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Dissipative Kerr solitons in optical microresonators with Raman
effect and third-order dispersion*
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Using the mean-field normalized Lugiato–Lefever equation, we theoretically investigate the dynamics of cavity soliton
and comb generation in the presence of Raman effect and the third-order dispersion. Both of them can induce the temporal
drift and frequency shift. Based on the moment analysis method, we analytically obtain the temporal and frequency shift,
and the results agree with the direct numerical simulation. Finally, the compensation and enhancement of the soliton
spectral between the Raman-induced self-frequency shift and soliton recoil are predicted. Our results pave the way for
further understanding the soliton dynamics and spectral characteristics, and providing an effective route to manipulate
frequency comb.
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1. Introduction

Dissipative Kerr cavity solitons (DKS) are self-
localized optical pulses that can be generated in nonlinear
microresonators.[1–3] They come from a double balance be-
tween nonlinearity and dispersion as well as the parametric
gain and cavity losses, which result in a stable pulse circu-
lating within the cavity.[4] Recently, DKS have attracted sig-
nificant research interest in the context of microresonator-
based frequency comb generation, which have been demon-
strated as a promising candidate for numerous applications,
such as telecommunications,[5,6] frequency synthesis,[7] dual-
comb spectroscopy,[8,9] astro-spectrometer calibration,[10,11]

and optical atomic clocks.[12] These DKS-based frequency
combs have been demonstrated in microresonators made
of silica,[13–15] magnesium fluoride,[3,16] lithium niobate,[17]

and silicon nitride.[18–20] In addition, such driven nonlin-
ear microresonators are attractive platform for exploring spa-
tiotemporal light localization and the dynamics of nonlinear
systems.[21,22]

Typical description of the dynamics of cavity solitons is
the mean-field Lugiato–Lefever equation (LLE) which usually
excludes higher-order dispersion and nonlinear terms.[23,24]

However in realistic system, higher-order effects are inevitable
and can alter soliton properties significantly under certain con-
ditions. Specifically, in the presence of higher-order dis-

persion, optical solitons can emit dispersive waves (soliton
Cherenkov radiation), which provides a path to generate co-
herent broadband frequency combs.[25–29] This radiation pro-
cess induces soliton recoil which causes a frequency shift in
the spectral centre of the soliton. Furthermore, femtosecond
solitons in microresonators have intense peak power and ul-
trashort duration such that, in principle, higher-order nonlin-
ear effects like the self-steeping effect and intrapulse Raman
scattering[30–32] can be excited. It has been demonstrated that
soliton interaction with the Raman effect can induce soliton
self-frequency redshift for a microresonator DKS (frequency-
locked Raman soliton).[33–36] Thus, it is interesting to study
the dynamics of cavity soliton and comb generation in the
presence of both higher-order dispersion effects and Raman
effect.

Here, we theoretically investigate the influence of Raman
effect and the third-order dispersion on the dynamics of DKS.
Specifically, we obtain approximated analytical expression of
the temporal soliton drift and frequency shift based on the mo-
ment analysis method, which agrees with the numerical results
according to directly solving the modified LLE. Furthermore,
we predict the compensation and enhancement of the temporal
and frequency shift in the presence of both the Raman effect
and the third-order dispersion.

This work is organized as follows. Section 2 gives the
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mean-field normalized LLE. Section 3 describes the moment
analysis method used in this work. Section 4 discusses the cav-
ity soliton temporal drift and frequency shift under the Raman
and the third-order dispersion effects.

2. Mean-field model
We describe the comb generation dynamics (schemati-

cally represented in Fig. 1) using the modified LLE, which
incorporates terms of higher-order dispersion and the Raman
effect. The equation can be written as[30,34,36,37]

∂A(φ , t)
∂ t

= −
(

κ

2
+ iδω

)
A+ ∑

n≥2
(−i)n+1 Dn

n!
∂ nA
∂φ n

+S+ ig

(
|A|2 +D1τR

∂ |A|2

∂φ

)
A, (1)

where A(t,φ) is the slowly varying intracavity field envelop,
φ is the azimuthal angular coordinate inside the resonator,
κ = κ0 + κex is the sum of the intrinsic decay rate (κ0) and
the coupling rate to the waveguide (κex), and η = κex/κ is the
coupling efficiency. The driving term S =

√
κηPin/(h̄ω0),

with Pin and ω0 being the pump power and pumped reso-
nance frequency, respectively. δω = ω0 − ωp is the detun-
ing of the pump laser with frequency ωp. The nonlinear Kerr
coupling coefficient is g = h̄ω2

0 cn2/n2
0Veff, where n0 and n2

are respectively the linear and nonlinear refractive indices,
and Veff = AeffL is the effective optical mode volume (Aeff

is the effective nonlinear optical mode area, and L is round-
trip length of the microresonator). The last term in Eq. (1)
denotes the Raman term, where τR is the Raman time con-
stant. The resonance frequencies of one mode family in a
microresonator can be approximated around ω0 as a Taylor
series ωµ = ω0 +∑n≥1 Dnµn/n!, where µ ∈ Z is the relative
mode number, D1/2π is the free range of the resonator, D2 is
associated with the group velocity dispersion (GVD) parame-
ter β2 via D2 =−(c/n0)D2

1β2, and D3, D4, . . ., account for to
higher-order dispersion.
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Fig. 1. Schematic diagram of Kerr optical frequency comb generation using
nonlinear microresonator with χ(3)–Kerr nonlinearity.

For simplicity, we employ the following dimensionless
form of Eq. (1):

∂ψ (θ ,τ)

∂τ
= −(1+ iζ )ψ + ∑

n≥2
(−i)n+1 dn

∂ nψ

∂θ n

+ i |ψ|2 ψ + iτ ′Rψ
∂ |ψ|2

∂θ
+F. (2)

Here we have used the normalization convention τ = κt/2,
θ = φ

√
κ/D2, ψ =

√
2g/κA, dn = 2

κ
(κ/|D2|)n/2 Dn

n! , ζ =

2δω/κ , τ ′R = D1
√

κ/D2τR, and F =
√

8gηPin/(κ2h̄ω0). In
the following analysis, we focus on the abnormal dispersion,
i.e., d2 = 1.

3. Moment analysis
To quantitatively understand the dynamics of the DKS de-

scribed by Eq. (2), we first use the method of moments to
search the approximate soliton solutions. The moment anal-
ysis method treats the pulse as a particle, under which the en-
ergy ℰ , position 𝒟, and the spectral centre mode number µc

are given by[34,36]

ℰ =
∫

∞

−∞

|ψ|2 dθ , (3)

𝒟 =
1
ℰ

∫
∞
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Taking derivations of the moments Eqs. (3)–(5) and using
Eq. (2), we get

∂ℰ
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∫
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*) dθ , (6)
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∂ µc
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= −2µc +

τ ′R
ℰ

∫
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(
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where

[ψ,ψ*]k =
∂ k−1ψ*

∂θ k−1
∂ kψ

∂θ k − ∂ k−1ψ

∂θ k−1
∂ kψ*

∂θ k .

Considering ℱ
[
∂ kψ (τ,θ)/∂θ k

]
= (−iµ)k

ψ (τ,µ) and
∂
[
(−iµ)kψ (τ,µ)

]
/∂τ = 0, where ℱ denotes the Fourier

transform, it follows that the temporal position shift of the
soliton in Eq. (7) is dominated by high-odd-order dispersion
(d2n+1), and the high-even-order dispersion (d2n) term only
affects the relation between the width and the amplitude of the
soliton.[26] Furthermore, the second term of Eq. (8) implies
that the Raman effect can induce frequency shift.
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4. Raman and third-order dispersion perturba-
tion
We introduce the following soliton envelope ansatz[35,38]

ψ (θ ,τ) =

√
ℰ

2τs
sech

[
θ −𝒟 (τ)

τs

]
e−iµc(τ)[θ−𝒟(τ)]+iϕ , (9)

with energy ℰ , temporal pulse width τs, temporal position 𝒟,
spectral-center frequency shift µc, and soliton phase ϕ . By
substituting Eq. (9) into Eqs. (6)–(8) and taking into consider-
ation the dispersion up to the third order, we obtain
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√
ℰτs

2
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(
πµcτs

2

)
cosϕ, (10)
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√
1

2ℰτs
sech

(
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2

)
cosϕ

+
3d3

τs

(
1

3τs
+µ

2
c τs

)
, (11)

∂ µc

∂τ
= −2µc −

4
15

ℰ
τ3

s
τ
′
R. (12)

In the unperturbed case (d3 = 0, τ ′R = 0), the stability analysis
of the equilibrium intracavity field ψs of Eq. (2) fulfills the cu-
bic equation F2 = ρ3 − 2ζ ρ2 +

(
ζ 2 +1

)
ρ , where ρ = |ψs|2.

From Eq. (10), the steady-state energy (∂ℰ/∂τ = 0) of the un-
perturbed cavity soliton is obtained by assuming cosϕ ≈ 1.
That is ℰ0 ≈ π2F2τs0/2 and the temporal pulse width is τs0 ≈
ℰ0/4.[38] From Eqs. (11) and (12) we have 𝒟 = 0 and µc = 0,
meaning that the cavity soliton dose not move and keeps its ini-
tial frequency, as shown in Fig. 2(a). The field evolves toward
a steady-state pulse [Fig. 2(b)] and the corresponding spectral
is a perfectly smooth sech function [Fig. 2(c)].
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Fig. 2. (a) Temporal evolution of the cavity soliton for ζ = 3, F = 2, and
d3 = τ ′R = 0. (b) Temporal and (c) spectral envelopes of the final stable
soliton.

We first address the effect of Raman term (d3 = 0, τ ′R ̸= 0).
According to Eqs. (11) and (12), the steady-state spectral cen-
ter mode number (∂ µc/∂τ = 0) is given as

µc,R ≈− 2
15

ℰ0

τ3
s0

τ
′
R, (13)

and the temporal shift of the soliton is

𝒟R (τ)≈ 2µc,Rτ. (14)

Here we have assumed sech(πµcτs/2)cosϕ ≈ 1. In Figs. 3(a)
and 3(b), by numerically solving Eq. (2), we plot the temporal
and spectral evolutions of cavity soliton versus slow time τ , re-
spectively, and the final steady state temporal and spectral en-
velops are shown in Figs. 3(c) and 3(d). It is clear that Raman
effect induces a temporal deceleration and spectral redshift to
the soliton. Moreover, equation (14) shows that the temporal
shift 𝒟R (τ) induced by the Raman effect varies linearly with
τ [see Fig. 3(e)]. In Fig. 3(f) we plot µc,R versus τ ′R. The an-
alytical results agree well with the numerical calculation for
small τ ′R. As τ ′R is increased, the deviation will increase.
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Fig. 3. Temporal (a) and spectral (b) evolutions of the cavity soliton for
τ ′R = 0.04. Panels (c) and (d) show the temporal and spectral envelopes.
The blue curves in panels (c) and (d) correspond to Figs. 2(b) and 2(c), re-
spectively. Panel (e) shows the temporal delay of the soliton versus slow
time τ with τ ′R = 0.04 and panel (f) shows the frequency shift versus τ ′R
with τ = 30. The red dashed lines correspond to numerical results by solv-
ing Eq. (2) and the black solid lines are the solutions of Eqs. (13) and (14),
respectively. The other parameters are the same as those in Fig. 2.

We then study the impacts of the third-order dispersion
(d3 ̸= 0, τ ′R = 0). Equation (11) shows that the third-order dis-
persion influences the temporal position of the soliton and the
position shift is

𝒟T (τ)≈
d3

τ2
s0

τ. (15)

This is clarified in Fig. 4(a1), which plots the temporal evolu-
tion dynamics of soliton with d3 = 0.1. Furthermore, we plot
the position shift 𝒟T versus time τ (with d3 = 0.1) and d3 (at
time τ = 50), respectively. It is found that results from Eq. (15)
(black solid lines) agrees with the numerical data (red dashed
lines). Compared with the unperturbed case [Figs. 2(b) and
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2(c)], the third-order dispersion induces soliton tail oscillation,
as shown on the top of Fig. 4(a1). This originates from the dis-
persive wave excitation via Cherenkov radiation process. The
corresponding spectrum of such a perturbed soliton exhibits
an additional local maximum (dispersive wave), as shown in
Fig. 4(a2). In addition, the sign of d3 determines the direction
of soliton movement and the side of dispersive wave, as shown
in Figs. 4(b1) and 4(b2) with d3 =−0.1.
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Fig. 4. Panels (a1) and (a2) [(b1) and (b2)] are the temporal and spectral
evolutions of the cavity soliton for d3 = 0.1 [d3 = −0.1], respectively. The
upper graph in panels (a1) and (b1) show the corresponding temporal profile
of the stable evolution soliton. Panels (c) and (d) show the temporal delay of
the soliton versus time τ with d3 = 0.1 and Raman constant d3 with τ = 50,
respectively. The red dashed lines correspond to numerical results by solv-
ing Eq. (2) and the black solid lines are the solutions of Eq. (15). The other
parameters are the same as those in Fig. 2.

As shown in Fig. 5(a), owing to the appearance of the dis-
persive wave, the maximum of spectrum shifted away from the
pump frequency, which is called soliton recoil. To estimate the
peak position of the spectrum, we treat d3 as a perturbation up
to the first order, and the solution of Eq. (2) is thus given as[39]

ψ̃ =
√

2ζ sech
(√

ζΘ

)
e i
√

ζ d3 f (Θ), (16)

where Θ = θ − d3ζ υτ = θ − (∂𝒟/∂τ)
√

ζ τ and f (Θ) =

[(υ +1)Θ −3tanh(Θ)]/2. Making use of Eq. (15), we have
υ ≈ 1. Note that we have neglected some dispensable terms
in writing Eq. (16) and focused on the frequency shift induced
by the third-order dispersion. Taking the Fourier transform of
Eq. (16), i.e., ℱ [𝒜(µ)] =

∫
𝒜(θ) e−iµθ dθ , the soliton recoil

is written as
µr ≈ 2

√
ζ d3. (17)

In Fig. 5(b), we plot soliton recoil versus d3. It can be seen that
the analytical results (black solid line) agree with the numeri-

cal simulation (red dashed line) for small d3. Note that the ob-
tained results may be more precise if higher-order correlations
(nonlinear term) are considered. Additionally, according to the
dispersive radiation theory,[27,40] the frequency of dispersive

wave is Dω = d3µ3 − νµ ±
√

(d2µ2 +2 |ψ0|2 −ζ )2 −|ψ0|4,

where ν is the velocity of the soliton temporal drift and |ψ0|2

is the background power. The peak position of the dispersive
wave is obtained by setting Dω = 0. In the lower panel of
Fig. 5(a), we plot the corresponding spectrum of dispersion
wave. One can see that the dispersive wave is located at nor-
mal dispersion regime, which demonstrates a broadband fre-
quency comb.
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Fig. 5. (a) The spectral envelop (upper panel) and dispersive wave curve
(lower panel) with d3 = 0.15. The red dashed line corresponds to the en-
velop in Fig. 2(c). In the dispersive wave curve, regions with positive cur-
vature have anomalous group velocity dispersion (GVD) and regions with
negative curvature have normal GVD. Panel (b) shows the soliton recoil ver-
sus d3 based on Eq. (17) (black solid line) and numerical results (red dashed
line). The other parameters are the same as those in Fig. 2.

Up to now, the discussions are restricted to the case where
either Raman term or the third-order dispersion is taken into
consideration. Since both these terms are inevitable in an ac-
tual experiment, it becomes necessary to understand their po-
tential interplay on the dynamics of DKS. Firstly, according
to Eq. (11), both terms lead to temporal shift of the intra-
cavity soliton. In Figs. 6(a) and 6(b), we plot the temporal
evolution of the cavity soliton for {d3 = 0.1,τ ′R = 0.04} and
{d3 =−0.1,τ ′R = 0.04}, respectively. The white solid lines
(red dashed lines) denote the temporal evolution profiles with
{d3 ̸= 0,τ ′R = 0} ({d3 = 0,τ ′R ̸= 0}). One can see that, un-
der the action of both Raman effect and the third-order dis-
persion, the soliton temporal drift can be either compensated
or enhanced depending on the sign of d3. In particularly, the
corresponding frequency shift can also be compensated or en-
hanced, as shown in Figs. 6(c) and 6(d). When d3 = 0.1, the
Raman induced soliton self-frequency shift cancels the soli-
ton recoil induced by dispersive wave [inset in Fig. 6(c)]. For
d3 =−0.1, both Raman self-frequency shift and soliton recoil

054206-4



Chin. Phys. B Vol. 30, No. 5 (2021) 054206

are attributed to the enhancement of frequency shift [inset in
Fig. 6(d)]. We can eliminate the influence of the Raman ef-
fect by engineering the third-order dispersion of the microres-
onator. Note that, in addition to the soliton spectrum, the Ra-
man term can also influence the position of the dispersive wave
situated in the normal disperion regime.
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Fig. 6. Panels (a) and (b) show the temporal evolution of the cavity soliton
for {d3 = 0.1,τ ′R = 0.04} and {d3 =−0.1,τ ′R = 0.04}, respectively. The
white solid (red dashed) lines represent the temporal evolution profiles with
only d3 (τ ′R). Panels (c) and (d) are the corresponding spectra in panels (a)
and (b), respectively, and the red dotted–dashed lines denote the spectral
profiles with {d3 ̸= 0,τ ′R = 0}. The other parameters are the same as those
in Fig. 2.

5. Conclusion
In summary, we have studied the role of the Raman effect

and the third-order dispersion in cavity soliton and frequency
comb generation. Based on the mean-field LLE, we used the
moment analysis method to describe the dynamics of cavity
soliton. Particularly, we obtained approximated analytical ex-
pression for the temporal soliton drift and frequency shift un-
der the Raman effect or the third-order dispersion. The analyt-
ical results for small Raman shock time and the third-order dis-
persion coefficient agree with full simulation by solving LLE

numerically using the split-step Fourier method. Finally, we
predict the cancellation and enhancement of the temporal drift
and frequency shift in the presence of both the Raman effect
and the third-order dispersion.

Appendix A: Raman effect
Note that the general Raman term in Eq. (1) is

ig
∫

∞

0 R(t ′) |A(φ , t − t ′)|2 dt ′A. Here R(t) = (1− fR)δ (t) +
fRhR (φ) is the nonlinear response function, where fR

is the Raman fration and hR (φ) is the Raman re-
sponse function. Thus, the Raman term is rewritten as
ig
[
(1− fR) |A|2 + fRhR (φ)⊗|A|2

]
A, with ⊗ denoting convo-

lution. Given that Raman-active modes are sufficiently high
in frequency and exceed the bandwidth of the soliton pulse,
then the Raman term can be simplified to the first order that
only contains the instantaneous response, i.e., hR (φ)⊗|A|2 ≈
|A|2 +D1τR∂ |A|2 /∂φ .
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