit couplings act only along the
vectors e1 = −e5 = (1, 1, 1), e2 = −e6 = (−1, 1,−1), e3 =
−e7 = (−1,−1, 1), and e4 = −e8 = (1,−1,−1). Combin-
ing Eqs. (6) and (9), we also can find that the generated
spin-orbit couplings are position-dependent and have the fol-
lowing relationship:

t j,j+es
so = −t j,j+et

so , (11)

where s = 1, 2, 3, 4 and t = 5, 6, 7, 8. By substituting
Eqs. (6), (7), and (11) into Eq. (4) and performing a
gauge transformation (−1) jx+ jy+ jzCj↓ → Cj↓ [54,55], the
tight-binding Hamiltonian becomes

H = −
∑

j

∑
u=x,y,z

tu
(
C†

j↑Cj+eu↑ − C†
j↓Cj+eu↓ + H.c.

)

+
∑

j

4∑
v=1

tso
(
C†

j↑Cj+ev↓ − C†
j↑Cj−ev↓ + H.c.

)

+ mz

∑
j

(C†
j↑Cj↑ − C†

j↓Cj↓), (12)

where tso = �sot01
so,xt01

so,yt
01
so,z. The hopping rates, spin-orbit cou-

pling strengths and effective Zeeman fields all can be flexibly
tuned by changing laser intensities and frequencies.

In contrast to previous experiments producing nearest-
neighbor spin-orbit couplings [42,43,52,53], our proposed op-
tical Raman lattice could generate the next-nearest-neighbor
spin-orbit couplings between the lattice sites j = ( jx, jy, jz )
and j′ = ( jx ± 1, jy ± 1, jz ± 1), which are out of the x, y
and z planes [see Fig. 1(b)]. The reason is that the Wan-
nier function Wu=x,y,z for the ground band has even parity
and the Raman potential Vso centered at the lattice site has
odd parity [see Eq. (7)], which leads to the vanishing of the
integrals in Eq. (6) for the on-site spin flips and the nearest-
neighbor spin-orbit couplings [see Eq. (10)]. Thanks to these
particular next-nearest-neighbor spin-orbit couplings, as we
demonstrate below, the nodal chains protected by mirror sym-
metry are generated in this system.

III. MIRROR-SYMMETRY-PROTECTED NODAL RINGS
AND CHAINS

Before seeing the nodal chains emerged in the energy
spectra, we transfer the real-space tight-binding Hamiltonian
into the momentum space to get H (k) = ∑

k c†(k)h(k)c(k),
where c(k) = [c↑(kx, ky, kz ), c↓(kx, ky, kz )]T ,

h(k) = hy(k)σy + hz(k)σz, (13)

with

hy = 8tso sin (kx ) sin (ky) sin (kz ),
(14)

hz = mz − 2tx cos (kx ) − 2ty cos (ky) − 2tz cos (kz ).

The Bloch Hamiltonian h(k) respects both the time-reversal
symmetry and the inversion symmetry, i.e.,

T h(k)T −1 = h(−k),

Ph(k)P−1 = h(−k), (15)

where T = K is the time-reversal symmetry operator, with
K being the complex-conjugate operator, and P = σz is the
inversion symmetry operator. The time-reversal symmetry re-
quires hx,z being even function of k and hy being odd function
of k. In contrast, the inversion symmetry requires hz being
an even function of k and hx,y being an odd function of k.
Then the consistence of these two symmetries in our system
guarantees that hx vanishes in the entire Brillouin zone.

The energy spectra of h(k) is given by E = ±(h2
y + h2

z )1/2

and consists of two energy bands. When hy(kx, ky, kz ) =
hz(kx, ky, kz ) = 0, the conduction and the valence bands could
cross each other to form a chain of connected nodal rings.
For our system, the nodal rings are generated on the mirror-
invariant planes and protected by the mirror symmetry. The
reason is that the Bloch Hamiltonian h(k) also respects the
mirror symmetry

Mh(kx, ky, kz )M−1 = h(−kx, ky, kz )

= h(kx,−ky, kz )

= h(kx, ky,−kz ), (16)

where M = σz is the mirror-symmetry operator. Note that
there are six mirror-invariant planes kx,y,z = 0, π . Now we
briefly prove the existence of nodal rings on the mirror-
invariant planes kz = 0, π . The mirror symmetry in the z
direction in Eq. (16) could lead to

hy(kx, ky, kz ) = −hy(kx, ky,−kz ),
(17)

hz(kx, ky, kz ) = hz(kx, ky,−kz ),

which indicates that hy(kx, ky, kz ) = 0 on the mirror-invariant
planes kz = 0, π . Then the solution of hz(kx, ky, kz ) = 0 de-
termines the two bands crossing along rings located at the
mirror-invariant planes kz = 0, π . Moreover, as we will show,
these nodal rings are centered around the high-symmetry
points. Since the mirror operator and the Hamiltonian have
the same eigenstates in the mirror-invariant planes, the nodal
rings generated are protected by the mirror symmetry [1].
Similarly, one also can prove that nodal rings also emerge on
the mirror-invariant planes kx,y = 0, π .

Specifically, for 2t < mz < 6t , one nodal ring centered
around the 	 point is generated on the mirror-invariant planes
kx,y,z = 0, while there is no nodal ring generated on the mirror-
invariant planes kx,y,z = π . For −2t < mz < 2t , four nodal
rings centered around the M point are generated on the mirror-
invariant planes kx,y,z = 0, and one nodal ring centered around
the X point is generated on the mirror-invariant planes kx,y,z =
π . For −6t < mz < −2t , one nodal ring centered around the
R point is generated on the mirror-invariant planes kx,y,z = π ,
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FIG. 2. The nodal rings and chains in the energy spectra for (a) tx = ty = t , mz = 3t , (b) tx = ty = t , mz = 0, (c) tx = t , ty = 0, mz = 2t ,
and (d) tx = ty = mz = 0. Specifically, the nodal rings (gap-closing points marked by black solid lines) are generated on the mirror-invariant
planes kx,y,z = 0, π . The topological features of nodal rings are characterized by the quantized Berry phases along a tiny loop enclosing the
nodal lines. Our numerical results show that the quantized Berry phase is π (0) when the loop encloses one (two) nodal lines. By tuning
the hopping rates and effective Zeeman field [see panels (a)–(d)], the nodal rings on the mutually orthogonal mirror-invariant planes can be
connected together to generate various shapes of nodal chains. With open boundary conditions along the z direction and periodic boundary
conditions along the x and y directions, the corresponding energy spectra for the systematic parameters chosen in panels (a)–(d) are shown in
panels (e)–(h), respectively, where the zero-energy drumhead surface states appear at the two surfaces of the z direction. The corresponding
topological winding numbers defined in the Brillouin zone of the z direction are shown in panels (i)–(l), respectively. The other parameters are
tso = tz = t , and t is the energy unit.

while there is no nodal ring on the mirror-invariant planes
kx,y,z = 0. Here we assume tx = ty = tz = tso = t .

As shown in Figs. 2(a)–2(d), via tuning the laser intensi-
ties and frequencies to vary tx, ty, and mz, the nodal rings
on the mutually orthogonal mirror invariant planes could be
connected together to form various nodal chains, including the
outer and inner nodal chains. The outer (inner) nodal chains
are generated when two nodal rings are on opposite (same)
sides of the touching point [14]. For the outer case, there are
three types of outer nodal chains, including nodal nets, nodal
tubes, and nodal cross lines. For example, Fig. 2(a) shows
that an inner nodal chain is generated by three connected
nodal rings on the mutually orthogonal mirror-invariant planes
kx,y,z = 0. Figure 2(b) shows that an outer nodal chain shaped
like a net is generated on the mutually orthogonal mirror-
invariant planes kx,y,z = 0 and kx,y,z = π . Figure 2(c) shows
that an outer nodal chain shaped like a tube is generated on
the mutually orthogonal mirror-invariant planes kx,z = 0 and
ky = 0,±π , where the nodal rings on the mirror-invariant
planes kx,z = 0 are reduced to straight lines. Figure 2(d) shows
that an outer nodal chain shaped like cross lines is generated
on the mutually orthogonal mirror-invariant planes kx,y = 0

and kx,y = ±π when kz = ±π/2, where all the nodal rings
are reduced to straight lines.

The topological features of nodal chains are characterized
by the quantized Berry phases. It is well known that the
Berry phase around a single nodal line is π [3]. Consequently,
the Berry phase around the chain point (enclosing two nodal
lines) becomes 0 (=π + π ). According to bulk-edge corre-
spondence, such nontrivial topology implies the existence of
surface states under open boundary conditions [3]. Let us take
open boundary conditions along the z direction and periodic
boundary conditions along the x and y directions as an exam-
ple to show the generated surface states. The corresponding
energy spectra are calculated in Figs. 2(e)–2(h), where we
can find that the surface states appear as flat bands at zero
energy. Distinct from the drumhead surface states for nodal-
ring phases, the surface states for nodal-chain phases have
abundant shapes. In particular, for the nodal cross-line case
shown in Fig. 2(d), the regions where the surface states exist
cover the whole kx-ky plane.

These surface states are protected by nontrivial topolog-
ical winding numbers defined in the Brillouin zone of the
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z direction, i.e.,

ν = 1

2π

∫ π

−π

(
ny∂kz nz − nz∂kz ny

)
dkz, (18)

where (ny, nz ) = (hy, hz )/|h|. Using the same parameters as
shown in Figs. 2(e)–2(h), we calculate the values of the
topological winding numbers as a function of kx and ky

in Figs. 2(i)–2(l). The results show that the regions where
the topological winding number values are nontrivial (ν =
±1) coincide with the regions where the surface states ap-
pear. It is worth pointing out that the sign of the nontrivial
winding number values make no difference to the pres-
ence of surface states. In these regions, the corresponding
Hamiltonian H (kx, ky) supports one-dimensional inversion-
symmetric topological insulators protected by a Z2 topological
invariant.

IV. EXPERIMENTAL DETECTION OF NODAL CHAINS

The shapes of nodal chains can be detected by measur-
ing spin polarizations. The detection principle is outlined
as follows. First, on one hand, we know that the nodal
chains are generated by the connected nodal rings which are
determined by

hy(kx, ky, kz ) = hz(kx, ky, kz ) = 0. (19)

On the other hand, when kz is fixed to kz0, the nodal
chain Bloch Hamiltonian h(kx, ky, kz ) is reduced to a two-
dimensional Hamiltonian h(kx, ky, kz0). In this case, there are
two types of band inversion surfaces (BISs) in the kx-ky plane,
named BIS1 and BIS2. The BISs are defined based on the
vanishing of the vector fields in the Bloch Hamiltonian [57].
Specifically, BIS1 and BIS2 are defined by

hy
(
kBIS1

x , kBIS1
y , kz0

) = 0, (20)

hz
(
kBIS2

x , kBIS2
y , kz0

) = 0. (21)

Based on Eqs. (14), (20), and (21), we can obtain the locations
of BIS1 and BIS2. For kz0 	= 0, π , BIS1 is formed by four
straight lines kBIS1

x,y = 0, π . While for kz0 = 0, π , BIS1 covers
the whole kx-ky plane. BIS2 is a ring determined by mz −
2tz cos(kz0) = 2tx cos(kBIS2

x ) + 2ty cos(kBIS2
y ). From Eqs. (19)–

(21), we can find that the gap-closing points for kz = kz0

determined by Eq. (19) satisfy both Eqs. (20) and (21), which
means that the nodal points for kz = kz0 are exactly located
at the intersection of BIS1 and BIS2. As a consequence, by
scanning kz and measuring the corresponding BIS1 and BIS2

and their intersection, one can precisely map out the shape of
the entire nodal chain.

The BISs are measured by detecting the vanishing of the
spin polarizations in equilibrium. Specifically, to measure
BIS1 and BIS2, the spin polarizations required to be detected
are

〈σs〉 = 〈ψG(kx, ky, kz0)|σs|ψG(kx, ky, kz0)〉, (22)

where s = y, z, |ψG(kx, ky, kz0)〉 denotes the ground state of
h(kx, ky, kz0). The locations of BIS1 and BIS2 are respectively

determined by the vanishing of the spin polarizations [57]:〈
σy

(
kBIS1

x , kBIS1
y , kz0

)〉 = 0,〈
σz

(
kBIS2

x , kBIS2
y , kz0

)〉 = 0. (23)

The reason is that, on BIS1 (BIS2), |ψG〉 is reduced to the
ground state of σz (σy), which exactly gives 〈σy〉 = 0 (〈σz〉 =
0). Therefore, for the BISs and their intersection to vary with
kz, we need to perform kz-resolved spin-polarization measure-
ments in the kx-ky plane.

In experiment, the time-of-flight imaging measures the kz-
integrated spin polarizations

〈̃σs〉(kx, ky) = 1

2π

∫ 2π

0
〈σs(kx, ky, kz )〉dkz. (24)

Interestingly, the recent ultracold atoms experiments in
Refs. [52,53] have demonstrated that, if the topological
Hamiltonian on the BISs with respect to a kz plane (for
example, kz = kc

z ) respects a magnetic group symmetry, the
kz-resolved spin polarization 〈σz(kBIS

x , kBIS
y , kc

z )〉 equals the

integral of 〈σz(kBIS
x , kBIS

y , kz ) over kz, i.e., 〈̃σz〉(kBIS
x , kBIS

y ) =
〈σz(kBIS

x , kBIS
y , kc

z )〉. The experiments also developed a virtual
slicing imaging technique to scan kc

z and measure the spin
polarizations varying with kz. In this way, the kz-resolved
spin polarizations on the BISs can be effectively detected by
measuring the corresponding kz-integrated spin polarizations.
In the following, we prove that the spin polarizations in our
system also have such feature.

First, we prove that our system also respects a magnetic
group symmetry with respect to the kc

z = π/2 plane, which
ensures that the kz-resolved spin polarizations 〈σz〉 on the BIS2

can be effectively detected by measuring the corresponding
kz-integrated spin polarizations. For kz = π/2, BIS2 is a ring
determined by mz = 2tx cos(kBIS2

x ) + 2ty cos(kBIS2
y ). For kz =

π/2 + δkz, the nodal chain Hamiltonian h(kx, ky, kz ) on this
ring (BIS2) is written as

h(δkz ) = 8tso sin
(
kBIS2

x

)
sin

(
kBIS2

y

)
cos(δkz )σy

+ 2tz sin(δkz )σz, (25)

where h(δkz ) = h(kBIS2
x , kBIS2

y , π/2 + δkz ). As we can see, the
nodal chain Hamiltonian respects a magnetic group symmetry
with respect to the kc

z = π/2 plane, i.e.,

Gh(δkz )G−1 = h(−δkz ), (26)

where G = σxK is the magnetic group symmetry operator. On
the other hand, we have

h(±δkz )|ψG(±δkz )〉 = E−|ψG(±δkz )〉, (27)

where |ψG(±δkz )〉 = |ψG(kBIS2
x , kBIS2

y , π/2 ± δkz )〉 are the
ground states of h(±δkz ), and E− = E (kz = π/2 + δkz ) =
E (kz = π/2 − δkz ). Combining Eqs. (26) and (27), we obtain

|ψG(δkz )〉 = G|ψG(−δkz )〉. (28)

By substituting Eq. (28) into Eq. (22), we get

〈σz(δkz )〉 = 〈ψG(δkz )|σz|ψG(δkz )〉
= 〈ψG(−δkz )|G−1σzG|ψG(−δkz )〉
= −〈σz(−δkz )〉, (29)
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(a) (b) (c)

(d) (e) (f)

FIG. 3. Measuring spin polarizations 〈σy,z〉 to detect an inner nodal chain. The left side in panels (a)–(d) shows the shape of an inner nodal
chain (formed by three connected nodal rings on the mirror-invariant planes kx,y,z = 0) and the corresponding nodal points (marked by black
points) when kz is fixed to kz0. The right side in panels (a)–(d) shows the spin polarizations 〈σy,z〉 as a function of kx and ky for (a) kz0 = 2π/3,
(b) kz0 = π/2, (c) kz0 = 0.28π , (d) kz0 = −0.2π , (e) kz0 = −0.6π , and (f) kz0 = −2π/3, where 〈σy〉 = 0 (marked by straight orange solid
lines) and 〈σz〉 = 0 (marked by orange rings) respectively give the locations of BIS1 and BIS2 defined in Eqs. (20), (21), and (23). As we can
see, the nodal points for kz = kz0 can be detected through the intersection of BIS1 and BIS2. In this way, the shape of the inner nodal chain
is mapped out by measuring the vanishing of spin polarizations 〈σy,z〉 varying with kz. The other parameters are tx = ty = tz = tso = t and
mz = 3t .

where 〈σz(±δkz )〉 = 〈σz(kBIS2
x , kBIS2

y , π/2 ± δkz )〉. Then we
have

〈̃σz〉
(
kBIS2

x , kBIS2
y

) = 〈
σz

(
kBIS2

x , kBIS2
y , kc

z = π/2
)〉
. (30)

Next, we prove that the mirror symmetry with respect to the
mirror-invariant plane kz = 0 guarantees that the kz-resolved
spin polarizations 〈σy〉 on the entire kx-ky plane (not just on
the BIS1) have a similar feature. For kz = δkz, according to
Eq. (16), our system respects a mirror symmetry with respect
to the kc

z = 0 plane, i.e.,

Mh′(δkz )M−1 = h′(−δkz ), (31)

where h′(δkz ) = h(kx, ky, δkz ). Similarly, we can prove that

|ψ ′
G(δkz )〉 = M|ψ ′

G(−δkz )〉,
(32)

〈σy(δkz )〉 = −〈σy(−δkz )〉,
where 〈σy(±δkz )〉 = 〈σy(kx, ky,±δkz )〉. Then we get

〈̃σy〉(kx, ky) = 〈
σy

(
kx, ky, kc

z = 0
)〉
. (33)

Therefore, based on Eqs. (30) and (33) and the virtual slicing
imaging technique [52,53], the kz-resolved spin polarizations
on the BISs could be effectively measured. From this mea-
surement, we can acquire the BISs and their intersection and
map out the shapes of nodal chains.

As a concrete example, Fig. 3 presents how the shape of
the inner nodal chain [see Fig. 2(a)] is detected by measur-
ing kz-resolved spin polarizations. The corresponding spin
polarizations 〈σy,z〉 versus kx and ky for different kz0 are
numerically calculated in Figs. 3(a)–3(f). For kz0 = 2π/3,
the results in Fig. 3(a) show that 〈σy〉 = 0 when kx,y =
0, π and 〈σz〉 = 0 when kx = ky = 0. Then we can find that
the BIS1 locates at kBIS1

x,y = 0, π and the BIS2 at kBIS2
x =

kBIS2
y = 0. Through the intersection of the BIS1 and BIS2,

we can detect the nodal point as (kx, ky, kz ) = (0, 0, 2π/3).
For kz0 = π/2, the results in Fig. 3(b) show that BIS1 still
locates at kBIS1

x,y = 0, π , while BIS2 locates on a ring deter-
mined by cos(kBIS2

x ) + cos(kBIS2
y ) = 3/2. The intersection of

BIS1 and BIS2 allows us to detect the four nodal points as
(kx, ky, kz ) = (0,±π/3, π/2), (±π/3, 0, π/2). The results in
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Figs. 3(c)–3(f) also demonstrate this point, i.e., the nodal
points associated with different kz0 can be directly mapped out
by measuring the kz-resolved spin polarizations and extracting
the intersection of BIS1 and BIS2. In this way, the shape of the
inner nodal chain is detected. This method is general and also
can be applied to detect the shapes of the outer nodal chains
illustrated in Figs. 2(b)–2(d).

V. SUMMARY

In summary, we have presented an experimental scheme to
realize topological nodal chain semimetal phases with ultra-
cold atoms trapped in optical Raman lattices. In our scheme,
we have constructed a three-dimensional optical Raman
lattice that could produce next-nearest-neighbor spin-orbit
couplings and host various shapes of mirror-symmetry-
protected nodal chains in its energy spectra. Finally, we have
shown that the shapes of the nodal chains could be de-
tected by measuring spin polarizations. Thus, our study has
demonstrated the potential of optical Raman lattice systems
as a versatile platform for exploring topological nodal-chain
semimetal phases.

Moreover, our study sets an example for realizing complex
spin-orbit couplings in optical Raman lattices by apply-

ing suitable Raman potentials. This strategy is expected to
overcome the challenges faced in generating the complex
spin-orbit couplings required for realizing high-dimensional
topological phases in optical lattice systems. A straightfor-
ward example is that the topological nodal links and knots
[19] could be realized by adding perturbations into the Raman
potentials applied in our nodal chain platform. In the future,
it would be quite interesting to apply this strategy in optical
Raman lattices to construct the spin-orbit couplings for realiz-
ing four-band topological phases, including the Z2 topological
insulator phases [58,59], topological Dirac semimetal phases
[60,61] and higher-order topological phases [62].
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