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Optical feedback cavity ringdown spectroscopy is presented with a linear Fabry–Pérot
cavity and a cost-effective DFB laser. To circumvent the low coupling efficiency caused by
the broad laser linewidth, an optical feedback technique is used, and an enhanced
coupling efficiency of 31%, mainly limited by impedance mismatch and mode
mismatch, is obtained. The trigger of the ringdown event is realized by the shutoff of
the laser driving current, and a novel method with the aid of one electronic switch is applied
to avoid the ringdown events excited by the unexpected cavity modes during the process
of laser current recovery. As a result, the ringdown signal with a signal-to-noise ratio of
2500 is achieved. Through continuous monitoring, the fractional uncertainty of the empty
cavity ringdown times is assessed to be 0.04%. An Allan variance analysis indicates a
detection sensitivity of 4.3 × 10−10 cm−1 is resulted at an integration time of 120 s, even
with a moderate finesse cavity. To further improve the long-term stability, we regularly
rectify the empty cavity ringdown time, and an improvement factor of 2.5 is demonstrated.
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INTRODUCTION

Laser absorption spectroscopy is an effective way for trace gas detection due to its advantages of high
sensitivity and high stability. To improve the detection sensitivity, a variety of methods, such as cavity
ringdown spectroscopy [1, 2], cavity-enhanced absorption spectroscopy [3, 4], thermoelastic
spectroscopy [5, 6], and photoacoustic spectroscopy [7, 8], have been proposed. Cavity
ringdown spectroscopy (CRDS) is a well-established spectroscopic technique with the merit of
high sensitivity [1, 2]. It leverages an optical cavity to prolong the interaction length between the laser
and the intracavity gas, and thus, an amplified absorption signal can be obtained. With superior
coating technologies, the amplification factor larger than 105 and the detection sensitivity for trace
gas detection down to 10−13 cm−1 could be achieved [9, 10]. On the other hand, CRDS deduces the
intracavity absorption information from the variation of the ringdown times, rather than the
amplitudes of the cavity transmission modes. Thus, it is immune to laser intensity noise and
frequency-to-amplitude noise, which is the main limitation of cavity-enhanced absorption
spectroscopy (CEAS). In addition, CRDS is a calibration-free technique that can result in
absolute gas concentration. Therefore, in recent decades, CRDS has been widely applied in a
variety of application fields [11–13].

To provide regular cavity ringdown events, the laser frequency or cavity length, as well as cavity
longitudinal mode frequency, is modulated [14]. However, due to the much broader laser linewidth
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compared to the cavity mode width, only a small proportion of
the light could be coupled into the cavity at a time, leading to a
rather low coupling efficiency. Simulation shows that the
coupling efficiency could be improved by nearly 100 times
with the narrowing of laser linewidth in CRDS [15]. However,
diode lasers, the most prevalent light source in the CRDS
application field, have a linewidth of several MHz, which is
much larger than the cavity linewidth. As a result, a feeble
light will be observed in the cavity transmission and the
performance of CRDS will be limited by detector noise and
electronic noise.

To circumvent this problem, frequency-locked CRDS has been
proposed [16]. By locking the laser to the cavity, or vice versa, via
the Pound–Drever–Hall method, the laser linewidth is narrowed,
and accordingly, high coupling efficiency is attained. However,
for a diode laser, because of its large and broadband frequency
noise, it is difficult to lock it to a high finesse cavity.

Optical feedback is an alternative method, which is exclusively
suitable for a diode laser. The leakage of the intracavity light from
the cavity front mirror, acting as an external superb light source
with narrow linewidth, returns to the laser, and an injection
frequency locking of the laser to the cavity is realized. Optical
feedback CRDS (OF-CRDS) was first proposed by Morville based
on a V-shape cavity [17, 18]. The improvement of the coupling
efficiency by a factor of more than 20 times and neat cavity modes
have been observed. Following the first implementation, most
existing OF-CRDS setups are based on a V-shape cavity [19–22].
This is because this cavity geometry could separate the intracavity
leak-out light from the unwanted direct reflection at the cavity
front mirror, which are suspected to generate optical feedback
competition with each other. Recently, our group has introduced
a linear Fabry–Pérot cavity-based optical feedback CEAS (OF-
CEAS) without special care of unwanted direct reflection [23]. By
this, optical feedback linear cavity-enhanced absorption
spectroscopy (OF-LCEAS) has been developed [3]. The
intracavity absorption is derived directly from the amplitude
attenuation of the cavity transmission modes. Compared to
the V-shape cavity, the Fabry–Pérot cavity is more universal
and less sensitive to mechanical vibration and could possess
higher finesse. Therefore, it improves the applicability of OF-
CEAS.

In this study, optical feedback linear cavity ringdown
spectroscopy (OF-LCRDS) based on a linear Fabry–Pérot
cavity and a cost-effective DFB laser is presented. Due to
the advantages of CRDS over CEAS, a better performance is
expected. The ringdown event is excited by changing the laser
current below the threshold of emitting quickly. A novel
strategy to avoid the trigger of unexpected ringdown events
during the laser current recovery is provided. To improve the
long-term stability, the optical feedback phase is actively
controlled and the empty cavity ringdown time is rectified
with the ringdown time at the laser frequency far away from
the absorption. The experimental details are presented at first.
A ringdown signal with high fidelity is shown. Also, the
detection sensitivity is evaluated by the Allan variance plot
[24]. Finally, a spectrometer is used to detect CH4

concentration and its long-term stability is examined.

EXPERIMENTAL SETUP

The schematic diagram of the experimental setup for OF-LCRDS
is shown in Figure 1. A distributed feedback laser diode (Eblana,
EP1653-7-DM-TO56-A04) with a TO footprint, emitted at a
wavelength of 1.65 μm, is utilized, which addresses three
overlapping strong CH4 transitions around 6046.9 cm−1 with a
line strength of around 1 × 10−21 cm−1/(molecule × cm−2). The
output light passes through, in sequence, a mode-matching lens, a
half-wave plate (λ/2), two reflectors, a polarization beam splitter
(PBS), and a quarter wave plate (λ/4). By rotating the λ/4, the
feedback ratio could be adjusted.

The light is then injected into a Fabry–Pérot (FP) cavity. The
cavity consists of two identical mirrors with a reflectivity of 99.96%,
corresponding to a finesse of around 7850. The two mirrors are
separated with a length of 39.4 cm, implying a free spectral range of
380MHz. The maximum coupling efficiency between the laser and
the cavity is measured to be around 31%, mainly limited by
impedance mismatch and mode mismatch, by monitoring the
cavity reflection when the laser frequency is locked to the cavity
mode [25]. To control the feedback phase to be an integermultiple of
2π for an effective optical feedback [23], two strategies are utilized. A
translation stagemounting the laser and a PZT adhered to one of the
reflectors are responsible for coarse and fine phase adjustments,
respectively. A correction voltage is sent to the PZT to realize active
and real-time compensation, which is generated from the judgment
of the asymmetry of the cavity transmission mode. To avoid the
usage of an extra optical switch which will deteriorate the stability of
optical feedback by introducing optical phase shift and fluctuation,
the ringdown event is excited by directly and abruptly cutting off the
laser current using a homemade electronic switch, i.e., ES1. The
cavity transmission and ringdown signals are captured using a PD
(Thorlabs, PDA 10CS-EC) and then sent to another homemade
electronic switch, i.e., ES2, which is used to filter out the unexpected
cavity modes (detailed information will be given in Ringdown
Signal). The output of ES2 is divided into two parts. One is sent
to a data acquisition (DAQ) card, and the other is sent to a pulse
generator, where the latter generates two pulse signals with different
starting times and duty ratios to control the ES1 and ES2, respectively.

To get the error signal for the control of the optical feedback
phase, the symmetry of the arch-shape cavity mode should be
acquired before performing the trigger action. Here, the method
similar to that in [18] is adopted to show that the ringdown event
is excited on the falling edge of the cavity mode. By changing the
laser current below the threshold of the laser emitting quickly, the
ringdown event can be observed in the cavity transmission. An
exponential function is used to fit the ringdown signal by the least
square method.

RESULTS AND DISCUSSION

Ringdown Signal
Special measures to avoid the trigger of unwanted ringdown
events during the laser current recovery have been taken, and
their effect is illustrated in Figure 2 by the time sequence of
process signals. The black curve in Figure 2A is the cavity
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transmission signals for CEAS when the laser current is scanned.
There are three successive cavity longitudinal modes, all of which
have a typical arch profile. At these points, the laser frequency is
briefly locked to the corresponding cavity mode with the time
scale of 0.5 ms, even though the nominal linewidth of the laser
offered by the manufacturer is 5 MHz and the linewidth of the

cavity mode is 54 kHz. This verifies the effect of the optical
feedback that could suppress most of the laser frequency noises.

When a falling edge is detected and its amplitude drops below
the trigger threshold, a pulse signal with 60 μs duration is
generated by the PG and then sent to the ES1 to cut off the
laser current. As a result, one ringdown event is observed. The
output signal of the PG is shown in Figure 2B with a trigger
threshold voltage of 0.9 V for the cavity transmission signal. The
curves in Figure 2C are the corresponding cavity transmission
modes. After 60 µs, the output of the PGwould return to its initial
state. However, the recovery of the laser wavelength is relatively
slow and several unexpected cavity modes might be stimulated
during its recovery process, exemplified by the cavity
transmission modes with relatively lower amplitude, as in
Figure 2C. It would also excite the ringdown event if it
satisfies the requirement of the trigger. Consequently, a series
of messy cavity ringdown events stimulated at uncertain laser
frequencies are resulted, just as illustrated in Figures 2B,C. This
problem could be solved if a higher threshold voltage for the
ringdown trigger is set, whereas this strategy is not suitable for the
case of large variation of the laser power. For example, a large
scanning range of the laser frequency for the detection of a
complete absorption spectrum will result in intrinsic variation
of the laser power along with the scanning of the laser current.

Here, to address the problem, another electronic switch,
i.e., the ES 2, is added after the PD, which is controlled by the
PG and can filter out these unexpected modes. Figure 2F depicts
the control signal to the ES2. Initially, the ES2 is turned on and the
PG can receive the output of the PD. A pulse with a duration of
3.4 ms which lags behind the pulse to the ES1 is generated by the
PG and sent to the ES2. After the ringdown signal has been
recorded using the DAQ card, it will turn off the ES2 and, thus, cut
the link between the PG and the PD. After the laser wavelength
gets stable, the ES2 is turned on again and another ringdown event
could be triggered. Figures 2D,E,G show the output of the PG to
the ES1, the output of the PD, and the input of the DAQ card by
using this new strategy, respectively. It is clear to see, even though

FIGURE 1 | Experimental setup for OF-LCRDS. PG: pulse generator; ES1,2: homemade electronic switch; AFG: arbitrary function generator; LDC: laser diode
controller; DFB-LD: distributed feedback diode laser; PTS: precision translation stage; λ⁄ 2: half-wave plate; PBS: polarization beam splitter; PZT: piezoelectric
transducer; HVA: high voltage amplifier; PD: photodetector; and DAQ: data acquisition card.

FIGURE 2 | The time sequence of the process signals. (A) The cavity
transmission modes without the trigger of ringdown event; (B) the pulse signal
to the ES1; (C) the cavity transmission modes of OF-LCRDS, and a series of
messy cavity modes are observed under this situation; (D) the pulse
signal to the ES1 with the ES2; (E) the cavity transmission modes of OF-
LCRDSwith the ES2; (F) the pulse signal to the ES2 to filter out the unexpected
modes; and (G) the signal to the DAQ card with the ES2.
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the numerous cavity transmission modes are still observed during
the recovery of the laser frequency, they do not affect the regular
trigger of the desired ringdown event. As a result, three ringdown
events corresponding to the three consecutive cavity modes are
observed, as shown in Figure 2G. With the improvement of the
coupling efficiency, large amplitude of the cavity transmission
mode as well as the cavity ringdown signal with high repeatability
and high signal-to-noise ratio is obtained, illustrated by the black
dot in Figure 3A. The red curve is the fitting result based on an
exponential decay function; and the lower panel is the fitting

residual. An excellent signal-to-noise ratio (SNR) of 2500, defined
as the ratio of the peak value and the standard deviation of the
residual, is obtained. Also, no strong structure has been found in
the fitting residual.

Evaluation of the Detection Limit
To estimate the detection sensitivity of OF-LCRDS, a series of
ringdown events for a single longitudinal mode of the empty
cavity was consecutively measured for around 1 h. This is realized
by tuning the laser frequency with a triangle wave signal at a rate
of 2 Hz. The red curve in Figure 4A depicts the measured empty
cavity decay rate, 1/(c·τ0), over time (c is the speed of light, and τ0
is the empty cavity ringdown time). It demonstrates a 0.04%
fractional uncertainty of the ringdown times, i.e., σ (τ0)/E (τ0) [σ
(τ0) is the standard deviation of τ0, and E (τ0) is the mean value of
τ0], which is among the state-of-the-art of CRDS results. Slow
fluctuations can be seen in Figure 4A, and it is suspected to be
caused by the environmental temperature change which leads to
the variation of the cavity length and mechanical vibration which
leads to the light hitting the different spots of the cavity mirrors.
There is also sparse impulse noise which is attributed to the
electric noise and etalon effect. The Allan variance plot [24] is
shown as a red curve in Figure 4B. A white noise response of 2.6 ×
10−9 cm−1 Hz−1/2 was obtained, which is illustrated by the dash
line in black. Also, the system reached its detection limit of 4.3 ×
10−10 cm−1 at an integration time of 120 s, corresponding to a
minimal detection of CH4 concentration of 1.2 ppb by a CH4

transition at 6046.9 cm−1.

Measurement of the CH4 Absorption
Spectrum
Then, the absorption spectrum of CH4 is measured. We filled
the cavity with the ambient air of our lab located at Taiyuan,

FIGURE 3 | (A)Measured single ringdown event (black dot) and its fitting
result by an exponential function (red line). (B) The fitting residual.

FIGURE 4 | Long-term ringdown time measurement of a single cavity
longitudinal mode. (A) Empty cavity decay rate; (B) Allan variance plot.

FIGURE 5 | (A)Measured CH4 absorption spectrum and its fitting result
with Lorentz function; (B) fitting residual.
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China, which is filtered by using a desiccant first. The
intracavity pressure was set to 0.92 atm, i.e., the local
atmospheric pressure. In the experiment, each cavity mode
was scanned 50 times for average ringdown time. The laser
current is scanned by a triangular wave with a frequency
scanning range of around 0.5 FSR at a rate of 50 Hz. The
shift of the adjacent cavity mode is realized by stepping the
central value of the laser current, and it took 7 min to get a
whole spectrum. The empty cavity ringdown time is measured
at the wavelength of 6047.5 cm−1, which is 18 GHz away from
the center of the nearest strong absorption transition. The
obtained absorption spectrum is shown as the black dots in
Figure 5A. With a total laser frequency scanning range of
45 GHz, 118 successive cavity modes are stimulated and a CO2

absorption line is observed besides the CH4 absorption line,
shown as a small bump in Figure 5. The spectral parameters
from the HITRAN database [26] and Lorentzian line-shape
function are used to fit the measurement spectrum. The fitted
curve is displayed as a red line in Figure 5A, and the fitting
residual is presented in Figure 5B. The theoretical model
shows a good consistency with the measured spectrum, and
the signal-to-residual ratio of 156 is obtained. The retrieved
CH4 concentration is 2.73 ppm.

Rectification of the Empty Cavity Ringdown
Time
The variation of the empty cavity ringdown time, owing to
temperature fluctuation and mechanical vibration, is the
dominant limitation to the long-term stability of CRDS. To
solve this problem, the empty cavity ringdown time is rectified
regularly by the ringdown time at the laser frequency far away
from the gas absorption transition. To verify the effectiveness of
this method, a long-term concentration measurement with a time
interval of 20 min and a duration of 34 h for CH4 gas with a

constant concentration has been performed. The dotted lines in
blue and red in Figure 6 are the measured concentrations without
and with rectification, respectively. Without rectification, the drift
range of retrieved concentration is 0.2 ppm within this
measurement time. After the rectification, the drift range is
suppressed to 0.08 ppm, which shows an improvement with a
factor of 2.5.

CONCLUSION

In summary, we have developed optical feedback linear cavity
ringdown spectroscopy. The ringdown event is excited by
changing the laser current below the threshold of emitting
quickly. An effective method to avoid the ringdown events
excited by the unexpected cavity modes during the process of
current recovery is introduced with one electronic switch. The
coupling efficiency of the laser to the FP cavity is improved to
31%, mainly limited by the mode mismatch and impedance
mismatch, by optical feedback, and consequently, ringdown
signals with high fidelity are achieved. The fractional
uncertainty of empty cavity ringdown time is 0.04%, yielding a
minimal detection of CH4 concentration of 1.2 ppb at the
integration time of 120 s. The long-term retrieved
concentration drift is improved by 2.5 times within 34 h
through rectifying the empty cavity ringdown time during the
measurement of each spectrum. This novel technique paves the
way for the construction of a robust and sensitive CRDS
instrument for trace gas detection.
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