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The discovery of exotic topological states of matter is a thriving 
research topic in condensed matter physics and material sci-
ence1,2. For a gapped phase, the conventional d-dimensional 

(dD) topological insulators feature (d−1)D gapless boundary 
states. Recently, higher-order topological insulators were found to 
exhibit an extended bulk–boundary correspondence, that is, a dD 
nth-order topological insulator has (d−n)D boundary states3–9. For 
example, a 2D second-order topological insulator possesses the 
0D corner states3–5, whereas a 3D one hosts the 1D hinge states6–9. 
Although the concept of higher-order topological insulators was 
first proposed in electronic systems and implemented recently10, 
second-order or even third-order topological insulators have been 
extended and observed in the photonic crystals11–14, acoustic crys-
tals15–23 and electric circuits24,25, benefiting from their macroscopic 
scale and flexibility of fabrication.

For gapless phases, the topology of the nodal points in 3D 
momentum space gives rise to the concept of a topological semi-
metal (TSM)26, such as the Weyl27 and Dirac28 semimetals. Unlike a 
topological insulator, a conventional 3D TSM is usually character-
ized by 2D non-closed surface arc boundary states, in contrast to 
closed surface circle ones. A natural question arises as to whether 
there exists the 3D higher-order TSM, which hosts the 1D hinge 
states. Very recently, a few 3D higher-order TSMs were proposed 
with twofold5,29,30 or fourfold31–33 degenerate nodal points, or twofold 
degenerate nodal loops33. However, the higher-order TSMs are yet 
to be implemented in experiments.

In this work, we report the realization of a 3D second-order TSM 
(SOTSM) in an acoustic crystal, constructed by stacking a breathing 
kagomé lattice with double-helix interlayer couplings. The SOTSM 
hosts the 2D Fermi arc surface states and 1D gapless hinge states, 
which connect the projections of the Weyl points that result from 
the kz-dependent polarization protected by the mirror and C3 sym-
metries. We first illustrate the topological properties of the SOTSM 

by a tight-binding model, and then present the experimental obser-
vation of the Weyl points, the Fermi arc surface states and the hinge 
states. The theoretical, simulated and experimental results are in 
good agreement.

We introduce a tight-binding model for the SOTSM. As shown in 
Fig. 1a, the lattice is constructed by stacking the breathing kagomé 
lattice along the z direction, in which a unit cell of each layer con-
tains three sites denoted by A (red), B (blue) and C (green). The 
intralayer couplings contain the intracell hopping ta (grey) and the 
intercell hopping tb (cyan) in the x–y plane, whereas the interlayer 
interaction is dominated by the double-helix hopping tz (yellow), 
composed of two equal chiral interlayer couplings that are clock-
wise and antclockwise. On the basis of sublattices A–C, the Bloch 
Hamiltonian is written as:

H kð Þ ¼
0 h12 h13
h*12 0 h23
h*13 h*23 0

0
B@

1
CA ð1Þ

with h12 ¼ ta þ t0be
�i kx=2þ

ffiffi
3

p
ky=2ð Þa

I
, h13 ¼ ta þ t0be

�ikxa

I
 and 

h23 ¼ ta þ t0be
i �kx=2þ

ffiffi
3

p
ky=2ð Þa

I
, where t0b ¼ tb þ 2tzcosðkzhÞ

I
, 

k = (kx,ky,kz) is the Bloch wavevector and a and h are the lattice con-
stants in the x–y plane and z direction, respectively. The bandgap 
closes at (kx,ky) = (±4π/3a,0) when ta ¼ t0b

I
, or (kx,ky) = (0,0) when 

ta ¼ �t0b
I

. We first discuss the case of ta ¼ t0b
I

, in which the system 
has twofold degenerate points at K± = (4π/3a,0,±kW/h) (Fig. 1b) 
and their time-reversal counterparts K 0

± ¼ �4π=3a; 0; ± kW=hð Þ
I

 
with kW = arccos[(ta − tb)/2tz]. As demonstrated in Supplementary 
Section I, these four degenerate points are the Weyl points with 
topological charges ±1 (Fig. 1c) and linear dispersions along all 
three directions.
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The topological property of our model can be characterized 
with the 2D topological index by considering kz as a parameter. The 
first-order topological index, that is, the kz-dependent Chern num-
ber, is zero except for the closing bulk gap at kW. So it is needed 
to investigate the second-order topological index, the kz-dependent 
polarization, which is defined as:

pi kzð Þ ¼ 1
S
∬
RBZ

Aid
2k ð2Þ

where d2k is the area element in the reduced Brillouin zone (RBZ) 
with area S, Ai ¼ �ihuj∂kijui

I
 with i = x,y, the Berry connection, and 

u is the Bloch function of the lowest band. The polarization (px,py) for 
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Fig. 1 | SOtSM for a 3D stacked breathing kagomé lattice. a, Schematics of the lattice structure with different intralayer (ta and tb) and interlayer (tz) 
hoppings. b, The bulk state dispersion along the kz direction with (kx,ky) = (4π/3a,0). The dashed blue line shows the position of the degenerate point. c, 
The first Brillouin zone and the distribution of the Weyl points. The hollow and solid circles denote the Weyl points with opposite topological charges. d, 
The polarization (px,py) of the lowest band along the kz direction. e, Schematics of the hinge states and Weyl points. The vertical direction represents the kz 
direction, and the horizontal directions denote real space. f, The projected dispersion of a triangle-shaped structure along the kz direction. The red solid line 
shows the hinge state dispersion. The parameters in b, d and f were chosen as ta = −1, tb = −2.4 and tz = −1 in arbitrary units (a.u.).
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a fixed kz takes a quantized value, because of the mirror and C3 sym-
metries5,34. As shown in Fig. 1d, the polarization is 1=2; 1=2

ffiffiffi
3

p� 

I
 for 

|kz| < kW and (0,0) for |kz| > kW, which corresponds to a phase transi-
tion across the Weyl points located at kW. The non-zero polarization 
gives rise to the hinge states in a triangle-shaped sample with the 
dispersion connecting the projections of the Weyl points along the 
kz direction, as shown by the hinge state distributions and disper-
sions in Fig. 1e,f. The model unambiguously exhibits the bulk-hinge 
correspondence and identifies itself a SOTSM.

We implemented the SOTSM in an acoustic crystal. Figure 2a 
shows a photo of our 3D-printed sample, which is a triangular 
prism of side 473.65 mm and height 856.68 mm, and comprised 
3,465 acoustic cavities inside. Figure 2b shows a unit cell with the 
lattice constants a = 44 mm and h = 38.9 mm, which clearly exhibits 
a double-helix layer-stacking structure. There are three cylindrical 
cavities of diameter d0 = 14 mm and height h0 = 21.5 mm, separated 
by a distance d = 28.6 mm. The intralayer couplings were introduced 
by two types of rectangular tubes, whose widths and heights were 
d1 = 5.6 mm and h1 = 4.48 mm, and d2 = 2.7 mm and h2 = 2.43 mm. 
The interlayer couplings were induced by double-helix tubes of 
radius r = 1.9 mm. With the cavities viewed as the lattice sites and 
the connecting tubes as the hoppings, the acoustic crystal can be 
mapped into the tight-binding model aforementioned.

We demonstrated the Weyl points of the acoustic crystal sample 
by simulations and experiments. The simulations were performed 
with the commercial COMSOL Multiphysics solver package, 
whereas the experimental dispersions were obtained by Fourier 
transforming the measured acoustic pressure fields of the bulk waves 
(Methods). The left panel of Fig. 2c shows the dispersions along the 
kz direction with (kx,ky) = (4π/3a,0). The colour scales and the circles 
represent the experimental and simulated results, respectively. One 

can see that there exist two linear crossing points at kz = ±kA with 
kAh/2π = 0.38. In the right panel of Fig. 2c, we show the dispersions 
along the high-symmetric lines in the kx–ky plane with kz = kA, in 
which the linear crossing point appears at the �K

I
 point. These results 

indicate that the crossing point at (kx,ky,kz) = (4π/3a,0,kA) is the Weyl 
point with linear dispersions in all three directions, consistent with 
those of the tight-binding model with the fitting parameters, as dis-
cussed in Supplementary Section II. As this system has time-reversal 
and twofold-rotation (along the y axis) symmetries, the Weyl points 
are located, respectively, at the �K

I
 and �K0

I
 points and at kz = ±kA. This 

means that this acoustic crystal hosts four Weyl points that reside at 
the same frequency and is an ideal Weyl semimetal.

It is known that there may exist Fermi arc surface states in the 
Weyl semimetals35,36. Figure 2d shows the Fermi arc surface disper-
sion at 8.11 kHz. The colour maps represent the measured data and 
the grey solid lines denote the simulated equifrequency contour, 
whereas the hollow and solid dots denote the projections of the 
Weyl points with opposite topological charges. We also simulated 
the surface states on the x–z surface, as shown by a red ellipse in 
Supplementary Fig. 4a. Note from Supplementary Fig. 4b that the 
surface states as a whole are gapless. To be more explicit, the surface 
states cross the projections of the Weyl points and touch the upper 
and lower bulk bands in the kx–kz plane only for kz = ±kA. For other 
kz values, the surface states do not cross and touch the bulk bands, 
which is because the kz-dependent Chern number is zero. However, 
when considering the second-order topological index, we found a 
non-zero kz-dependent polarization ðpx; pyÞ ¼ 1=2; 1=2

ffiffiffi
3

p� 

I
 for 

|kz| < kA, but zero polarization (px,py) = (0,0) for |kz| > kA, as shown 
in Supplementary Fig. 7a, which indicates that our acoustic crystal 
sample is a second-order Weyl semimetal. It is informative to fur-
ther investigate the boundary states on the hinges.
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Fig. 2 | 3D acoustic crystal with Weyl points and Fermi arcs. a, A photo of the 3D-printed sample. b, Schematics of a unit cell, with the side (left panel) 
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To excite the hinge states, we placed a headphone in the mid-
dle of the hinge of the acoustic crystal sample, and scanned the 
acoustic field distributions along the hinge with a microphone. 

For the experimental set-up and details, refer to and Methods and 
Supplementary Fig. 8. The projected dispersion along the kz direc-
tion was obtained by Fourier transformation, as shown by the 
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colour map in Fig. 3a. It can be seen that the hinge states exist at a 
frequency around 8.17 kHz, which agrees well with the simulated 
ones marked by the red circles (in the range |kz| < kA). As the excita-
tion was placed at the hinge, the bulk and surface states were poorly 
stimulated. This can be improved by placing the headphone at the 
centre of the bulk (to excite the bulk states) or at the surface (to 
excite the surface states), as shown in Supplementary Fig. 9. Figure 
3a, together with Supplementary Fig. 9, gives the full dispersion of 
all the states, that is, the hinge, surface and bulk states, that existed 
in our sample. In the left panel of Fig. 3b, we show the simulated 
eigenstates in our sample for kz = 0. Correspondingly, the measured 
responses of the bulk, surface and hinge states, with the excitation 
at the bulk, surface and hinge, respectively, are given in the right 
panel. It can be seen that the response spectrum (red curve) for the 
hinge states exhibits a peak at 8.17 kHz, which agrees with that in 
the simulations (red solid circles).

The existence of the hinge states can be more directly and clearly 
revealed by the acoustic pressure field distributions. In Fig. 3c, we 
present the acoustic pressure fields for four different frequencies 
at kz = 0, which were obtained by extracting the kz = 0 components 
from the Fourier spectra of the measured field distributions inside 
the sample for each frequency. For panels (i) and (iv), the exciting 
headphone was placed in the bulk, whereas for panels (ii) ((iii)) it 
was placed on the surface (hinge) (Fig. 3c). It can be seen that in 
panel (ii), the field is localized at the hinge, which indicates the exis-
tence of hinge states. Panels (i) and (iv) correspond to the excita-
tions of the bulk states, and panel (ii) corresponds to the excitation 
of the surface states. To have a complete view of the hinge states, we 
further show the acoustic pressure fields for varying kz in Fig. 3d, 
and the left (right) panel is the experiment (simulation). We observe 
that the hinge states manifest themselves well for |kz| < kA. For com-
parison, we also give the simulated acoustic fields of the bulk and 
surface states versus kz in Supplementary Fig. 10.

The full-wave simulations, shown in Fig. 3b and Supplementary 
Fig. 7b, give three degenerate hinge states, localized respectively 
at three hinges, which are related by the C3 symmetry. This means 
that the three hinge states were vanishingly coupled due to the suf-
ficiently large size of the sample. When we put the headphone at 
a particular hinge (for example, the lower left hinge in the experi-
ment), only the state at this hinge can be stimulated, as shown in 
panel (iii) of Fig. 3c and in Fig. 3d. Otherwise, putting the head-
phone at any other hinge only excites the state at the corresponding 
hinge.

Finally, we briefly discuss the case of ta ¼ �t0b
I

 of the 
Hamiltonian in equation (1). In this case, besides the Weyl points 
at K± and K 0

±
I

, the Hamiltonian also hosts the threefold degener-
ate points at Γ± = (0,0,±kT/h), where kT = arccos[−(ta + tb)/2tz] > kW. 
Correspondingly, there appears a new hinge state dispersion that 
connects the threefold degenerate points, in addition to the first 
one (for the details, see Supplementary Section VIII). To observe 
the new hinge states practically, we fabricated a new sample, based 
on the original one with adjusted structural parameters: a = 44 mm, 
h = 38.94 mm, d0 = 14 mm, h0 = 21.5 mm, d = 28.6 mm, d1 = 3.5 mm, 
h1 = 3.5 mm, d2 = 3.5 mm, h2 = 3.5 mm and r = 3 mm. Figure 4a 
shows the measured hinge state dispersions along the kz direction 
at a frequency of around 8.23 kHz, which agrees with the simu-
lated ones marked by the red circles. Figure 4b shows the response 
spectrum of the acoustic pressure field of the new hinge state for 
kzh/2π = 0.5. These response spectra also exhibit a peak at around 
8.23 kHz, consistent with the simulated one.

In conclusion, motivated by the pioneering theoretical predic-
tions5,31, we realized a 3D acoustic SOTSM, which hosts 1D gapless 
hinge states and exhibits a bulk–hinge correspondence. Our work 
concretes the higher-order TSMs5,31,32,37,38, with fundamental signifi-
cance and potential practical applications. In addition, with the flex-
ibility in obtaining the opposite couplings, the layer-stacking method 

in our work may be used to realize other types of higher-order TSMs 
that require both positive and negative hoppings.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41563-021-00933-4.

Received: 23 June 2020; Accepted: 17 January 2021;  
Published online: 15 February 2021

references
 1. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. 

Phys. 82, 3045–3067 (2010).
 2. Qi, X. L. & Zhang, S. C. Topological insulators and superconductors. Rev. 

Mod. Phys. 83, 1057–1110 (2011).
 3. Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric 

multipole insulators. Science 357, 61–66 (2017).
 4. Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Electric multipole 

moments, topological multipole moment pumping, and chiral hinge states in 
crystalline insulators. Phys. Rev. B 96, 245115 (2017).

 5. Ezawa, M. Higher-order topological insulators and semimetals on the 
breathing kagome and pyrochlore lattices. Phys. Rev. Lett. 120, 026801 (2018).

 6. Zhang, F., Kane, C. L. & Mele, E. J. Surface state magnetization and chiral 
edge states on topological insulators. Phys. Rev. Lett. 110, 046404 (2013).

 7. Song, Z., Fang, Z. & Fang, C. (d – 2)-dimensional edge states of rotation 
symmetry protected topological states. Phys. Rev. Lett. 119, 246402 (2017).

 8. Schindler, F. et al. Higher-order topological insulators. Sci. Adv. 4, eaat0346 
(2018).

 9. Roy, B. Antiunitary symmetry protected higher-order topological phases. 
Phys. Rev. Res. 1, 032048(R) (2019).

 10. Schindler, F. et al. Higher-order topology in bismuth. Nat. Phys. 14, 918–924 
(2018).

 11. Peterson, C. W., Benalcazar, W. A., Hughes, T. L. & Bahl, G. A quantized 
microwave quadrupole insulator with topologically protected corner states. 
Nature 555, 346–350 (2018).

 12. Noh, J. et al. Topological protection of photonic mid-gap defect modes. Nat. 
Photon. 12, 408–415 (2018).

 13. Mittal, S. et al. Photonic quadrupole topological phases. Nat. Photon. 13, 
692–696 (2019).

 14. Hassan, A. E. et al. Corner states of light in photonic waveguides. Nat. 
Photon. 13, 697–700 (2019).

 15. Serra-Garcia, M. et al. Observation of a phononic quadrupole topological 
insulator. Nature 555, 342–345 (2018).

 16. Xue, H., Yang, Y., Gao, F., Chong, Y. & Zhang, B. Acoustic higher-order 
topological insulator on a kagome lattice. Nat. Mater. 18, 108–112 (2019).

 17. Ni, X., Weiner, M., Alù, A. & Khanikaev, A. B. Observation of higher-order 
topological acoustic states protected by generalized chiral symmetry. Nat. 
Mater. 18, 113–120 (2019).

 18. Zhang, X. et al. Second-order topology and multidimensional topological 
transitions in sonic crystals. Nat. Phys. 15, 582–588 (2019).

 19. Zhang, X. et al. Dimensional hierarchy of higher-order topology in 
three-dimensional sonic crystals. Nat. Commun. 10, 5331 (2019).

 20. Weiner, M., Ni, X., Li, M., Alù, A. & Khanikaev, A. B. Demonstration of a 
third-order hierarchy of topological states in a three-dimensional acoustic 
metamaterial. Sci. Adv. 6, eaay4166 (2020).

 21. Qi, Y. et al. Acoustic realization of quadrupole topological insulators. Phys. 
Rev. Lett. 124, 206601 (2020).

 22. Xue, H. et al. Observation of an acoustic octupole topological insulator. Nat. 
Commun. 11, 2442 (2020).

 23. Ni, X., Li, M., Weiner, M., Alù, A. & Khanikaev, A. B. Demonstration of a 
quantized acoustic octupole topological insulator. Nat. Commun. 11, 2108 
(2020).

 24. Imhof, S. et al. Topoelectrical-circuit realization of topological corner modes. 
Nat. Phys. 14, 925–929 (2018).

 25. Bao, J. et al. Topoelectrical circuit octupole insulator with topologically 
protected corner states. Phys. Rev. B 100, 201406 (2019).

 26. Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in 
three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

 27. Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological 
semimetal and Fermi-arc surface states in the electronic structure of 
pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

 28. Wang, Z. et al. Dirac semimetal and topological phase transitions in A3Bi 
(A = Na, K, Rb). Phys. Rev. B 85, 195320 (2012).

Nature MateriaLS | VOL 20 | JUNE 2021 | 812–817 | www.nature.com/naturematerials816

https://doi.org/10.1038/s41563-021-00933-4
https://doi.org/10.1038/s41563-021-00933-4
http://www.nature.com/naturematerials


ArticlesNaTure MaTeriaLS

 29. Ezawa, M. Magnetic second-order topological insulators and semimetals. 
Phys. Rev. B 97, 155305 (2018).

 30. Ezawa, M. Second-order topological insulators and loop-nodal semimetals in 
transition metal dichalcogenides XTe2 (X = Mo, W). Sci. Rep. 9, 5286 (2019).

 31. Lin, M. & Hughes, T. L. Topological quadrupolar semimetals. Phys. Rev. B 98, 
241103(R) (2018).

 32. Wieder, B. J. et al. Strong and fragile topological Dirac semimetals with 
higher-order Fermi arcs. Nat. Commun. 11, 627 (2020).

 33. Calugaru, D., Juricic, V. & Roy, B. Higher-order topological phases: a general 
principle of construction. Phys. Rev. B 99, 041301(R) (2019).

 34. Ni, X., Gorlach, M. A., Alù, A. & Khanikaev, A. B. Topological edge states in 
acoustic kagome lattices. N. J. Phys. 19, 055002 (2017).

 35. Xiao, M., Chen, W. J., He, W. Y. & Chan, C. T. Synthetic gauge flux and Weyl 
points in acoustic systems. Nat. Phys. 11, 920–924 (2015).

 36. Li, F., Huang, X., Lu, J., Ma, J. & Liu, Z. Weyl points and Fermi arcs in a 
chiral phononic crystal. Nat. Phys. 14, 30–34 (2018).

 37. Wang, H., Lin, Z., Jiang, B., Guo, G. & Jiang, J. Higher-order Weyl 
semimetals. Phys. Rev. Lett. 125, 146401 (2020).

 38. Ghorashi, S. A. A., Li, T. & Hughes, T. L. Higher-order Weyl semimetals. 
Phys. Rev. Lett. 125, 266804 (2020).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2021

Nature MateriaLS | VOL 20 | JUNE 2021 | 812–817 | www.nature.com/naturematerials 817

http://www.nature.com/naturematerials


Articles NaTure MaTeriaLS

Methods
Numerical simulations. All the numerical simulations of an acoustic crystal 
were performed with the commercial COMSOL Multiphysics solver package. The 
acoustic crystals were filled with air with a mass density of 1.18 kg m–3 and sound 
velocity of 341 m s–1 at room temperature. Owing to the huge acoustic impedance 
mismatch compared with air, the 3D-printed plastic material was considered to be 
a hard boundary.

Experimental measurements. A sub-wavelength headphone (diameter 3.0 mm) 
was placed in the middle of the hinge of the 3D sample for the hinge-state 
excitations, whereas it was placed at the centre of the corresponding surface or 
bulk for surface or bulk wave excitations. To measure the acoustic pressure field, a 
subwavelength microphone (diameter 1.5 mm) attached to the tip of a stainless-steel 
rod was inserted into the sample and controlled manually. Both the source and 
receiver were connected to a vector network analyser (Keysight 5061B), where the 
sound signals (S-parameter S21) were sent and recorded. The network analyser 
not only generated the excitation signal (a sinusoidal wave sweeps from 4.70 to 
11.70 kHz), but also collected the recorded signals with average processing (16 
times). The hinge, surface and bulk state dispersions were obtained by Fourier 
transforming the corresponding measured fields. The response spectra of the 
hinge, surface and bulk states were obtained by extracting the kz = 0 components 
from the Fourier spectra of the corresponding measured fields along a line (in the z 
direction) that passed through the position of the headphone. As only the positions, 
rather than the heights, of the peaks matter, all the contours (Figs. 2c,d, 3a,c,d and 
4a) and the response spectra (Figs. 3b and 4b) were normalized by their maxima.

Data availability
Owing to their larger size, the data represented in Fig. 3 and Supplementary Fig. 
10 are available on Zenodo at https://zenodo.org/record/4441748#.YAFkdznisuV. 
Source data are provided with this paper.
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