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Nonequilibrium characterization of equilibrium correlated quantum phases
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Quenching a quantum system involves three basic ingredients: the initial phase, the postquench target phase,
and quantum dynamics, which may carry the information of the former two. Here we propose a dynamical theory,
based on an interaction quench, to characterize both the equilibrium symmetry-breaking order and topological
phases by nonequilibrium correlated quantum dynamics. We illustrate the theory with the Haldane-Hubbard
model, which is quenched from an initial correlated magnetic phase to a topologically nontrivial regime. We
show that the quench dynamics exhibit profound universal behaviors on the so-called band-inversion surfaces
(BISs), from which both the topological phase in the weakly interacting regime and the correlated magnetic phase
in the strongly interacting regime can be extracted. In particular, the topology is characterized by dynamical
topological patterns emerging on BISs, which are robust against interaction-induced dephasing and heating; the
symmetry-breaking order can be read out from a universal dynamical scaling behavior, which is valid beyond
the mean-field theory. This work uncovers the first paradigm of nonequilibrium characterization of equilibrium
symmetry-breaking and topological phases.
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I. INTRODUCTION

The Landau symmetry-breaking phases and topological
phases are two fundamental notions in condensed-matter
physics. The equilibrium characterizations of the two types
of phases are fundamentally different, respectively described
by local orders [1] and nonlocal topological invariants [2–4] of
many-body ground states, for which their experimental probes
are also sharply distinct. Tuning a correlated system away
from the equilibrium phase by, e.g., quenching leads to quan-
tum dynamics which attracted lots of theoretical interest in
recent years, with the research having been mainly focused on
the fate of symmetry-breaking orders after quench, like the de-
struction of the equilibrium phases [5–7], and the emergence
of dynamical phases [8]. Here we provide a perspective to
consider how the far-from-equilibrium dynamics encodes the
information of equilibrium quantum phases and raise a broad
and intriguing issue—the nonequilibrium characterization of
equilibrium symmetry-breaking and topological phases.

For noninteracting topological phases, the characterization
by quantum dynamics has been actively studied in both theory
[9–19] and experiment [20–25]. It was predicted that suddenly
tuning a system from an initially trivial phase to a topologi-
cal regime induces topological quench dynamics which links
to and thus provides nonequilibrium characterization of the
equilibrium topological phase of the postquench Hamiltonian
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[9–11]. The dynamical characterization provides conceptually
new schemes to detect in experiment the topological phases
with much higher precision compared with the equilibrium
measurement strategies [9,21]. Nevertheless, so far the dy-
namical characterization theory has been developed for only
noninteracting phases. For an interacting system with both
the symmetry-breaking and topological phases, the quench
dynamics are much more complicated due to the correlation
effects [26,27]. How to develop a dynamical characterization
theory for both the symmetry-breaking and topological phases
is an open, although highly significant, question in both theory
and experiment and an outstanding issue.

We address the issue and propose a dynamical charac-
terization scheme via the spin-1/2 Haldane model [28,29]
with Hubbard interaction, which hosts the magnetic phase
and the topological phase in strongly and weakly interact-
ing regimes, respectively [30–37]. The quench dynamics is
induced by quenching the system from the initial symmetry-
breaking phase with trivial topology to a target topolog-
ical phase without symmetry breaking, i.e., across both
the symmetry-breaking and topological phase transitions.
The pseudospin quench dynamics follows a microscopic
Landau-Lifshitz-Gilbert-Bloch equation, with the dephasing
and heating effects being predicted. Importantly, we find
that the correlated quench dynamics exhibits emergent ro-
bust topological patterns and a universal dynamical scaling
on the one-dimensional (1D) momentum subspaces called
band-inversion surfaces (BISs) [9], which characterize, re-
spectively, the postquench topology and prequench magnetic
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orders. These exotic features manifest a profound dynamical
bulk-surface correspondence relating equilibrium topology
and symmetry-breaking orders to correlated quench dynamics
on BISs.

II. INTERACTION QUENCH AND
PSEUDOSPIN DYNAMICS

We consider the two-dimensional (2D) Haldane-Hubbard
model, which can be realized in experiment [29] and charac-
terized by the Hamiltonian

H = H0 + U
∑

�i
(a†

�i↑a†
�i↓a�i↓a�i↑ + b†

�i↑b†
�i↓b�i↓b�i↑),

H0 = −t1
∑
〈�i�j〉,σ

(a†
�iσ b�jσ + H.c.) − t2

∑
〈〈�i�j〉〉,σ

(eiφa†
�iσ a�jσ

+ e−iφb†
�iσ b�jσ + H.c.) + M

∑
�i,σ

(a†
�iσ a�iσ − b†

�iσ b�iσ ). (1)

Here a�iσ (b�iσ ) and a†
�iσ (b†

�iσ ) are annihilation and creation
operators, respectively, for fermions of spin σ =↑,↓ on A
(B) sites. The nearest-neighbor (t1) and next-nearest-neighbor
(t2) hoppings are considered, with the latter having a phase
±φ. U is the on-site interaction, and M is an energy im-
balance between the A and B sites. In Bloch momentum
k space, the noninteracting Hamiltonian can be rewritten
as H0 = ∑

k,σ h(k) · τσ , where h(k) = (hx, hy, hz ) mimics
an effective Zeeman field [38], with the pseudospin opera-
tors τσ

z = a†
kσ akσ − b†

kσ bkσ , τσ
x = a†

kσ bkσ + H.c., and τσ
y =

−i[τσ
z , τ σ

x ]. It has been widely found [30–37] that in the
ground state |�GS〉, an antiferromagnetic (AF) order mAF =
(m↓ − m↑)/2 arises for strong repulsive interaction, and the
energy imbalance M further leads to a charge order mC =
(m↑ + m↓)/2 corrected by the Hubbard interaction, which
characterizes the population difference in the two sublattices.
Here the initial orders mσ ≡ 〈a†

�iσ a�iσ − b†
�iσ b�iσ 〉Uin/4, with Uin

being the initial strong interaction and the expectation 〈·〉
being computed in the ground state |�GS〉.

We consider the interaction quench from an initial mag-
netic phase in the strongly interacting regime (U = Uin � t1)
to a topologically nontrivial region in the weakly interacting
regime (U < t1) [Fig. 1(a)]. The quench dynamics corre-
sponds to the time evolution of a given initial ground state
under the postquench Hamiltonian. The initial ground state
can be written down in the mean-field form |�GS〉 → |�MF〉,
which solely depends on the order parameters [38], or as the
Gutzwiller many-body wave function beyond the mean-field
picture [39–42]. As studied below and detailed in the Supple-
mental Material [38], our central results are valid beyond the
mean-field regime of the initial state. The time evolution of
the many-body state under the weakly interacting postquench
Hamiltonian can be investigated by the well-established flow
equation method [43–46], with the details being summarized
in Appendix A. Due to the interaction, the single-particle
momentum is not conserved. However, we can investigate
pseudospin dynamics in the projected momentum (k) space
which is obtained by tracing out all other momenta of the
many-body state, as shown in Figs. 1(b) and 1(c). The quench
dynamics generically exhibit large-amplitude pseudospin

FIG. 1. Interaction quench and pseudospin dynamics. (a) The
system undergoes a transition from an AF phase to a topologically
nontrivial phase by quenching the interaction from U � t1 to U < t1.
(b) The first Brillouin zone (hexagon) with the reciprocal-lattice vec-
tors b1 = 2π

3a0
(
√

3, 1) and b2 = 4π

3a0
(0, 1) (a0 is the lattice constant).

The dashed purple line denotes the band-inversion surface of the
spin-up component. (c) The pseudospin polarization 〈τ σ

z 〉 oscillates
after the quench for each spin σ =↑↓. Three points in the Brillouin
zone in (b) are taken for example. Here t2 = 0.3t1, M = −0.5t1,
mC = 0.5t1, mAF = 4t1, and U = 0.3t1 after quench.

oscillations only at momenta near the BIS (see the definition
below). We then expect that universal behaviors of the corre-
lated dynamics will emerge on the BIS which will link to both
the prequench magnetic order and the postquench topology.
In this study, we focus on quench dynamics in the early stage
(up to a few oscillations), while long-time behaviors are not
necessary for our purpose.

III. EQUATION OF MOTION

We first show that the essential physics of pseudospin
dynamics can be captured by the equation of motion in the
projected k space. Taking into account the dominating con-
tributions from scattering, we obtain the following result (see
the Supplemental Material [38] for derivation):

dSσ (t )

dt
= Sσ (t ) × 2h − ησ

1 Sσ (t ) × dSσ (t )

dt
− ησ

2
Sσ (t )

Tg
,

(2)

where Sσ (k, t ) ≡ 1
2 〈τσ (k, t )〉 (σ =↑,↓). The terms of the

right-hand side have transparent physical interpretations. The
first 2h term corresponds to the pseudospin precession in-
duced by the single-particle Hamiltonian, while the second
and third terms are induced by correlation effects. The ησ

1 term
represents the interaction-induced damping of precession, and
the ησ

2 term leads to heating, with Tg ≡ 1/(2E0) and E0(k) =
[h2

x (k) + h2
y (k) + h2

z (k)]1/2. The heating reduces the length of
the Sσ vector, while the damping drags the vector towards
the h axis. This equation renders a mixed microscopic form
of the Landau-Lifshitz-Gilbert [47] and Bloch [48] equations.
Its form is not altered by characterizing the initial phase in
the mean-field theory or as the Gutzwiller state, although the
beyond-mean-field effects can correct the coefficients [38].
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FIG. 2. Pseudospin dynamics from the equation of motion. Time evolution of pseudospin vectors for (a) spin up and (b) spin down.
Damping and heating effects modify the precession, but to different degrees in different regions with respect to the BIS. (c) The calculated
distribution of damping factors ησ

1 and heating factors ησ
2 . The dashed purple lines denote the noninteracting BISs for each spin. Here we take

t2 = 0.3t1, M = −0.5t1, mC = 0.5t1, mAF = 4t1, and the interaction U = 0.3t1 after quench.

The solution up to the second order of postquench interac-
tion U 2 reads

Sσ (t ) = S(0)
σ + S(c)

σ (t ) + S(h)
σ (t ) + S(l )

σ (t ). (3)

Here S(0)
σ = [nσ

+−(k) − nσ
−−(k)]h(k)/E0(k) is a constant

equaling the time-averaged value of the single-particle pseu-
dospin procession and is proportional to the difference of the
initial population in the upper (nσ

+−) and lower (nσ
−−) eigen-

bands of the single-particle Hamiltonian, and S(c)
σ (k, t ) ∼

cos(t/Tg) is the single-particle oscillation around the averaged
value S(0)

σ . The interaction corrects the pseudospin proces-
sion by inducing the high-frequency fluctuation S(h)

σ (k, t ) ≈
−λσ

1 (k, t )S(c)
σ (k, t ), which reduces the pseudospin oscilla-

tion amplitude, and the low-frequency term S(l )
σ (k, t ) ≈

−2λσ
2 (k, t )h(k)/E0(k), which equilibrates the density dis-

tribution of the two eigenbands (embodied in λσ
2 ). The

coefficients λσ
1,2 ∝ U 2/E2

0 relate to the factors ησ
1,2, as dis-

cussed below. Note that the entire many-body system evolves
unitarily. The dephasing and heating arise in the projected
quench dynamics at fixed k since all the particles with k′ �= k
act as a thermal bath scattering the k state.

The correlation effects can be better interpreted by examin-
ing the damping and heating effects on the single-particle BIS
defined by hz(k) = 0 in the Hamiltonian H0 [9–11,21], which
is a 1D momentum subspace with vanishing time-averaged
spin polarization Sσ (k, t )|U=0 = S(0)

σ (k) = 0. On this BIS,
we find ησ

1 � −4(dλσ
2 /dt )Tg and ησ

2 � 4(dλσ
1 /dt )Tgnσ

+−nσ
−−,

where dλσ
1,2/dt are approximately constant in the early stage

of quench dynamics [38]. The former result of ησ
1 indicates

that the damping effect on single-particle BISs is induced by
density fluctuations (determined by λσ

2 ). Actually, if there is

no interaction, the pseudospin vector Sσ on the BIS is always
perpendicular to h, i.e., no dragging “force.” The latter one of
ησ

2 shows that the heating on BISs mainly results from the de-
phasing of the oscillation since the two eigenbands have been
equally occupied [nσ

+−(k) = nσ
−−(k)]. Figure 2(c) shows the

calculated distribution of ησ
1,2. One can see that near the BISs

(dashed lines), ησ
1 are small and the heating due to the ησ

2 term
dominates the correlation effect. In comparison, the damping
is enhanced at k away from the BIS. Hence, the damping and
heating have different effects in different regions, leading to
distinct precession dynamics [see Figs. 2(a) and 2(b)].

IV. CHARACTERIZATION BY EMERGENT TOPOLOGY

We show now that the correlated pseudospin dynamics
on BISs exhibit robust emergent topological patterns which
characterize the postquench topology. For noninteracting
topological phases, a dynamical bulk-surface correspondence
has been established [9–11], with the claim that the bulk topol-
ogy can be characterized by a dynamical invariant defined on
BISs, which reflects the total topological charges enclosed by
all the BISs. Here the topological charge depicts the chirality
of a monopole at the node of the spin-orbit field hso(k) ≡
(hy, hx ), and their positions can be dynamically identified by
the absence of oscillation after quench [10]. Now we general-
ize the dynamical characterization to the interacting regime.

From Eq. (2) we find that the interaction has different
effects on the dynamical characterization of BISs and topo-
logical charges. Since the damping (η1 term) modifies the
procession, the BIS in the presence of interactions, determined
by Sσ (k, t )|U �=0 = 0, is deformed from the aforementioned
single-particle BIS where h is perpendicular to Sσ . In contrast,
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FIG. 3. Emergent topology of quench dynamics. (a) Time-

averaged pseudospin textures 〈τ↑
x,y,z(k)〉 with (b) the corresponding

projected dynamical field g↑
‖ (k). (c) Time-averaged pseudospin tex-

tures 〈τ↓
x,y,z(k)〉 with (d) the corresponding projected dynamical field

g↓
‖ (k). The dashed lines denote the interacting BISs. The con-

structed dynamical field on the BIS for either spin characterizes the
topology with Chern number C = 1. Here we take t2 = 0.3t1, M =
−0.5t1, mC = 0.5t1, and mAF = 4t1, and the postquench interaction
U = 0.3t1. The time average is taken over 5 times of the oscillation
period for each k.

one can easily prove that the dynamical identification of topo-
logical charges is immune to the interaction, for only heating
has an effect at the momenta where hso(k) = 0. The dynamical
topology of the correlated quench dynamics emerging on the
BIS is dual to the topological charges enclosed by the BIS.
Hence, we expect that the interaction may not induce a topo-
logical transition if the deformed BIS does not cross any topo-
logical charge, which is true for small η1 near BISs [Fig. 2(c)].

We demonstrate the dynamical characterization in the in-
teracting regime by numerics. A typical example is shown in
Fig. 3, where we plot the time-averaged pseudospin textures
〈τσ

x,y,z(k)〉 for each spin σ =↑,↓. To characterize the topol-

ogy, we introduce a dynamical field gσ (k) = ± 1
Nk

∂k⊥Sσ (k, t ),
with + (−) for σ =↑ (↓). Here the momentum k⊥ is defined to
be perpendicular to the BIS, and Nk is the normalization fac-
tor. Due to the damping and heating effects, the gσ (k) vector is
generally out of the x-y plane. We project the dynamical field
onto the x-y plane, giving gσ

‖ (k) = ê‖ · gσ (k) = (gσ
y , gσ

x ), and
find gσ

‖ (k) � hso(k) on the interacting BISs (Appendix B).
Therefore, the winding of gσ

‖ (k) on BIS quantifies the total
topological charges enclosed by the BIS, corresponding to the
topology of the postquench regime [Figs. 3(b) and 3(d)]. Note
that this projection approach is different from the free-fermion
regime, where the topology emerges in the bare dynamical
field gσ (k) [9–11].

V. SYMMETRY-BREAKING ORDERS
FROM QUENCH DYNAMICS

Finally, we show the highly nontrivial prediction that the
prequench magnetic order can also be extracted from quench

dynamics on BISs. The AF and charge orders characterize
the spin and density distributions in A and B sites and thus
are related to the pseudospin dynamics, in which the BISs
play the pivotal role. We first consider the initial phase
characterized by the mean-field theory that |�GS〉 → |�MF〉
and derive the magnetic order based on two considerations: (i)
The BIS defined by Sσ (k, t ) = 0 corresponds to the momenta
satisfying E2

0 (k) + mσ hz(k) = −(dλσ
2 /dt )T E0(k)Eσ

0 (k),

with Eσ
0 ≡

√
E2

0 + 2mσ hz + m2
σ . Here T is the interval for

time averaging, and the right-hand side represents shift of
BISs by interaction. This formula shows that the dynamical
characterization of the BIS depends on both the prequench
phase mσ and the postquench Hamiltonian. (ii) The prequench
magnetization directly determines the oscillation amplitude.
We find that the half amplitude, defined as Zσ

0 (k) ≡
〈τσ

z (k, t = 0)〉, reads Zσ
0 = (dλσ

2 /dt )T hz/E0 − mσ (E2
0 −

h2
z )/(E2

0 Eσ
0 ) on BISs. With the two results and up to the

leading-order correction from the interaction, we obtain the
scaling (see Appendix C)

f (mσ ) = − sgn(Zσ
0 )

g(Zσ
0 )

+ O(U 4), (4)

where f (mσ ) = mσ T0 and g(Zσ
0 ) =

√
1 − Zσ 2

0 /π , with
T0(k) = π/E0. The result in Eq. (4) gives a universal scaling
at any k on BISs and is insensitive to interactions.

We emphasize that the scaling in Eq. (4) is satisfied be-
yond the mean-field theory. For the initial phase described
by the correlated Gutzwiller wave function |�GS〉 → |�G〉
(Appendix D), the same scaling holds, with Zσ

0 and the
order parameters mσ being now renormalized by correla-
tions in the more precise Gutzwiller ground state. The broad
validity beyond the mean-field description stems from the
dynamical symmetry between the two eigenbands. By def-
inition, on the BIS, the populations in the two eigenbands
are equal [nσ

+−(k) � nσ
−−(k)]. and the pseudospin dynamics

is resonant. As a result, the asymmetric beyond-mean-field
corrections coming from different scattering channels cancel
out on the BIS, making the scaling law solely dependent on
the renormalized order parameters. The details are given in
the Supplemental Material [38].

We provide numerical results in Fig. 4(a) for the spin-
up component. By identifying the BIS (the dashed purple
curve), we record the short-time dynamics at momenta of
three kinds: inside (k<

1 ), outside (k>
1 ), and right on the BIS

(k=
1,2,3). We measure both Z0(k) and T0(k) versus order pa-

rameters m↑/t1 [Fig. 4(b)]. The results are plotted as points
(|m↑T0|,

√
1 − Z2

0 ) in Fig. 4(c), showing that the data mea-
sured on the BIS all satisfy the scaling. In experiment, one
can obtain mσ by measuring only the first one or two oscil-
lations, i.e., the short-term dynamics. The AF order is then
given by mAF = (m↓ − m↑)/2, and the charge order mC =
(m↑ + m↓)/2.

VI. CONCLUSION AND DISCUSSION

The universal scaling and the dynamical topology of the
quench dynamics emerging on BISs unveil a profound dynam-
ical bulk-surface correspondence for both the topology and
symmetry-breaking orders. This correspondence is obtained
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FIG. 4. Characterizing symmetry-breaking order. (a) The mo-
menta taken for measurement. Three points lie on the BIS, with k=

1,2

being in line L1, (kx, ky ) = b1 + b2, and k=
3 being in line L2, kx =

4π

9a0

√
3. One is chosen inside the BIS with k<

1 = 3
5 (b1 + b2), and one

is outside the BIS with k>
1 = 2

3 b1 + 1
3 b2. (b) Both the half oscillation

amplitude Z0 and the oscillation period T0 are measured for differ-
ent magnetizations m↑/t1 = −{2, 2.5, 3, 3.5, 4}. (c) The numerical
results are shown as (|m↑T0|,

√
1 − Z2

0 ). The data taken on the BIS all
satisfy the function f (x) = π/x (dashed blue curve), which verifies
the relation of Eq. (4). Here we take t2 = 0.3t1, M = −0.5t1, and the
postquench interaction U = 0.3t1.

when the system is quenched across both the topological and
conventional symmetry-breaking phase transitions, in sharp
contrast to the conventional studies of quantum quenches
across only the conventional phase transition [5–7] or the
topological transition [9–19]. In particular, the quench dy-
namics for the symmetry-breaking phase without combining
it with the topological transition exhibits no such univer-
sal scaling since the BISs emerge dynamically only for the
quenches across the topological transition, showing the im-
portance of BISs in the nonequilibrium characterization of
both the topological and symmetry-breaking phases. Further,
while here we consider the Haldane-Hubbard model, the main
results are broadly applicable to generic 2D Chern-Hubbard
insulators and 1D topological-Hubbard systems as well. Thus,
this work opens an avenue toward the unified characterization
of symmetry-breaking and topological phases by quench dy-
namics.

Aside from the theoretical aspects, the present dynamical
characterization theory provides high-precision approaches
with experimental feasibility to detect correlated phases. First
of all, this characterization theory simplifies the strategy by
measuring the quench dynamics only on the BIS which is
a lower-dimensional momentum subspace. Second, by def-
inition the quantum (pseudo)spin dynamics is resonant on
BISs; hence, the dynamical behaviors are easily resolved in
experiment. Finally, the short-term quench dynamics already
provides sufficient information to characterize both the pre-
and postquench phases, which is generically not affected by
detrimental effects like thermal effects. This leads to the

high-precision measurement which can be achieved in current
experiments. Particularly, the dynamical characterization of
noninteracting topological phases has been experimentally
realized in both ultracold atoms [21,23] and solid-state spin
systems [24,25]. The Haldane model has been realized in
ultracold atoms [29], the interaction quench can be imple-
mented via Feshbach resonance [49], and the quench-induced
pseudospin dynamics can be measured by the tomography of
Bloch states [50,51].
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APPENDIX A: FLOW EQUATION METHOD

The process of applying the Flow equation method is
summarized as follows. First, through a unitary transfor-
mation that changes continuously with a flow parameter
l , we (nearly) diagonalize the postquench Hamiltonian at
l → ∞ [46]. Accordingly, the transformation of an operator
O(l ) (including the Hamiltonian) follows the flow equa-
tion dO(l )/dl = [η(l ),O(l )], where the canonical generator
η(l ) = [H0(l ), HI (l )] = −η(l )† is anti-Hermitian, with HI be-
ing the interacting term of the full Hamiltonian. Second,
the time-evolved operator O(l → ∞, t ) is obtained straight-
forwardly in the diagonal bases. Finally, we perform the
backward transformation so that the operator flows back as
O(l → ∞, t ) → O(0, t ) [52,53]. The dynamical evolution is
then given in the original bases.

For the present system, we consider the ansatz

H (l ) =
∑

k,σ,s=±
Es(k):c†

k,sσ ck,sσ :

+
∑

p′pq′q
s1s2s3s4

U s1s2s3s4
p′pq′q (l ):c†

p′,s1↑cp,s2↑c†
q′,s3↓cq,s4↓:, (A1)

where E±(k) are the band energies of H0, the normal ordering
is with respect to the initial state |�GS〉, and c†

k,±σ (ck,±σ ) are
the creation (annihilation) operators of spin σ =↑↓ for the up-
per and lower band states of H0 [38]. The interaction strength
U s1s2s3s4

p′pq′q (l ) is defined for momentum-conserved scattering
channels. With the interaction weaker than the bandwidth,
only the leading-order contributions from scatterings up to
U 2 will be considered. With the previously defined canonical
generator η(l ), the interaction U (l ) decays exponentially with
l and flows to zero at l → ∞. We then work out the flow
of creation and annihilation operators with respect to the A
and B sites, with A†

k↑(l = 0) = a†
k↑ and B†

k↑(l = 0) = b†
k↑,

from the same generator η(l ). Finally, since the single-particle
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momentum is not conserved, we obtain the time evolution
of the pseudospin polarization at each projected momentum
k: 〈τσ

z (k, t )〉 = 〈�GS|A†
kσ (l = 0, t )Akσ (l = 0, t ) − B†

kσ (l =
0, t )Bkσ (l = 0, t )|�GS〉, similar to that for 〈τσ

x,y(k, t )〉.

APPENDIX B: DYNAMICAL CHARACTERIZATION
OF TOPOLOGY

The time-averaged pseudospin textures in the presence

of interaction are 〈τσ
i 〉 = 〈τσ (0)

i 〉 + 〈τσ (l )
i 〉 = hi

E0
[nσ

+−(k) −
nσ

−−(k) − dλσ
2 (k)
dt T ] (i = x, y, z), where T is the period over

which the time average is taken and λσ
2 ∝ U 2 represents the

interaction shift [38]. Here nσ
±−(k) = 1

2 ∓ E2
0 +mσ hz

2E0Eσ
0

are the
populations of the initial ground state projected onto the upper
(nσ

+−) and lower (nσ
−−) bands of the single-particle Hamilto-

nian. The BIS is determined by 〈τσ
i (k)〉 = 0, which leads to

δnσ
I (k) ≡ nσ

+−(k) − nσ
−−(k) − dλσ

2 (k)

dt
T = 0. (B1)

Note that in the interacting system, k⊥ is defined to be perpen-
dicular to the contour of δnσ

I (k). For the contours infinitely
close to δnσ

I (k0) = 0, we have δnσ
I (k0 ± ê⊥k⊥) � ±cI k⊥/E0,

with cI being a coefficient dependent on mσ , U , and T . There-
fore, we have

∂k⊥〈τσ
i 〉 = lim

k⊥→0

1

2k⊥

[
hi

E2
0

δnσ
I (k0 + ê⊥k⊥)

− hi

E0
δnσ

I (k0 − ê⊥k⊥)

]
= cI

hi

E2
0

, (B2)

which means that the dynamical field ∂k⊥〈τσ 〉 on the (inter-
acting) BIS characterizes the vector field h(k) despite the
interaction effect. Due to the AF order, quenches for the two
spins σ =↑↓ are along opposite directions. Thus, according
to Ref. [9], we define the projected dynamical fields on the

BIS gσ
‖ (k) = (gσ

y , gσ
x ) with components given by gσ

y,x(k) =
± 1

Nk
∂k⊥〈τσ

y,x〉. Here the + (−) sign is for σ =↑ (↓), and Nk

is the normalization factor. The topological invariant is then
defined by the winding of the projected dynamical field with
σ =↑ or ↓:

w =
∑

j

1

2π

∫
BIS j

[
gσ

y (k)dgσ
x (k) − gσ

x (k)dgσ
y (k)

]
. (B3)

APPENDIX C: UNIVERSAL SCALING BEHAVIOR

In the presence of interaction, the BIS is given by Eq. (B1).
We assume |dλσ

2 /dt |T � 1. We regard the interaction effect
as a perturbation and approximate mσ and hz to the first or-
der of ε ≡ T dλσ

2 /dt , i.e., mσ = m(0)
σ + εm(1)

σ and hz = h(0)
z +

εh(1)
z . Calculations yield m(0)

σ = −sgn(Zσ
0 )E0/

√
1 − Zσ 2

0 and

m(1)
σ = 0. To the second order of U , we obtain the universal

scaling behavior shown in Eq. (4).

APPENDIX D: GUTZWILLER GROUND STATE

We take the Gutzwiller ansatz

|�G〉 =
∏

i

(1 − αAi )(1 − αBi )|�MF〉, (D1)

where α is the variational parameter with 0 � α � 1. Here
Ai ≡ a†

i↑a†
i↓ai↓ai↑, Bi ≡ b†

i↑b†
i↓bi↓bi↑, and |�MF〉 is the mean-

field ground state. We rewrite the wave function into the
momentum space and keep the leading-order terms. The con-
structed wave function is the correlated many-body state,
given by the superposition of the mean-field state and a series
of excited states via the leading-order scatterings [38]. With
this, we find that the equation of motion keeps the same form
as Eq. (2), but the parameters are renormalized by the interac-
tion, and more importantly, the quench dynamics beyond the
mean-field picture still exhibits the same universal scaling on
the BIS.
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