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Dynamical characterization of quadrupole topological phases in superconducting circuits
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The recent experimental realization of a programmable two-dimensional square superconducting qubit array
opens a new avenue for quantum simulation with qubits [Science 372, 948 (2021)]. Here, we present an
experimentally feasible method to achieve two-dimensional superconducting qubit lattice with tunable coupling
strengths. A configuration with higher-order topological phases is constructed, featuring topologically protected
boundary states in lower dimension (corner states). We show that the quadrupole topological phases can be
effectively characterized by the dynamics of the single-excitation quantum state. Moreover, we also explore the
detection and dynamics of the corner modes in our qubit lattice system. Particularly, we propose an effective
scheme to realize quantum information transfer via the corner states. Our work suggests that superconducting
circuits systems are a fertile platform to study novel topological quantum phases and may shed light on the
ongoing exploration of topologically protected quantum information processing.
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I. INTRODUCTION

Superconducting circuits, as a scalable system for quantum
computation [1,2], have achieved great experimental progress
in the past few years. Particularly, this system has now be-
come one of the promising platforms for studying quantum
simulation [3,4], especially quantum many-body systems [5].
Compared with other quantum simulation systems, such as
cold atoms [6] and photonics [7], the superconducting qubits
may be a qualified candidate for its easy manipulation, detec-
tion, flexible tunability, and fine controllability. In fact, a wide
range of many-body physics has been studied in such simu-
lators, including the extended Bose-Hubbard model [8–10],
many-body localization [11–14], as well as dynamical phase
transitions [15]. In addition, superconducting qubit systems
are also advantageous in the research of topological physics,
such as topological quantum walks [16,17], topological state
transfer [18–20], and other topological concepts [21–23]. Re-
cently, the topological magnon insulator states have been
observed in a superconducting qubit chain with tunable qubit
couplings [24]. Remarkably, a recent experimental observa-
tion of quantum walks on a programmable two-dimensional
(2D) square superconducting qubit lattice provides a new
platform for quantum information processing and quantum
simulation [25] . The 2D qubit system plays a crucial role
in exploring exotic physical phenomena [26–29] and imple-
menting quantum information [30,31].

One of the hallmark features of conventional topological
insulators is the topologically protected boundary states (such
as edge and surface states) with dimensions one lower than
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that of the bulk system [32,33]. These states are guaranteed
by the bulk-boundary correspondence, which is characterized
by the bulk topological invariants (quantized bulk dipole mo-
ments). Recently, a novel class of topological phases, called
higher-order topological insulators (HOTIs), were proposed
by generalizing the fundamental relationship between the
Berry phase and quantized polarization, from dipole to mul-
tipole moments [34–36]. The key feature of HOTIs is their
ability to support topological states with dimensions two or
more lower than those of the bulk. For example, a quantized
bulk quadrupole moment in a 2D system leads to the presence
of gapped zero-energy states localized at the zero-dimensional
(0D) corners (corner states), which is called a second-order
topological insulator. Motivated by the potential applications
for designing novel robust optical devices, topological lasers,
as well as quantum computing, the HOTI has garnered sub-
stantial interest in recent years [37–47].

In this paper, we demonstrate simulation of quadrupole
topological phases in a 2D superconducting qubit lattice
with tunable coupling strengths, which is analogue to the
Benalcazar-Bernevig-Hughes (BBH) model. The nontrivial
quadrupole phase supports 0D corner states that are guaran-
teed by the quantized bulk quadrupole moment. We show that
the quadrupole topological phases can be effectively charac-
terized by the dynamics of the single-excitation quantum state.
Specifically, such dynamical dependent quantities take zero
for the trivial quadrupole phase and finite for the nontrivial
quadrupole phase. Moreover, we also explore the detection
and dynamics of the corner modes in our qubit lattice sys-
tem. Furthermore, we propose an effective scheme to realize
transfer of the corner states. Our work suggests that the su-
perconducting circuits system is a fertile platform to study
novel topological quantum phases and may shed light on
the ongoing exploration of topologically protected quantum
information processing.
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FIG. 1. (a) Schematic of 2D square qubit lattice with nearest-
neighbor couplings. Thick (thin) lines denote couplings with strength
J1 (J2 ). The red-dashed lines indicate a phase factor eiφ on the
coupling, which introduces a flux φ per unit cell.

II. MODEL AND HAMILTONIAN

We consider a 2D square qubit lattice consisting of N × N
capacitively coupled qubits, as shown in Fig. 1. Each unit
cell contains four sites with only the nearest-neighbor cou-
pling. The coupling strengths J1 (thick lines) and J2 (thin
lines) describe coupling strengths between qubits within the
same unit cell and those that belong to adjacent unit cells,
respectively. Particularly, each plaquette, a square of any four
adjacent qubits within or between unit cells, contains a single
coupling term that carries an extra phase shift φ [red lines
in Fig. 1], which amounts to the generation of a synthetic
magnetic flux φ threading the plaquette. The Hamiltonian
reads

H =
∑
m,n

(J1σ
†
m,n−1eiφδmσm,n + J2σ

†
m,neiφδmσm,n+1

+ J1σ
†
m−1,nσm,n + J2σ

†
m,nσm+1,n) + H.c., (1)

where the sum of (m, n) goes over all qubits and σ †
m,n (σm,n)

is the raising (lowering) operator of qubit Qm,n defined on
a lattice site (x = ma, y = nb), where a and b are the lattice
spacings, and m and n are integers. δm = 0 (δm = 1) when m
is odd (even). H.c. is the Hermitian conjugate. We take h̄ = 1
throughout the paper for simplicity.

In the following, we provide an experimental feasible pro-
tocol to achieve the effective Hamiltonian (1). For a standard
2D square qubit lattice, the Hamiltonian can be described by

H =
∑
m,n

ωmn

2
σ z

m,n +
∑
m,n

gm,n
x (σ+

m,n−1σ
−
m,n + H.c.)

+
∑
m,n

gm,n
y (σ+

m−1,nσ
−
m,n + H.c.), (2)

where σ z
m,n is the Pauli operator of qubit Qm,n, ωmn is the

transition frequency, and gm,n
x and gm,n

y are the static coupling
strengths. Generally, the qubit-frequency differences of adja-
cent transmon qubits and their coupling strengths are fixed and
not adjustable. To achieve fully tunable coupling strengths,
one can apply an ac magnetic flux to periodically modulate
the qubit frequencies [48–50], that is

ωmn(t ) = ω̄mn + εmn sin(νmnt + θmn). (3)

Here, ω̄mn is the mean operating frequency with m, n =
1, . . . , N . εmn, νmn, and θmn are the modulation amplitude, fre-
quency, and phase, respectively. By defining a rotating frame
through U = U1 · U2 with

U1 = exp

(
−i

∑
m,n

ωmn

2
σ z

m,nt

)
, (4)

U2 = exp

[
i
∑
m,n

σ z
m,n

αmn

2
cos(νmnt + θmn)

]
, (5)

where αmn = εmn/νmn, we obtain the transformed Hamiltonian

H̃ = U †HU + i
dU †

dt
U

=
∑
m,n

gm,n
x (σ+

m,n−1σ
−
m,ne−i
m,n

x exp[−iαm,n−1 cos (νm,n−1t + θm,n−1)] exp[iαmn cos (νmnt + θmn)] + H.c.)

+
∑
m,n

gm,n
y (σ+

m−1,nσ
−
m,ne−i
m,n

y exp[−iαm−1,n cos (νm−1,nt + θm−1,n)] exp[iαmn cos (νmnt + θmn)] + H.c.), (6)

where 
m,n
x = ωm,n − ωm,n−1 and 
m,n

y = ωm,n − ωm−1,n. We
assume 
m,n

x = νmn (−νmn) for odd (even) n, and 
m,n
y =

νmn (−νmn) for odd (even) m. Then, using the Jacobi-Anger
identity

exp[iα cos (νt + θ )] =
∞∑

l=−∞
ilJl (α)eil (νt+θ ), (7)

with Jl (α) being the lth Bessel function of the first kind, and
applying the rotating-wave approximation by neglecting the
high-order oscillation terms, the effective Hamiltonian of the

system becomes

H̃eff =
∑
m,n

(
g̃m,n

x σ+
m,n−1σ

−
m,n + g̃m,n

y σ+
m−1,nσ

−
m,n

) + H.c., (8)

with the effective coupling strengths

g̃m,n
x = gm,n

x J0(αm,n−1)J1(αmn)e±i(θmn±π/2),
(9)

g̃m,n
y = gm,n

y J0(αm−1,n)J1(αmn)e±i(θmn±π/2),

where “±” denotes n (m) is odd and even in g̃m,n
x (g̃m,n

y ),
respectively. It follows from Eq. (9) that we can conveniently
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FIG. 2. (a) Energy spectrum vs φ with J1/J2 = 0.2 and N = 10.
(b) Bulk quadrupole polarization vs J1/J2.

tune the effective coupling strengths by changing αm,n of the
external modulation. Note that there is a phase factor in each
coupling which can be used to produce effective magnetic
flux in a square qubit lattice [51,52]. By choosing appropriate
parameters ({αmn, θmn}), the Hamiltonian (1) can be realized
according to Eq. (8).

Equation (1) describes an interacting spin (qubit) lat-
tice model, where multiple excitations behave like hard-core
bosons. For single-excitation case, the Hamiltonian (1) re-
duces to a noninteracting model. In the present work we focus
on the single-qubit excitation case, i.e., one of the qubits is
excited to the excited state |e〉 and the others stay in the ground
state |g〉. Due to the conservation of qubit excitation number,
the qubit lattice will stay in single-excitation space during the
entire dynamical evolution.

The key merit of our system is the flexible tunability of
the coupling parameters, which provides a fertile ground for
studying topological physics. In Fig. 2(a) we plot the energy
spectrum for various φ with J1/J2 = 0.2. It can be seen that
there is a band gap for flux 0 < φ < π . This band gap shrinks
as φ → 0 and completely closes at φ = 0. In fact, the lattice
with zero flux (φ = 0) can be viewed as a 2D analog of the
Su-Schrieffer-Heeger (SSH) model [53,54]. Since the band
gap disappears, the 2D SSH model does not feature any robust
corner states. However, for φ = π , Eq. (1) reduces to a spin-
version BBH model [34,35], which is a quadrupole HOTI.
Intriguingly, this model hosts robust zero-energy corner states,
guaranteed by a quantized bulk quadrupole moment [34,55].
In Fig. 2(b), the quantized bulk quadrupole moment qxy is
shown as a function of J1/J2, giving

qxy =
{

1/2, topology (J1/J2 < 1)
0, trivial (J1/J2 > 1). (10)

In the following we focus on the simulation and detection
of the quadrupole topological phases in a BBH-type 2D super-
conducting qubit lattice. We show that the quadrupole phases
are tightly related to the dynamics of quantum state in such 2D
qubit lattice. Moreover, a scheme to transfer the corner states
is presented.

III. DYNAMICAL DETECTION
OF THE QUADRUPOLE PHASES

In general, the topological invariant (winding number) can
be extracted from a time-dependent quantity, that is, the mean
chiral displacement (MCD) [56], which has been measured
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FIG. 3. (a) Schematic of qubit lattice in unit-cell coordinate.
(b) Schematic of four-qubit plaquette. The red-dashed line denotes
the negative coupling strength, i.e., carrying φ = π phase. (c, d) The
dynamics of Ctotal(t ) with J1/J2 = 0.2 (c) and J1/J2 = 5 (d), respec-
tively. The black solid (red-dashed) lines denote N = 4 (N = 6).
(e, f) The dynamics of 〈Ctotal〉 in the presence of qubit coupling
imperfection with J1/J2 = 0.2 (e) and J1/J2 = 5 (f), respectively.
Here 〈·〉 denotes the averaged value over 50 independent disorder
configurations. The disorder strength is chosen by W/J2 = 0.1.

experimentally in a photonic quantum walk [57], cold atom
[58], and superconducting qubit chain [24].

For the quadrupole phases in our 2D qubit lattice system,
we introduce the chiral displacement operator [59]

Ĉ =
∑
r,μ

rxry�μP̂r,μ, (11)

which can be regarded as an extension of the MCD in
Ref. [24]. Here, r =(rx, ry) is the position of the unit cell, and
μ = 1, 2, 3, 4 characterizes the sublattice in each unit cell, as
shown in Fig. 3(a). �μ = (−1)μ is the eigenvalue of the chiral
operator and P̂r,μ = |e〉r,μ〈e|. The dynamics of the MCD is
described by

C(t ) = 〈ψ (t )|Ĉ|ψ (t )〉, (12)

where |ψ (t )〉 is the state vector at time t . The long-time
average of C(t ) is C̄ = limT →∞(1/T )

∫ T
0 C(t )dt .

Note that C(t ) is sensitive to the choice of the initial state.
To be concrete, let us denote C i, j

μ (t ) as the MCD obtained from
the state initialized at the sublattice μ of the unit cell (i, j). It
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is found that the MCD which can correctly characterize the
topological quadrupole phases is simply the addition of the
following two independent trajectories:

Ctotal(t ) = Crx+1,ry

1 (t ) + Crx,ry+1
3 (t ). (13)

More numerical results for other different initial states are
given in the Appendix.

To demonstrate the validity of Eq. (13) in describing the
quadrupole phases, we first consider the single-particle dy-
namics in two limiting cases—the trivial (J1 �= 0, J2 = 0) and
the nontrivial (J1 = 0, J2 �= 0) ones. In these two cases, the
dynamics is limited to four lattice sites labeled c1, c2, c3, and
c4, as shown in Fig. 3(b), which can be solved analytically. In
the single-excitation basis, the Hamiltonian can be written as

Hfour =

⎛
⎜⎝

0 1 0 1
1 0 1 0
0 1 0 −1
1 0 −1 0

⎞
⎟⎠, (14)

where the coupling strength is set to 1. The eigenen-
ergies of H four are straightforwardly obtained as
ε1,2 = −√

2 and ε3,4 = √
2. The corresponding eigen-

states are given by �1 = (1/2,−1/
√

2, 1/2, 0)T,
�2 = (1/2, 0,−1/2,−1/

√
2)T, �3 = (1/2, 1/

√
2, 1/2, 0)T,

and �4 = (1/2, 0,−1/2, 1/
√

2)T.
Supposing the initial state is |ψ (0)〉 = (ψ1, ψ2, ψ2, ψ4) =∑
i fi�i, with fi = 〈�i|ψ (0)〉. The wave function at time t can

be written as

|ψ (t )〉 = e−iHfourt |ψ (0)〉
=

∑
i

fie
−iεit�i

=

⎛
⎜⎜⎜⎜⎝

ψ1 cos(
√

2t )− i√
2
(ψ2+ψ4) sin(

√
2t )

ψ2 cos(
√

2t )− i√
2
(ψ1+ψ3) sin(

√
2t )

ψ3 cos(
√

2t )− i√
2
(ψ2−ψ4) sin(

√
2t )

ψ4 cos(
√

2t )− i√
2
(ψ1−ψ3) sin(

√
2t )

⎞
⎟⎟⎟⎟⎠. (15)

Then the excitation probability for each qubit is given as

Pc1 (t ) = |ψ1|2 cos2(
√

2t ) + |ψ2 + ψ4|2
2

sin2(
√

2t )

− 1√
2

sin(2
√

2t )Im[ψ1(ψ∗
2 + ψ∗

4 )], (16)

Pc2 (t ) = |ψ2|2 cos2(
√

2t ) + |ψ1 + ψ3|2
2

sin2(
√

2t )

− 1√
2

sin(2
√

2t )Im[ψ2(ψ∗
1 + ψ∗

3 )], (17)

Pc3 (t ) = |ψ3|2 cos2(
√

2t ) + |ψ2 − ψ4|2
2

sin2(
√

2t )

− 1√
2

sin(2
√

2t )Im[ψ3(ψ∗
2 − ψ∗

4 )], (18)

Pc4 (t ) = |ψ4|2 cos2(
√

2t ) + |ψ1 − ψ3|2
2

sin2(
√

2t )

− 1√
2

sin(2
√

2t )Im[ψ4(ψ∗
1 − ψ∗

3 )]. (19)

According to Eqs. (16)–(19), one can obtain the MCD. For
the trivial case (J1 �= 0, J2 = 0), these four qubits are in
the same unit cell [e.g., (rx, ry)] by taking correspondence
c1 → 1, c2 → 2, c3 → 3, and c4 → 4. The MCD is given as
C triv(t ) = ∑

μ(−1)μrxryPcμ. For two initial states |ψ1(0)〉 =
|eggg〉 = (1, 0, 0, 0) located at unit cell (rx + 1, ry) and
|ψ3(0)〉 = |ggeg〉 = (0, 0, 1, 0) located at unit cell (rx, ry +
1), the total MCD is obtained as

C triv
total(t ) = C triv

1 (t ) + C triv
3 (t )

= [(rx + 1)ry + rx(ry + 1)] cos 2
√

2t, (20)

yielding C̄ triv
total = 0. Obviously, it is independent of the ini-

tial state. However, for the nontrivial case (J1 = 0, J2 �=
0), the four qubits are in different unit cells. The corre-
spondence between Figs. 3(a) and 3(b) is as follows: c1 →
[(rx + 1, ry), 1], c2 → [(rx, ry), 2], c3 → [(rx, ry + 1), 3], and
c4 → [(rx + 1, ry + 1), 4]. Here, [(rx, ry), μ] denotes the sub-
lattice μ in the unit cell (rx, ry). In this case, the MCD
is C topo(t ) = ∑

μ(−1)μrxryPcμ + [(rx + ry + 1)Pc4 − ryPc1 −
rxPc3 ]. For the initial states |ψ1(0)〉 and |ψ3(0)〉, we have

C topo
total (t ) = C topo

1 (t ) + C topo
3 (t )

= 1
2 −(

2rxry+rx +ry+ 1
2

)
cos 2

√
2t . (21)

Taking the long-time average, we obtain C̄ topo
total (t ) = 0.5. The

above analysis indicates that the dynamics of the single-
excitation state is a qualified candidate to distinguish the
topological nontrivial and trivial quadrupole phases. That is,
C̄total = 0 with {J1 �= 0, J2 = 0}, while C̄total = 0.5 with {J1 =
0, J2 �= 0}.

We now provide numerical simulation for general cases.
In Figs. 3(c) and 3(d), we plot Ctotal(t ) for J1/J2 = 0.2 and
J1/J2 = 5, respectively. It can be seen that Ctotal(t ) oscillates
around 0.5 (C̄total = 0.5) in the nontrivial quadrupole phase
[Fig. 3(c)], while it oscillates around zero (C̄ total = 0) in the
trivial quadrupole phase [Fig. 3(d)].

The quadruple topological phases are protected by the
quantized bulk quadrupole moment and are robust to pertur-
bations. To show the robustness of the MCD, we consider the
imperfect qubit couplings. Specifically, we assume that the
intra and inter uniting cell coupling strengths have the form
of J ′

1mn = J1 + W ηmn and J ′
2mn = J2 + W ηmn, where W de-

notes the disorder strength, and ηmn is an independent random
real number chosen uniformly from the range [−0.5, 0.5]. In
Figs. 3(e) and 3(f), we plot the dynamics of the disorder-
averaged Ctotal(t ) by choosing 50 samples of {J ′

1mn, J ′
2mn} for

trivial and nontrivial cases, respectively. The results clearly
show that 〈Ctotal〉 still oscillates at around about 0.5 and zero
for weak disorder.

IV. TOPOLOGICAL CORNER STATE AND ITS TRANSFER

Having discussed the characterization of the quadrupole
phases through the dynamics of quantum state, we now move
on to the research of the corner states. Due to the topological
properties of these corner states, information can be trapped
at the corners of the system, which will be robust against
weak disorder, making it a potential candidate for information
processing. However, the corner states, as with other topo-
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FIG. 4. (a) Energy spectrum vs J1/J2 with φ = π . (b, c) Energy
spectrum for φ = π and N = 10 with J1/J2 = 1.2 (b) and J1/J2 =
0.2 (c), respectively. (d) The collective distribution wave functions
of the corner states (the four zero-energy modes) for 4 × 4 lattice.
The other parameters are the same as those in (c).

logical modes, are well isolated from each other even in the
presence of disorder, making it difficult for them to overlap.
On the other hand, the corner states may hybridize due to
finite system size. Consequently, it is meaningful to realize
the exchange of information among the corner states. In the
following, we first show the detection of the corner states
and then propose an effective scheme to transfer each corner
state.

A. Topological corner states

In Fig. 4(a) we plot the energy spectrum as a function
of J1/J2 for φ = π . It is found that some quasidegener-
ate midgap modes, separating the upper and lower bulk
bands, appear in the nontrivial quadrupole phase region
where φ = π and |J1/J2| < 1. Specifically, we show the en-
ergy spectrum for J1/J2 = 1.2 and J1/J2 = 0.2, as shown in
Figs. 4(b) and 4(c), respectively. It follows that there ex-
ists four energy-degenerate zero-energy modes when J1/J2 =
0.2. These midgap modes represent nothing but the corner
states localized at the corners of the 2D lattice [shown in
Fig. 4(d)]. This property is well manifested in the qubit dy-
namics within a subspace spanned by the single-excitation
states |�i, j〉 = σ

†
i, j |G〉, where |G〉 = |gg · · · g〉 is the ground

state. Figure 5 shows the time evolution of the exited-state
population for J1/J2 = 1.2 and J1/J2 = 0.2, respectively. In
these figures the initial states are set to be σ

†
4,1|G〉. It can

be seen from Figs. 5(a1)–5(a3) that the initial wave packet
spreads over the whole lattice. However, for the topological
nontrivial case shown in Figs. 5(b1)–5(b3), the exited-state
populations are, although changing over time, well local-
ized in the lattice corners. Interestingly, the qubit flipping
occurs only at three—the initially excited one and its two
nearest neighbors—out of the four corners. The detailed dy-
namics of the four corners are plotted in Fig. 6(a). This
phenomenon can be understood by investigating the spec-

FIG. 5. Time evolutions of single-excitation state population at
the upper-left qubit (Q4,1). (a1)–(a3) The time evolutions of the
probability distributions with J1/J2 = 1.2 for J2t = 0, 10, and 20,
respectively. (b1)–(b3) The same evolutions but with J1/J2 = 0.2.
Here N = 4.

trum of the midgap modes. As shown in Fig. 6(b), the four
modes are grouped into two degenerate pairs with eigenen-
ergies E± due to the finite lattice size effect. Specifically,
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FIG. 6. (a) Time evolution of the population of the four local-
ized corner qubits (P4,1, P4,4, P1,1, P1,4). P = ∑

Pi, j (i, j = 1, 4).
(b) Energy spectrum with J1/J2 = 0.1. The inset graph shows the
eigenvalue as a function of J1/J2. E− and E+ are the eigenvalues of
the two-pair degenerate midgap states.
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for a 4 × 4 qubit lattice, these states can be respectively
expressed as

|ϕ1,−〉 = −λ1|�4,4〉 + λ1|�1,1〉 − λ2|�1,4〉, (22)

|ϕ2,−〉 = λ2|�4,1〉 + λ1|�4,4〉 + λ1|�1,1〉, (23)

|ϕ1,+〉 = −λ1|�4,4〉 + λ1|�1,1〉 + λ2|�1,4〉, (24)

|ϕ2,+〉 = λ2|�4,1〉 − λ1|�4,4〉 − λ1|�1,1〉, (25)

where λ1,2 are the positive coefficients with λ2 = √
2λ1,

and |ϕs,+〉 (|ϕs,−〉) corresponds to E+ (E−), with

E± = ±
√

2J2
1 + J2

2 − J2

√
4J2

1 + J2
2 and s = 1, 2. The

energy splitting between E+ and E− plays a crucial role
in the qubit flipping dynamics among corners. Supposing
the initial state is localized at the bottom-right corner,
|ψ (0)〉 = |�4,1〉, the time-dependent quantum state is then
described by

|ψ (t )〉 = 1

2λ2
(e−iE+t |ϕ2,+〉 + e−iE−t |ϕ2,−〉). (26)

According to Eq. (26), the excited-state populations
of the four corners are obtained respectively as
P1,4 = |〈�1,4|ψ (t )〉|2 = 0, P1,1 = |〈�1,1|ψ (t )〉|2 =
[1 − cos(ω0t )]/4, P4,4 = |〈�4,4|ψ (t )〉|2 = [1 − cos(ω0t )]/4,
and P4,1 = |〈�4,1|ψ (t )〉|2 = [1 + cos(ω0t )]/2 with
ω0 = E+ − E− . This explains the periodic oscillation
among the three corners.

B. Corner state transfer

The topological midgap modes discussed above provide an
instructive way to transfer the quantum state encoded in lattice
corners. In the following we show the protocol of state transfer
between two diagonal lattice corners (Q4,1 and Q1,4). To see
how it works, it is convenient to move into a newly defined
frame, where

|�+〉 = (|�4,4〉 + |�1,1〉)/
√

2, (27)

|�−〉 = (|�4,4〉 − |�1,1〉)/
√

2, (28)

and therefore Eqs. (22)–(25) become

|ϕ1,−〉 = −λ2|�1,4〉 −
√

2λ1|�−〉, (29)

|ϕ2,−〉 = λ2|�4,1〉 +
√

2λ1|�+〉, (30)

|ϕ1,+〉 = λ2|�1,4〉 −
√

2λ1|�−〉, (31)

|ϕ2,+〉 = λ2|�4,1〉 −
√

2λ1|�+〉. (32)

While the lack of a coupling channel prohibits the di-
rect state transfer between |�4,1〉 and |�1,4〉, the state |�4,1〉
(|�1,4〉) couples to |�+〉 (|�−〉) through Rabi-like oscilla-
tion, as schematically shown in Fig. 7. An auxiliary channel
between |�+〉 and |�−〉 might be a promising way to
bridge |�4,1〉 with |�1,4〉. This could be possible if we
impose onsite potentials on the lattice corners. By doing
so, the Hamiltonian becomes an external-potential-dependent

FIG. 7. Schematic diagram of the couplings between |�4,1〉,
|�1,4〉, and |�±〉 according to Eqs. (29)–(32).

form, i.e.,

H ′(δ′
1, δ′

2) = H + δ′
1(σ+

4,4σ
−
4,4 − σ+

1,1σ
−
1,1)

+ δ′
2(σ+

4,1σ
−
4,1 − σ+

1,4σ
−
1,4). (33)

In Eq. (33), δ′
1 and δ′

2 are the controllable parameters, either
of which may lift the twofold degeneracy of the midgap
modes |ϕ1,±〉 and |ϕ2,±〉 with modified eigenenergies E1,±
and E2,±, respectively, as shown in Figs. 8(a) and 8(b). Be-
fore showing the details of the full quantum dynamics, it is
beneficial to specify the roles of δ′

1 and δ′
2. Figures 8(c) and

8(d) show the spin populations of the four midgap modes
for systems with H ′(δ′

1 �= 0, δ′
2 = 0) and H ′(δ′

1 = 0, δ′
2 �=

0), respectively. It can be seen that by switching the onsite
potentials, the eigenmodes |ϕn,±〉 can be reduced to certain
basis |�i, j〉. With this understanding we are motivated to
properly engineer δ′

1 and δ′
2 to transfer a space-localized

quantum state in a dynamical manner. Assuming the ini-
tial state is |ψ (t = 0)〉 = |�1,4〉, we let it evolve under the
free Hamiltonian H̃eff until t = T1 ≡ π/ω0, at which time we

FIG. 8. Energy spectra with {δ′
1/J2 = 0.2, δ′

2/J2 = 0} (a) and
{δ′

1/J2 = 0, δ′
2/J2 = 0.2} (b), respectively. The inset graph shows

the four mid gap energies as a function of δ′
1 (δ′

2). (c), (d) State
population of the four midgap corner modes corresponding to (a) and
(b), respectively. The other parameters are J1/J2 = 0.1 and N = 4.
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FIG. 9. (a) Schematic description of the configurations through
quench dynamics. (b) Time evolution of the population of the four lo-
calized corner qubits. The other parameters are J1/J2 = 0.1, δ′

1/J2 =
0.2. (Inset) Closeup of the population at around 
T = T2 − T1.

turn on the on-site potential δ′
1 and hold it for a duration

time 
T = π/
E ′ with 
E ′ = E1,− − E2,+ [this process is
shown in Fig. 9(a)]. The qubit oscillates between |�1,4〉 and
|�−〉 with period 2π/ω0 if no further operation is performed
[see Fig. 9(b)]. To freeze the target quantum state to the
lattice corner Q1,4 permanently, one can apply the potential
δ′

2 at time t = T3 = T1 + T2, as shown in Fig. 10(a). The
full process is controlled by the following time-dependent

0 100 200 300 400 500
0

0.5

1

P
o
p
u
la

ti
o
n

(a)

FIG. 10. (a) Time evolution of the population of the four lo-
calized corner qubits. (b) Timing of the quench dynamics. The
blue-solid (red-dashed) curve denotes h1(t ) [h2(t )]. The other param-
eters are J1/J2 = 0.1, δ′

1/J2 = δ′
2/J2 = 0.2.

0.9
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0
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1
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FIG. 11. (a) The fidelity of the corner state transfer vs the disor-
der coupling strength W . (b) The fidelity of the corner state transfer
for arbitrary initial state with amplitude |cg| and relative phase θ̄ . The
other parameters are the same as those in Fig. 10(a).

Hamiltonian

H ′′(t ) = H + h1(t )(σ+
4,4σ

−
4,4 − σ+

1,1σ
−
1,1)

+ h2(t )(σ+
4,1σ

−
4,1 − σ+

1,4σ
−
1,4), (34)

where h1(t ) = δ′
1[�(t − T1) − �(t − T1 − 
T )] and h2(t ) =

δ′
2�(t − T3), with �(t ) being the step function. The se-

quential diagram of the quench dynamics is shown in
Fig. 10(b).

To further verify the feasibility of the topological cor-
ner state transfer, we numerically calculate the fidelity F =
〈ψ (0)|ψ (t f )〉 as a function of the imperfection strength.
Figure 11(a) shows that there is a wide plateau at F ≈ 0.95
when the disorder strength increases, which is a hallmark
of the topologically assisted quantum state transfer. Addi-
tionally, for an arbitrary single-qubit initial state |ψ (0)〉 =
|cg|eiθ̄ |g〉 + |ce||e〉 at one corner, where |cg|2 + |ce|2 = 1, the
state can also be transfer with high fidelity, as shown in
Fig. 11(b).

V. CONCLUSIONS

In summary, we have constructed a 2D BBH-type super-
conducting qubit lattice with tunable coupling strengths. As
an example of a quadrupole higher-order topological insu-
lator, such a model possesses topologically protected corner
states. Through the nonequilibrium dynamics of a single-qubit
excitation state, we showed that the quadrupole topologi-
cal phases can be characterized by a dynamical dependent
quantity, which takes zero for the trivial quadrupole phase
and a finite value for the nontrivial quadrupole phase. The
robustness of the quadrupole phases against disorder is also
demonstrated. Moreover, we have demonstrated an effective
scheme to realize the topological corner state transfer. In
the experiment, accurate single-shot readout techniques en-
able us to synchronously record the dynamics of all qubits
and to observe the evolution of a single-excitation state.
In addition, the physics presented here persists even for a
4 × 4 lattice, indicating the feasibility of experimental mea-
surements. Note that since multiple-qubit excitations can be
precisely prepared in our system, it is interesting to further
study interacting symmetry-protected higher-order topologi-
cal states. Our work potentially paves the way for studying
novel topological states of matter in controllable supercon-
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ducting qubit systems and may shed light on the ongoing
research of topologically protected quantum information
processing.
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APPENDIX: THE MCD FOR DIFFERENT
INITIAL STATES

In the main text (Sec. III), we numerically calculate
Crx+1,ry

1 (t ) + Crx,ry+1
3 (t ), which can effectively characterize the

quadrupole topological phases. Same results can be obtained
by choosing Crx,ry

2 (t ) + Crx+1,ry+1
4 (t ). Here we study the im-

pacts of other different initial states imposed on the MCD. In
the limiting case (J1 �= 0, J2 = 0), the MCD can be analyti-
cally obtained as C triv

total(t ) ∼ cos 2
√

2t , which is independent
of the initial state. Although the analytical results for more
general topological trivial cases are inaccessible, we can still
numerically verify that C̄total = 0. In the following we focus
on the nontrivial case (J1/J2 < 1).

As examples we consider the qubit lattice with N = 6
and study three cases—case I for Ctotal(t ) = C1,1

2 (t ) + C2,1
3 (t ),

0 10 20 30

-5

0

5

Case I

Case II

Case III

(b)

FIG. 12. (a) Schematic of qubit lattice in unit-cell coordinate
with different initial state. Case I (blue shade) denotes the two initial
states localized at [(1, 1), 2] and [(2, 1), 3], respectively. Case II
(red shade) denotes the two initial states localized at [(2, 2), 1] and
[(2, 2), 4], respectively. Case III (purple shade) denotes the two ini-
tial states localized at [(2, 2), 2] and [(2, 2), 4], respectively. (b) The
dynamics of Ctotal(t ) with different initial states. Here N = 6, and
J1/J2 = 0.2.

case II for Ctotal(t ) = C2,2
1 (t ) + C2,2

4 (t ), and case III for
Ctotal(t ) = C2,2

2 (t ) + C2,2
4 (t ), as shown in Fig. 12(a). Fig-

ure 12(b) shows the dynamics of Ctotal(t ) under these cases.
The results indicate that C total(t ) does not oscillate around a
certain value and C̄total �= 0.5.

[1] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster,
J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, Charge-insensitive qubit design derived from the
Cooper pair box, Phys. Rev. A 76, 042319 (2007).

[2] X. Gu, A. F. Kockum, A. Miranowicz, Y. Liu, and F. Nori,
Microwave photonics with superconducting quantum circuits,
Phys. Rep. 718-719, 1 (2017).

[3] A. A. Houck, H. E. Tüeci, and J. Koch, On-chip quantum sim-
ulation with superconducting circuits, Nat. Phys. 8, 292 (2012).

[4] I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation,
Rev. Mod. Phys. 86, 153 (2014).

[5] M. J. Hartmann, Quantum simulation with interacting photons,
J. Opt. 18, 104005 (2016).

[6] D.-W. Zhang, Y.-Q. Zhu, Y. X. Zhao, H. Yan, and S.-L. Zhu,
Topological quantum matter with cold atoms, Adv. Phys. 67,
253 (2019).

[7] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu,
M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I.
Carusotto, Topological photonics, Rev. Mod. Phys. 91, 015006
(2019).

[8] J. Jin, D. Rossini, R. Fazio, M. Leib, and M. J. Hartmann,
Photon Solid Phases in Driven Arrays of Nonlinearly Coupled
Cavities, Phys. Rev. Lett. 110, 163605 (2013).

[9] M. Kounalakis, C. Dickel, A. Bruno, N. K. Langford, and G. A.
Steele, Tuneable hopping and nonlinear cross-Kerr interactions
in a high-coherence superconducting circuit, npj Quantum Inf.
4, 38 (2018).

[10] Y. Ye, Z.-Y. Ge, Y. Wu, S. Wang, M. Gong, Y.-R. Zhang, Q.
Zhu, R. Yang, S. Li, F. Liang, J. Lin, Y. Xu, C. Guo, L. Sun, C.
Cheng, N. Ma, Z. Y. Meng, H. Deng, H. Rong, C.-Y. Lu, C.-Z.

Peng, H. Fan, X. Zhu, and J.-W. Pan, Propagation and Localiza-
tion of Collective Excitations on a 24-Qubit Superconducting
Processor, Phys. Rev. Lett. 123, 050502 (2019).

[11] P. Roushan, C. Neill, J. Tangpanitanon, V. M. Bastidas,
A. Megrant, R. Barends, Y. Chen, Z. Chen, B. Chiaro, A.
Dunsworth, A. Fowler, B. Foxen, M. Giustina, E. Jeffrey, J.
Kelly, E. Lucero, J. Mutus, M. Neeley, C. Quintana, D. Sank, A.
Vainsencher, J. Wenner, T. White, H. Neven, D. G. Angelakis,
and J. Martinis, Spectroscopic signatures of localization with
interacting photons in superconducting qubits, Science 358,
1175 (2017).

[12] K. Xu, J.-J. Chen, Y. Zeng, Y.-R. Zhang, C. Song, W. Liu, Q.
Guo, P. Zhang, D. Xu, H. Deng, K. Huang, H. Wang, X. Zhu, D.
Zheng, and H. Fan, Emulating Many-Body Localization with
a Superconducting Quantum Processor, Phys. Rev. Lett. 120,
050507 (2018).

[13] T. Orell, A. A. Michailidis, M. Serbyn, and M. Silveri, Probing
the many-body localization phase transition with superconduct-
ing circuits, Phys. Rev. B 100, 134504 (2019).

[14] Q. Guo, C. Cheng, Z. Sun, Z. Song, H. Li, Z. Wang, W. Ren,
H. Dong, D. Zheng, Y.-R. Zhang, R. Mondaini, H. Fan, and H.
Wang, Observation of energy-resolved many-body localization,
Nat. Phys. 17, 234 (2020).

[15] K. Xu, Z.-H. Sun, W. Liu, Y.-R. Zhang, H. Li, H. Dong, W. Ren,
P. Zhang, F. Nori, D. Zheng, H. Fan, and H. Wang, Probing
dynamical phase transitions with a superconducting quantum
simulator, Sci. Adv. 6, eaba4935 (2020).

[16] V. V. Ramasesh, E. Flurin, M. Rudner, I. Siddiqi, and N. Y. Yao,
Direct Probe of Topological Invariants Using Bloch Oscillating
Quantum Walks, Phys. Rev. Lett. 118, 130501 (2017).

022601-8

https://doi.org/10.1103/PhysRevA.76.042319
https://doi.org/10.1016/j.physrep.2017.10.002
https://doi.org/10.1038/nphys2251
https://doi.org/10.1103/RevModPhys.86.153
https://doi.org/10.1088/2040-8978/18/10/104005
https://doi.org/10.1080/00018732.2019.1594094
https://doi.org/10.1103/RevModPhys.91.015006
https://doi.org/10.1103/PhysRevLett.110.163605
https://doi.org/10.1038/s41534-018-0088-9
https://doi.org/10.1103/PhysRevLett.123.050502
https://doi.org/10.1126/science.aao1401
https://doi.org/10.1103/PhysRevLett.120.050507
https://doi.org/10.1103/PhysRevB.100.134504
https://doi.org/10.1038/s41567-020-1035-1
https://doi.org/10.1126/sciadv.aba4935
https://doi.org/10.1103/PhysRevLett.118.130501


DYNAMICAL CHARACTERIZATION OF QUADRUPOLE … PHYSICAL REVIEW A 104, 022601 (2021)

[17] E. Flurin, V. V. Ramasesh, S. Hacohen-Gourgy, L. S. Martin,
N. Y. Yao, and I. Siddiqi, Observing Topological Invariants
Using Quantum Walks in Superconducting Circuits, Phys. Rev.
X 7, 031023 (2017).

[18] F. Mei, G. Chen, L. Tian, S.-L. Zhu, and S. Jia, Topology-
dependent quantum dynamics and entanglement-dependent
topological pumping in superconducting qubit chains, Phys.
Rev. A 98, 032323 (2018).

[19] F. Mei, G. Chen, L. Tian, S.-L. Zhu, and S. Jia, Robust quantum
state transfer via topological edge states in superconducting
qubit chains, Phys. Rev. A 98, 012331 (2018).

[20] L.-N. Zheng, L. Qi, L.-Y. Cheng, H.-F. Wang, and S. Zhang,
Defect-induced controllable quantum state transfer via a topo-
logically protected channel in a flux qubit chain, Phys. Rev. A
102, 012606 (2020).

[21] P. Roushan, C. Neill, Y. Chen, M. Kolodrubetz, C. Quintana, N.
Leung, M. Fang, R. Barends, B. Campbell, Z. Chen, B. Chiaro,
A. Dunsworth, E. Jeffrey, J. Kelly, A. Megrant, J. Mutus, P. J.
J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. White, A.
Polkovnikov, A. N. Cleland, and J. M. Martinis, Observation of
topological transitions in interacting quantum circuits, Nature
(London) 515, 241 (2014).

[22] W. Nie and Y.-x. Liu, Bandgap-assisted quantum control of
topological edge states in a cavity, Phys. Rev. Research 2,
012076(R) (2020).

[23] J. Niu, T. Yan, Y. Zhou, Z. Tao, X. Li, W. Liu, L. Zhang, S.
Liu, Z. Yan, Y. Chen, and D. Yu, Simulation of higher-order
topological phases and related topological phase transitions in a
superconducting qubit, Sci. Bull. 66, 1168 (2021).

[24] W. Cai, J. Han, F. Mei, Y. Xu, Y. Ma, X. Li, H. Wang, Y. P.
Song, Z.-Y. Xue, Z.-q. Yin, S. Jia, and L. Sun, Observation
of Topological Magnon Insulator States in a Superconducting
Circuit, Phys. Rev. Lett. 123, 080501 (2019).

[25] M. Gong, S. Wang, C. Zha, M.-C. Chen, H.-L. Huang, Y. Wu, Q.
Zhu, Y. Zhao, S. Li, S. Guo, H. Qian, Y. Ye, F. Chen, C. Ying, J.
Yu, D. Fan, D. Wu, H. Su, H. Deng, H. Rong, K. Zhang, S. Cao,
J. Lin, Y. Xu, L. Sun, C. Guo, N. Li, F. Liang, V. M. Bastidas,
K. Nemoto, W. J. Munro, Y.-H. Huo, C.-Y. Lu, C.-Z. Peng, X.
Zhu, and J.-W. Pan, Quantum walks on a programmable two-
dimensional 62-qubit superconducting processor, Science 372,
948 (2021).

[26] Y.-P. Wang, W.-L. Yang, Y. Hu, Z.-Y. Xue, and Y. Wu, Detecting
topological phases of microwave photons in a circuit quantum
electrodynamics lattice, npj Quantum Inf. 2, 16015 (2016).

[27] C. Owens, A. LaChapelle, B. Saxberg, B. M. Anderson, R. Ma,
J. Simon, and D. I. Schuster, Quarter-flux Hofstadter lattice in
a qubit-compatible microwave cavity array, Phys. Rev. A 97,
013818 (2018).

[28] A. D. King, J. Carrasquilla, J. Raymond, I. Ozfidan, E.
Andriyash, A. Berkley, M. Reis, T. Lanting, R. Harris, F.
Altomare, K. Boothby, P. I. Bunyk, C. Enderud, A. Fréchette,
E. Hoskinson, N. Ladizinsky, T. Oh, G. Poulin-Lamarre, C.
Rich, Y. Sato, A. Y. Smirnov, L. J. Swenson, M. H. Volkmann,
J. Whittaker, J. Yao, E. Ladizinsky, M. W. Johnson, J. Hilton,
and M. H. Amin, Observation of topological phenomena in a
programmable lattice of 1, 800 qubits, Nature (London) 560,
456 (2018).

[29] Y. Yanay, J. Braumüler, S. Gustavsson, W. D. Oliver, and C.
Tahan, Two-dimensional hard-core Bose-Hubbard model with
superconducting qubits, npj Quantum Inf. 6, 58 (2020).

[30] T. Chen and Z.-Y. Xue, Nonadiabatic Geometric Quantum
Computation with Parametrically Tunable Coupling, Phys. Rev.
Appl. 10, 054051 (2018).

[31] T. Chen, P. Shen, and Z.-Y. Xue, Robust and Fast Holonomic
Quantum Gates with Encoding on Superconducting Circuits,
Phys. Rev. Appl. 14, 034038 (2020).

[32] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

[33] X.-L. Qi and S.-C. Zhang, Topological insulators and supercon-
ductors, Rev. Mod. Phys. 83, 1057 (2011).

[34] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Quantized
electric multipole insulators, Science 357, 61 (2017).

[35] W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Electric
multipole moments, topological multipole moment pumping,
and chiral hinge states in crystalline insulators, Phys. Rev. B
96, 245115 (2017).

[36] F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S. P.
Parkin, B. A. Bernevig, and T. Neupert, Higher-order topologi-
cal insulators, Sci. Adv. 4, eaat0346 (2018).

[37] M. Serra-Garcia, V. Peri, R. Süstrunk, O. R. Bilal, T. Larsen,
L. G. Villanueva, and S. D. Huber, Observation of a phononic
quadrupole topological insulator, Nature (London) 555, 342
(2018).

[38] C. W. Peterson, W. A. Benalcazar, T. L. Hughes, and G. Bahl,
A quantized microwave quadrupole insulator with topologically
protected corner states, Nature (London) 555, 346 (2018).

[39] B.-Y. Xie, H.-F. Wang, H.-X. Wang, X.-Y. Zhu, J.-H. Jiang,
M.-H. Lu, and Y.-F. Chen, Second-order photonic topological
insulator with corner states, Phys. Rev. B 98, 205147 (2018).

[40] S. Mittal, V. V. Orre, G. Zhu, M. A. Gorlach, A. Poddubny,
and M. Hafezi, Photonic quadrupole topological phases, Nat.
Photonics 13, 692 (2019).

[41] X. Ni, M. Weiner, A. Alú, and A. B. Khanikaev, Observation
of higher-order topological acoustic states protected by gener-
alized chiral symmetry, Nat. Mater. 18, 113 (2019).

[42] H. Xue, Y. Yang, F. Gao, Y. Chong, and B. Zhang, Acoustic
higher-order topological insulator on a kagome lattice, Nat.
Mater. 18, 108 (2019).

[43] Q. Wei, X. Zhang, W. Deng, J. Lu, X. Huang, M. Yan, G.
Chen, Z. Liu, and S. Jia, Higher-order topological semimetal
in acoustic crystals, Nat. Mater. 20, 812 (2021).

[44] W. Zhang, X. Xie, H. Hao, J. Dang, S. Xiao, S. Shi, H. Ni,
Z. Niu, C. Wang, K. Jin, X. Zhang, and X. Xu, Low-threshold
topological nanolasers based on the second-order corner state,
Light Sci. Appl. 9, 109 (2020).

[45] R. W. Bomantara and J. Gong, Measurement-only quantum
computation with Floquet Majorana corner modes, Phys. Rev.
B 101, 085401 (2020).

[46] C.-H. Hsu, P. Stano, J. Klinovaja, and D. Loss, Majorana
Kramers Pairs in Higher-Order Topological Insulators, Phys.
Rev. Lett. 121, 196801 (2018).

[47] T. Liu, J. J. He, and F. Nori, Majorana corner states in a
two-dimensional magnetic topological insulator on a high-
temperature superconductor, Phys. Rev. B 98, 245413 (2018).

[48] S. Caldwell, N. Didier, C. A. Ryan, E. A. Sete, A. Hudson,
P. Karalekas, R. Manenti, M. P. da Silva, R. Sinclair, and E.
Acala, Parametrically Activated Entangling Gates Using Trans-
mon Qubits, Phys. Rev. Appl. 10, 034050 (2018).

[49] X. Li, Y. Ma, J. Han, T. Chen, Y. Xu, W. Cai, H. Wang, Y. P.
Song, Z.-Y. Xue, Z.-Q. Yin, and L. Sun, Perfect Quantum State

022601-9

https://doi.org/10.1103/PhysRevX.7.031023
https://doi.org/10.1103/PhysRevA.98.032323
https://doi.org/10.1103/PhysRevA.98.012331
https://doi.org/10.1103/PhysRevA.102.012606
https://doi.org/10.1038/nature13891
https://doi.org/10.1103/PhysRevResearch.2.012076
https://doi.org/10.1016/j.scib.2021.02.035
https://doi.org/10.1103/PhysRevLett.123.080501
https://doi.org/10.1126/science.abg7812
https://doi.org/10.1038/npjqi.2016.15
https://doi.org/10.1103/PhysRevA.97.013818
https://doi.org/10.1038/s41586-018-0410-x
https://doi.org/10.1038/s41534-020-0269-1
https://doi.org/10.1103/PhysRevApplied.10.054051
https://doi.org/10.1103/PhysRevApplied.14.034038
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1126/science.aah6442
https://doi.org/10.1103/PhysRevB.96.245115
https://doi.org/10.1126/sciadv.aat0346
https://doi.org/10.1038/nature25156
https://doi.org/10.1038/nature25777
https://doi.org/10.1103/PhysRevB.98.205147
https://doi.org/10.1038/s41566-019-0452-0
https://doi.org/10.1038/s41563-018-0252-9
https://doi.org/10.1038/s41563-018-0251-x
https://doi.org/10.1038/s41563-021-00933-4
https://doi.org/10.1038/s41377-020-00352-1
https://doi.org/10.1103/PhysRevB.101.085401
https://doi.org/10.1103/PhysRevLett.121.196801
https://doi.org/10.1103/PhysRevB.98.245413
https://doi.org/10.1103/PhysRevApplied.10.034050


WU, GUAN, FAN, CHEN, AND JIA PHYSICAL REVIEW A 104, 022601 (2021)

Transfer in a Superconducting Qubit Chain with Parametrically
Tunable Couplings, Phys. Rev. Appl. 10, 054009 (2018).

[50] M. Reagor, C. B. Osborn, N. Tezak, A. Staley, G.
Prawiroatmodjo, M. Scheer, N. Alidoust, E. A. Sete, N. Didier,
and M. P. da Silva, Demonstration of universal parametric en-
tangling gates on a multi-qubit lattice, Sci. Adv. 4, eaao3603
(2018).

[51] H. Alaeian, C. W. S. Chang, M. V. Moghaddam, C. M. Wilson,
E. Solano, and E. Rico, Creating lattice gauge potentials in cir-
cuit QED: The bosonic Creutz ladder, Phys. Rev. A 99, 053834
(2019).

[52] X. Guan, Y. Feng, Z.-Y. Xue, G. Chen, and Suotang Jia, Syn-
thetic gauge field and chiral physics on two-leg superconducting
circuits, Phys. Rev. A 102, 032610 (2020).

[53] F. Liu and K. Wakabayashi, Novel Topological Phase with a
Zero Berry Curvature, Phys. Rev. Lett. 118, 076803 (2017).

[54] L.-Y. Zheng, V. Achilleos, O. Richoux, G. Theocharis, and V.
Pagneux, Observation of Edge Waves in a Two-Dimensional
Su-Schrieffer-Heeger Acoustic Network, Phys. Rev. Appl. 12,
034014 (2019).

[55] Y. Meng, G. Chen, and S. Jia, Second-order topological insula-
tor in a coinless discrete-time quantum walk, Phys. Rev. A 102,
012203 (2020).

[56] M. Maffei, A. Dauphin, F. Cardano, M. Lewenstein, and
P. Massignan, Topological characterization of chiral models
through their long time dynamics, New J. Phys. 20, 013023
(2018).

[57] F. Cardano, A. D’Errico, A. Dauphin, M. Maffei, B. Piccirillo,
C. de Lisio, G. D. Filippis, V. Cataudella, E. Santamato,
L. Marrucci, M. Lewenstein, and P. Massignan, Detection
of Zak phases and topological invariants in a chiral quan-
tum walk of twisted photons, Nat. Commun. 8, 15516
(2017).

[58] E. J. Meier, F. A. An, A. Dauphin, M. Maffei, P. Massignan,
T. L. Hughes, and B. Gadway, Observation of the topological
Anderson insulator in disordered atomic wires, Science 362,
929 (2018).

[59] T. Mizoguchi, Y. Kuno, and Y. Hatsugai, Detecting Bulk Topol-
ogy of Quadrupolar Phase from Quench Dynamics, Phys. Rev.
Lett. 126, 016802 (2021).

022601-10

https://doi.org/10.1103/PhysRevApplied.10.054009
https://doi.org/10.1126/sciadv.aao3603
https://doi.org/10.1103/PhysRevA.99.053834
https://doi.org/10.1103/PhysRevA.102.032610
https://doi.org/10.1103/PhysRevLett.118.076803
https://doi.org/10.1103/PhysRevApplied.12.034014
https://doi.org/10.1103/PhysRevA.102.012203
https://doi.org/10.1088/1367-2630/aa9d4c
https://doi.org/10.1038/ncomms15516
https://doi.org/10.1126/science.aat3406
https://doi.org/10.1103/PhysRevLett.126.016802

