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A B S T R A C T   

A sensor system for exhaled ammonia (NH3) monitoring exploiting quartz-enhanced photoacoustic spectroscopy 
(QEPAS) was demonstrated. An erbium-doped fiber amplifier (EDFA) with an operating frequency band targeting 
an NH3 absorption line falling at 1531.68 nm and capable to emit up to 3 W of optical power was employed. A 
custom T-shaped grooved QTF with prong spacing of 1 mm was designed and realized to allow a proper focusing 
of the high-power optical beam exiting the EDFA between the prongs. The performance of the realized sensor 
system was optimized in terms of spectrophone parameters, laser power and modulation current, resulting in a 
NH3 minimum detectable concentration of 14 ppb at 1 s averaging time, corresponding to a normalized noise 
equivalent absorption coefficient (NNEA) of 8.15 × 10− 9 cm− 1 W/√Hz. Continuous measurements of the NH3 
level exhaled by 3 healthy volunteers was carried out to demonstrate the potentiality of the developed sensor for 
breath analysis applications.   

1. Introduction 

In the field of medical diagnostics, an increasing number of studies 
have demonstrated that pathological diagnosis based on respiratory 
analysis is non-invasive and reliable [1–3]. Abnormal elevated levels of 
metabolites in exhaled breath herald the deterioration of physical con-
ditions. For instance, normally the amount of ammonia (NH3) exhaled 
from the alveoli is several hundred parts per billion in concentration, 
while a rising ammonia level (>1 ppm) exhaled from humans have been 
linked to kidney and liver failure [4,5]. Narasimhan et al. have 
confirmed that there is a strong correlation between the level of respi-
ratory ammonia and blood urea nitrogen (BUN) in patients with 
end-stage renal disease during hemodialysis [6]. Therefore, real-time 
measurement of ammonia in exhaled breath is not only used as an in-
dicator of renal failure, but also determines the progress of hemodialysis 
process. 

In order to realize continuous and online ammonia monitoring in 

exhaled breath, there are two main sensor requirements: (1) ppb-level 
detection sensitivity; (2) fast response time. Up to now, various tech-
nologies for detection of ammonia have been reported, such as carbon 
nanomaterials [7], chemiluminescence analysis [8], photocatalytic 
technology [9] and ion chromatography method [10]. However, the 
presence of interfering substance (molecular impurities, electrolytes and 
nitrogen oxide) can adversely affect the accuracy of these methods. 
Moreover, most of these methods have long response time and poor 
detection sensitivity. Laser-based spectroscopic methods have been 
widely demonstrated to provide high detection sensitivity and fast 
measurement time [11–14]. Cavity ring-down spectroscopy (CRDS) is a 
direct absorption spectroscopy technique, in which laser is injected into 
a high-precision optical cavity composed of ultra-high reflectivity 
mirror. The intensity of laser exiting the cavity decreases exponentially 
with time, and the corresponding cavity ring-down time depends on the 
target gas concentrations in the cavity. Compared with traditional ab-
sorption spectroscopy techniques, CRDS exhibits high sensitivity 
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because it is not affected by variations in the incident laser intensity and 
benefits from long effective optical paths. For example, Manne et al. 
have implemented a similar technique to achieve a sensitivity of 50 parts 
per billion for ammonia detection [4]. However, the large volume of the 
optical cavity causes a long retention time for target gas, resulting in a 
degraded time resolution of 20 s, which is inappropriate for applications 
requiring continuous and real-time gas monitoring of exhaled breath. 

Photoacoustic spectroscopy (PAS) is another well-established tech-
nique owing to its relatively simple, real-time and zero-background 
signal [15–17], in which the optoacoustic signal is detected by broad-
band microphones to retrieve the trace gas concentration levels. 
Quartz-enhanced photoacoustic spectroscopy (QEPAS), an improved 
version of traditional PAS, employs a small-size, high-Q-factor quartz 
tuning fork (QTF) instead of a conventional microphone as a resonant 
acoustic transducer. The key innovation of QEPAS is the use of the QTF 
with high resonance frequency (up to several kHz) and narrow fre-
quency band (few Hz or less), which results in an improved immunity of 
the QEPAS system to ambient noise [18–49]. Moreover, QEPAS has a 
simple spectrophone design and is capable to analyze trace-gas samples 
of few mm3 in volume, providing a high detection sensitivity level and 
fast response time, and hence is very suitable for detecting exhaled gas in 
real time, as demonstrated in [35,36]. 

A remarkable feature of QEPAS is that its detection sensitivity is in 
direct proportion to the optical excitation power, which provides an 
approach to further improve QEPAS detection sensitivity by employing 
high-power lasers or optical fiber amplifiers [37,38]. Nowadays 
commercially available erbium-doped fiber amplifiers (EDFAs) with 

sophisticated technology have three telecommunication bands, i.e., S 
band (1450–1550 nm), C band (1520–1570 nm) and L band 
(1565–1610 nm). The first combination of a QTF-based QEPAS sensor 
and an EDFA for H2S detection has been reported [39]. However, due to 
the limitation of 300-μm prong spacing of QTF and the degraded beam 
quality caused by the EDFA, a large background noise was introduced. 

In this manuscript, a NH3 sensor system aiming at real-time respi-
ration monitoring is demonstrated, in which a novel custom QTF with 
prong spacing of 1 mm and an EDFA in the wavelength range of 
1531–1540 nm were employed. Benefiting from the high output power 
of the EDFA, the wide prong spacing of the custom QTF and the small 
size of the QEPAS cell, a ppb-level detection sensitivity and rapid 
response time were achieved. To demonstrate its effectiveness for breath 
analysis applications, the NH3 QEPAS sensor was tested by measuring 
the ammonia levels exhaled by three healthy individuals. 

2. Selection of target absorption line 

Due to the presence of the fingerprint spectrum of gas molecules, the 
QEPAS technology based on Beer Lambert’s law enables excellent 
selectivity as well as real-time measurement. Ammonia has a complex 
infrared spectrum with four fundamental vibrational modes (ν1, ν2, ν3, 
ν4). According to the HITRAN database, NH3 two perpendicular bands 
(ν1 +ν3, 2ν3

2) are dominant in the vicinity of 1.5 µm [40]. There are three 
strong absorption lines in the wavelength range 1531.5–1531.75 nm, 
whose simulated absorbances are plotted in Fig. 1. Two of three lines 
overlap with two weak neighboring absorption lines of carbon dioxide 
(CO2). Since the content of CO2 exhaled from the alveoli of a healthy 
individual is ~4%, far higher than the exhaled level of ammonia, con-
centration levels of 4% and 200 ppb, at a pressure of 100 Torr, were used 
for CO2 (dash-dotted line) and NH3 (solid line), respectively, in the 
generated spectra shown in Fig. 1. Operating at low pressure is helpful in 
reducing the pressure broadening effect and avoiding spectral overlaps 
between the absorption lines. The interference-free ammonia line at 
1531.68 nm (v= 6528.77 cm− 1) with an absorption line strength of 
1.174 × 10− 21 cm/molecule was selected as target line. 

3. Design of custom QTF for EDFA 

To realize the photoacoustic sensor system, an EDFA was employed, 
offering an adjustable output power from 20 mW to 3 W without vari-
ation of the laser wavelength. Being the QEPAS signal proportional to 
the selected absorption line strength, in terms of detection sensitivity, 
the watt-level amplified output power of the EDFA can effectively 
compensate the NH3 low absorption line strengths falling in the near-IR 
spectral region, which are about two orders of magnitude weaker than 
the corresponding lines falling in the mid-IR range. Moreover, the 
commercial availability of mid-IR semiconductor laser sources, such as 

Fig. 1. Simulated absorbance of 200 ppb NH3 (solid line) and 4% CO2 (dash- 
dotted line) at a pressure of 100 Torr. 

Fig. 2. (a) Schematic diagram of the T-shaped QTF. (b) Frequency response curve of the T-shaped grooved QTF at atmospheric pressure.  
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quantum cascade lasers, has a high cost and heat dissipation issue, the 
combination of a small sized and low-cost near-infrared DFB lasers with 
an EDFA is an alternative technology. The design of the custom QTF for 
the EDFA needs to consider three aspects: (1) large prong spacing to 
match the high-power laser beam exiting the EDFA; (2) a high Q factor 
to achieve a high sensitivity; (3) a low resistance to enhance the 
piezoelectric conversion efficiency of the QTF. 

Based on the laser beam quality of the EDFA, a prong spacing of 
1 mm is large enough to effectively reduce the background noise 
generated by tail of the optical beam hitting the QTF [18]. A 
hammer-like structure was designed on the QTF tine, increasing the top 
weight of the QTF and thus increase the generated prongs stress field. An 
increase of the amplitude of the stress field produces an increase of the 
piezoelectrically induced charges, and subsequently an enhancement of 
the QTF current signal. The reported QTF is referred as T-shaped 
grooved QTF, whose schematic and geometrical parameters are shown 
in Fig. 2(a). The prong length L, thickness w, and prong spacing g of the 

T-shaped grooved QTF are 9.4 mm, 2 mm, and 1 mm, respectively. The 
width of the hammer-shaped part T1 and non-hammer-shaped part T2 of 
the QTF prongs are 2 mm and 1.4 mm, respectively. In addition, four 
50-μm deep rectangular grooves was carved on the surface of each QTF 
prong, decreasing the distance between two electrodes and leading to a 
low QTF resistance, thereby increasing the generated signal [18]. The 
response curve of the T-shaped grooved QTF is shown in Fig. 2(b). At a 
pressure of 100 Torr, the resonant frequency, quality factor, and 
equivalent resistance of the QTF are 9358.7 Hz, 15,866, and 139.2 kΩ, 
respectively. 

4. Photoacoustic sensor system 

The schematic diagram of the EDFA-based QEPAS sensor for exhaled 
ammonia detection is depicted in Fig. 3. A near-infrared distributed 
feedback (DFB) diode laser (NTT Electronics Corporation model 
NLK1C5J1AA) with a center emission wavelength of 1531.68 nm served 

Fig. 3. Schematic of the QEPAS-based sensor system for exhaled ammonia detection. EDFA: Erbium-doped fiber amplifier; NV: needle valve; FG: Function Generator; 
TA: Transimpedance Amplifier; WDM: Wavelength Division Multiplexing. 

Fig. 4. (a) Sketch of a QTF depicting the prong deformation when the laser is focused on the QTF symmetry axis (Black arrow). (b) Normalized QEPAS signals 
obtained at different laser focal point locations. The positions on the x-axis are measured starting from the prongs bottom. 
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as the excitation source. The temperature controller and current driver 
are integrated on the drive board to control the output wavelength of the 
laser. The 30 mHz ramp signal generated from a function generator 
slowly scans the laser wavelength across the absorption line of interest. 
In addition, the current of the laser was sinusoidally modulated at f0/2, 
where f0 was the resonance frequency of the custom QTF. The laser 
beam with an output power of 20 mW was directed to the C-band EDFA 
(BKtel THPOA-SP400ac-FCAPC) with a two-stage amplifier, which has 
an output power stability of < 2%. Two optical isolators were utilized at 
the entrance and exit of the EDFA to protect the DFB diode laser against 
back reflections. The outgoing laser beam was collimated by a fiber- 
coupled collimator (FC) with a transmittance of 95% at ~1.5 µm, 
resulting in a collimating laser beam with a diameter of 650 µm, which 
allowed the laser beam to easily pass through the QTF prongs without 
hitting their surfaces. 

The excited photoacoustic signal was detected by the custom QTF 
and amplified by a low noise trans-impedance amplifier with a 10-MΩ 
feedback resistor. Then the amplified signal was demodulated by the 
lock-in amplifier (Stanford Research Systems, model SR830) in the 2f 
mode with regards to the synchronous reference signal provided by the 
function generator (FG2). The time constant and slope filter of this lock- 
in amplifier were 300 ms and 12 dB/oct, respectively, resulting in a 
detection bandwidth of 0.833 Hz. The gas pressure in the 70 cm3 gas cell 
was controlled at 100 Torr by a compact pressure controller (MKS In-
strument Inc., U.S.A., Model 649B) in all measurements. The flow of 
human exhaled gas was set to a constant value of 80 sccm, which is the 
available maximum flow rate due to the low pressure. A flowmeter 

(Alicat Scientific, Inc. Model M-500SCCMD) was used to monitor the gas 
flow rate simultaneously. 

As shown in Fig. 4(a), the optimal sound excitation position for the 
QTF were determined by comparing the QEPAS signals generated by the 
laser beam focusing at different positions along the QTF symmetry axis. 
The experimental QEPAS signals, normalized to the maximum value and 
measured as a function of the laser focus positions, are shown in Fig. 4 
(b). The optimal laser focus position was determined to be 7.5 mm away 
from the bottom of the QTF prongs. 

Significant enhancements of the QEPAS signal-to-noise ratio have 
can been obtained by implementing acoustic micro-resonators (AmRs) 
in on-beam QEPAS. For this configuration an AmR typically consists of 
two stainless steel tubes with the QTF positioned perpendicularly be-
tween them to probe the acoustic vibration excited in the gas contained 
inside the tubes [18]. The distance between the QTF and the tubes was 
set at 100 µm and the geometric parameters of the AmR were optimized. 
The normalized QEPAS signal vs the AmRs inner diameter (ID) is shown 
in Fig. 5(a). The optimum ID of the AmRs was determined to be 1.7 mm. 
Since the cross-sectional dimensions of the optimum AmR are much 
smaller than the acoustic wavelength (λs ≅ 37.8 mm for f0 ≅ 9 kHz), a 
standing wave propagating longitudinally along the resonator was just 
excited, generating a one-dimensional acoustic field. 

By optimizing the length of the single tube, the first-order longitu-
dinal mode of the acoustic wave can match the resonance frequency of 
the QTF. According to the theory published in Ref [25], the optimum 
length of each tube is between λs/2 and λs/4, where λs is the sound 
wavelength. As shown in Fig. 5(b), the normalized QEPAS signal rises at 

Fig. 5. (a) The relationship between the normalized QEPAS signal and the ID of the AmRs, ID: inner diameter of the tube. (b) The normalized QEPAS signal as a 
function of tube length. 

Fig. 6. The 2f signal measured at different modulation currents from 1 mA to 3 mA (a) and 4–6 mA (b).  
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increasing the tube length, and then reaches the maximum value at l 
= 16 mm, where the strongest acoustic coupling between the QTF and 
the AmRs is obtained. 

5. Optimization of experimental parameters 

For the QEPAS-based sensor, the signal amplitude is dependent on 
the laser current modulation depth. Thus, the modulation depth was 
optimized experimentally to obtain the highest QEPAS signal. A 1 ppm 
NH3/air mixture was fed into the chamber as a gas sample and the 
QEPAS signal was measured at different modulation depths from 1 mA 
to 6 mA when the laser wavelength slowly sweeps across the target NH3 
absorption line (v= 6528.77 cm− 1 for I = 196 mA), for an optical 
emitted power of 500 mW. As shown in Fig. 6, the maximum QEPAS 
signal was achieved at the modulation current of 2 mA. At larger mod-
ulation current the QEPAS signals of the two NH3 absorption lines at 
6528.77 cm− 1 and 6528.91 cm− 1 begin to merge. Therefore, an optimal 
modulation depth of 2 mA was adopted in the following investigations. 

The detection sensitivity of the QEPAS-based sensor is proportional 
to the excitation laser power. However, with laser power increasing, 

saturation effects may occur, which means that the depletion from the 
vibrational excited level slows with respect to the pump rate, and thus 
molecules are unable to be excited to higher energy levels. Thereby, we 
measured the QEPAS signal vs optical power in the range 200 mW–3 W 
for 1 ppm NH3/air mixture, to verify our sensor system was not operated 
in saturation. The obtained results are shown in Fig. 7. 

The signal amplitude increases linearly with the increase of actual 
excitation power, while the sensor noise was constantly kept at µV level 
thanks to the large prongs gap of the custom QTF, proving that the 
sensor is not operated in saturation condition. 

6. Results and discussion 

To evaluate the performance of the sensor system for NH3 detection, 
the system was operated at the optimized values of modulation depth 
and the excitation power of 3 W. The peak values of the 2f signal have 
been measured at different NH3 concentrations, starting from a certified 
concentration of 10 ppm NH3:standard air and diluting down to 0.2 ppm 
in air using a gas mixer with 1.5% of water added and the obtained 
results are plotted in Fig. 8. Each data point in the figure represents the 
average of 50 repeated measurements. An R-square value of 0.999 was 
obtained through a linear fit, which confirmed that the sensor system 
linearly responds to the NH3 concentration. The sensor noise was 
defined as the 1 σ standard deviation (2.13 µV) of the signal when the 
pure air was introduced in the gas cell. With 200-ppb NH3/air mixture 
flushed into the system, a minimum detection limit (MDL) of 14 ppb was 
measured in a detection bandwidth of 0.833 Hz. A normalized noise 
equivalent absorption (NNEA) value of 8.15 × 10− 9 cm− 1 W/√Hz was 
achieved. 

An Allan-Werle deviations analysis was performed to evaluate the 
long-term stability of the NH3 sensor. The gas chamber was filled with 
air, at a pressure of 100 torr, and the output wavelength of the laser was 
locked to the NH3 absorption line at 6528.77 cm− 1. The Allan deviation 
result plotted in Fig. 9 shows that the detection limit of the NH3 sensor 
can be improved if increasing the averaging time. For an averaging time 
up to 40 s, the Allan–Werle deviation plots follows a 1/√t dependence, 
which means that the white noise of the sensor is the dominant noise 
source. At an averaging time of 40 s an NH3 MDL of 1.5 ppb has been 
achieved. 

These performances pave the way to the application of the developed 
sensor system for environmental and biomedical applications. As proof 
of this last statement, the NH3 sensor system was successfully tested for 
online detection of human exhaled ammonia. The exhaled breath from 

Fig. 7. QEPAS signals peak value as a function of actual excitation power.  

Fig. 8. Amplitudes of the 2f signal as a function of the NH3 concentrations from 
0.2 ppm to 10 ppm in air. 

Fig. 9. Allan-Werle deviations as a function of the averaging time for pure air 
gas samples. 
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three volunteers was introduced into the gas chamber in real time by a 
custom exhaled gas sampling apparatus, a Nafion humidifier was 
inserted inline to keep the water concentration entering the QEPAS cell 
at 1.5% to eliminate the influence of environmental water vapor 
changes on the experimental system. A pump located downstream of the 
gas path was continuously operated to ensure the flow rate and pressure 
of the gas in the chamber. Fig. 10 shows the measurement results of the 
exhaled ammonia by 3 healthy subjects. Two minutes after the timer 
started, the exhaled ammonia gas was collected by the gas sampling 
apparatus and transmitted to the detection module. The measurement 
process lasted three minutes for online monitoring of ammonia levels 
exhaled by the subjects over a long period of time, rather than the 
changes in the ammonia concentration of the subjects exhaled in one 
breath. 

When the exhaled breath was no longer fluxed into the detection 
module, the QEPAS decreases rapidly to the noise level, demonstrating 
that no-memory effects are present. The measurement process of 
exhaled ammonia by three healthy subjects was repeated three times to 
verify the stability of the NH3 sensing system. A signal rise/fall time of 
~15 s was achieved and Exhaled ammonia levels in the range 
170–230 ppb was observed. The small bumps at the beginning of each 
detection window in the measurements of the breath of subject 3 reflects 
the ammonia concentration in the oral cavity. This higher concentration 
is mostly related to oral bacterial processes of ingested food and bev-
erages [41]. The signal dither observed was caused by instability in 
respiratory rate. 

7. Conclusions 

An NH3 QEPAS sensor implementing an erbium-doped fiber ampli-
fier and a custom T-shaped grooved QTF with prong spacing of 1 mm 
was demonstrated. Our previous experimental results show that there is 
a significant background noise from an 800-μm-prong-spacing QTF 
when the laser power is amplified to watt-levels. Therefore, a novel QTF 
with a prongs gap of 1 mm was designed here. The wider prongs gap of 
the custom QTF significantly reduces the photothermal noise caused by 
the stray light hitting the prongs of QTF. Due to the increase in excitation 
power, a lower MDL of 14 ppb at 1 s averaging time, corresponding to a 
NNEA of 8.15 × 10− 9 cm− 1 W/√Hz, has been achieved. The MDL re-
duces to 1.5 ppb if increasing the averaging time to 40 s. The obtained 
performances allow the implementation of the NH3 QEPAS sensor for 
NH3 monitoring in exhaled human breath. The experimental results 
confirm the potentiality of the developed NH3 sensor to be implemented 
for renal disease screening and monitoring of treatment progress of 

patients with end-stage renal pathology, whose exhaled ammonia level 
is usually > 1 ppm. 
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