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Abstract
In this paper, we demonstrate that the non-Hermiticity can induce reentrant localization in a
generalized quasiperiodic lattice. Specifically, by considering a nonreciprocal dimerized lattice with
staggered quasiperiodic disorder, we find that the localization transition can appear twice by
increasing the disorder strength. We also unravel a multi-complex-real eigenenergy transition,
whose transition points coincide with those in the localization phase transitions. Moreover, the
impacts of boundary conditions on the localization properties have been clarified. Finally, we
study the wavepacket dynamics in different parameter regimes, which offers an experimentally
feasible route to detect the reentrant localization.

1. Introduction

As one of the most fundamental effects affecting the transport properties of quantum particles, localization
has been extensively explored in condensed matter physics. Typical phenomenon is the absence of a
particle’s diffusion induced by random disorder, which is known as Anderson localization [1]. All states in
one- and two-dimensional system with uncorrelated disorder are localized [2]. Three-dimensional systems
with disorder have both localized and delocalized eigenstates, separated by a critical energy known as the
single-particle mobility edge in the spectrum [3]. Quasiperiodic systems, at the interface of long-range
ordered and fully disordered systems, exhibit much different localization behaviors such as a 1D localization
transition at a finite (quasi-) disorder strength, critical spectra, and multifractal eigenstates. The most
paradigmatic example is the Aubry–André–Harper (AAH) model [4, 5], which has been widely investigated
in optical and atomic systems [6–9]. By introducing a long-range hopping term or breaking the self-duality
of the AAH Hamiltonian, one can obtain single-particle mobility edge [10–12]. As a result, a single-particle
intermediate phase where the localized and extended eigenstates coexist appears [13, 14].

Meanwhile, the physics of non-Hermitian systems has garnered substantial interest both theoretically
and experimentally in recent years [15–17]. In general, the non-Hermiticity is achieved by introducing the
complex on-site potentials or asymmetric hopping terms. They host extensive features that do not exist in
Hermitian systems, such as exceptional points [18, 19], non-Hermitian skin effect [20–26], and anomalous
transport behavior [27–30]. These exotic phenomena bring potential applications including lasing [31–33],
sensing [34–38], and topological light modulation [39–41]. Particularly, the interplay between disorder and
non-Hermiticity has been recently explored [42–59]. In non-Hermitian quasiperiodic lattice with
asymmetric hopping or PT -symmetry, it is revealed that the non-Hermitian Anderson transition coincides
with topological transition and complex-real energy transition [43–46]. These results have also been
extended to the mobility edges [47–50] and many-body localization [51–53].

It is usually expected that, when the disorder strength is larger than a critical value, all eigenstates
become localized, and they will remain so if the disorder strength is further increased. Recently, an
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Figure 1. Schematic illustration of the non-Hermitian generalized quasiperiodic lattice with two sublattice (A and B) in each
unit cell. J1e±α and J2e±α are the asymmetric intra- and inter-cell hopping strengths, and Vν

j corresponds to the on-site
quasiperiodic modulation.

interesting phenomenon termed relocalization or re-delocalization transition has been revealed in
generalized AAH model [60–62]. In this paper, we demonstrate that the non-Hermiticity can induce a
reentrant localization. Specifically, in a nonreciprocal dimerized lattice with staggered quasiperiodic
disorder, the localization transition can appear twice if the disorder strength is persistently increased. We
find such a reentrant localization transition is accompanied by a multi-complex-real transition in the
energy spectrum. We also reveal that the localized states are robust to different boundary conditions
whereas the extended states become skin modes under the open boundary condition (OBC). Finally, we
clarify the dynamics of wavepacket in different parameter regimes. Our finding facilitates deeper
understanding of non-Hermiticity, disorder, and their interplay.

2. Model and Hamiltonian

We consider a one-dimensional generalized AAH quasiperiodic lattice with asymmetric hopping terms. As
illustrated in figure 1, the system contains two sublattice sites A and B in each unit cell with asymmetric
intra- and inter-cell hopping strengths J1e±α and J2e±α, respectively, which is describe by the following
tight-binding Hamiltonian

Ĥ =
∑

j

[
J1(eαĉ†j,Bĉj,A + e−αĉ†j,Aĉj,B) + J2(eαĉ†j+1,Aĉj,B + e−αĉ†j,Bĉj+1,A)

]
+
∑

j

(
VA

j n̂j,A + VB
j n̂j,B

)
, (1)

with

Vν
j =

{
V1 cos[2πβ(2j − 1) + ϕ],

V2 cos[2πβ(2j) + ϕ].

(ν = A)
(ν = B)

. (2)

Here, j represents the unit cell index, and L = 2N is the length of the lattice with N being the number of the
unit cells. ĉ†j,ν (ν = A, B) and ĉj,ν are the creation and annihilation operators at site (j, ν), and n̂j,ν = ĉ†j,ν ĉj,ν is
the corresponding site number operator. The sublattice sites A (B) are subject to a quasiperiodic
modulation with amplitude V1 (V2) and phase ϕ. The modulation period is incommensurate with the
lattice space and characterized by an irrational number β. Note that the non-Hermiticity in this model is
controlled by the nonreciprocal strength α. In the absence of the on-site potential (V1 = V2 = 0) and
non-Hermiticity (α = 0), the model corresponds to the Su–Schrieffer–Heeger model which exhibits two
topologically distinct phases, trivial one with J1 > J2 and nontrivial one with J1 < J2, separated by a
topological phase transition point at J1 = J2. Such phase transition is protected by the chiral symmetry of
the system, which is broken in the presence of on-site disorder. We define a quantity δ = J2/J1 to specify the
strength of hopping dimerization in equation (1). Since the parameter ϕ acts as a global spatial shift of the
periodic potential which does not affect the localization properties, we can simply set ϕ = 0 without loss of
generality. In the numerical calculations throughout the paper, we set L = 610, β = (

√
5 − 1)/2 and J1 = 1,

and the periodic boundary condition (PBC) is assumed unless otherwise specified.

3. Numerical results and analysis

Note that for δ = 1 and V1 = V2 = V, the Hamiltonian (1) reduces to the nonreciprocal AAH model [43].
Calculations based on such non-Hermitian AAH model predicts three types of transitions: (i) complex-real
eigenenergy transition, (ii) localization transition, and (iii) topological phase transition characterized by the
quantized jump of a spectral winding number. Similar results are also presented in the PT -symmetry AAH
model [44, 63, 64]. Here, we focus on the nonreciprocal dimerized lattice (δ �= 1) with staggered
quasiperiodic disorder (V1 = −V2 = V) [62, 65].
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Figure 2. (a) and (b) show the IPR(i) (red dots) and NPR(i) (blue dots) versus V for α = 0 and α = 0.25, respectively. (c) and
(d) show the 〈IPR〉 (red-dashed curves) and the 〈NPR〉 (blue-solid curves) versus V for α = 0 and α = 0.25, respectively. Here,
δ = 4. There are three regions I, II, III for the extended, intermediate, and localized phases, respectively. Vc1, Vc2, Vc3, and Vc4

denote the critical point of extended–intermediate (I–II), intermediate–localized (II–III), localized–intermediate (III–II), and
intermediate–localized (II–III) transitions, respectively.

3.1. Non-Hermitian induced reentrant localization
For most quasiperiodic lattices hosting the single-particle mobility edge, the eigenstates are extended
(localized) in the parameter regime where the disorder strength prior to (beyond) the critical phase.
However, by combining together three additional elements, (a) the non-Hermitian asymmetric hopping
rate, (b) the lattice dimerization, and (c) staggered disorder, the model considered here may exhibit a
distinct localization behavior—the so-called reentrant localization, as detailed in the following.

To quantificationally describe the localization properties, we consider the inverse participation ratio
(IPR) and the normalized participation ratio (NPR) defined respectively as

IPR(i) =

∑
n|un (i)|4[∑

n|un (i)|2
]2 , (3)

NPR(i) =

[
L
∑

n

|un (i)|4
]−1

, (4)

where the superscript i denotes the ith eigenstate of the system and n labels the lattice coordinate. In the
large L limit, the IPR tends to be zero (nonzero) and NPR tends to be nonzero (zero) for the extended states
(localized states).

Figures 2(a) and (b) show the IPR(i) and the NPR(i) as functions of V for α = 0 and α = 0.25,
respectively. Apart from the extended and localized phases, an intermediate region where both IPR(i) and
NPR(i) are merged together takes place. More interestingly, while such a region appears only once for α = 0,
it repeats again for α = 0.25 by further increasing the disorder strength. This reentrant localization
behavior is somehow triggered by the system non-Hermiticity. To make point clearer, we average the IPR(i)

and NPR(i) over all eigenstates to obtain 〈IPR〉 and 〈NPR〉, where the symbol 〈. . .〉 indicates the averaged
value.

In figures 2(c) and (d), we plot the 〈IPR〉 and the 〈NPR〉 as functions of V for α = 0 and α = 0.25,
respectively. Inspecting the values of 〈IPR〉 and 〈NPR〉, three distinct phases can be clearly
identified—extended phase with a vanishing 〈IPR〉 and a finite 〈NPR〉, localized phase with a finite 〈IPR〉
and a vanishing 〈NPR〉, and an intermediate phase where both 〈IPR〉 and 〈NPR〉 are finite (shaded region).
From this definition, the intermediate phase is nothing but a parameter region where the localized and
extended states coexist. The difference between Hermitian case and non-Hermitian case becomes distinct by
increasing V. For the Hermitian case (figure 2(c)), all the states remain localized after the first localization
transition, whereas the intermediate phase for the non-Hermitian case (figure 2(d)) are located within two
separate regions Vc1 < V < Vc2 and Vc3 < V < Vc4, indicating that the localization transition occurs twice.

3
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Figure 3. Phase diagrams of η (a) and 〈r〉 (b) in the α-V plane with δ = 4.

The reentrant localization feature can also be conveniently captured by the quantity [14]

η = log10[〈IPR〉 × 〈NPR〉], (5)

which can be used to clearly distinguish the intermediate region from the extended or localized regions in
the phase diagram. In figure 3(a), we plot η in the α–V plane with δ = 4. It is to be seen that for α < αc1,
the extended and localized phases are respectively located at weak and strong disorder strength V, with an
intermediate region sitting in between. Above the first critical point αc1 (≈0.156), an additional lobe of
intermediate phase appears for larger V, signifying the onsite of the reentrant localization. Further
increasing the asymmetric hopping such that α > αc2 (≈0.31), the two lobes of the intermediate phase
merge.

Another quantity to characterize the localization property is the level statistic [66–68], whose main
feature is encoded in the adjacent gap ratio,

ri =
min (si+1, si)

max (si+1, si)
, (6)

where si+1 = Re (Ei+1) − Re (Ei) denotes the level spacing between the real part of the (i + 1)th and ith
eigenenergies [49, 56, 57]. The average of ri which goes over all the eigenenergies gives rise to
〈r〉 =

∑
nrn/L. As shown in figure 3(b), in the extended phase, 〈r〉 approaches zero, whereas 〈r〉 � 0.4 in

the localized phase, and the intermediate phase appears in the region 0 < 〈r〉 < 0.4. The obtained phase
boundary is consistent with the results shown in figure 3(a).

We emphasize that the reentrant localization is not exclusive to the non-Hermitian dimerized lattice. In
fact, Hermitian system may exhibit similar behavior under some fine-tuned parameter settings [62]. The
asymmetric hopping can, however, largely extend the parameters regime where the reentrant localization
occurs, and therefore offers an additional experiment knob detecting richer physics. In the following, we
first study the spectra structure of our system and then demonstrate the dynamics of wavepacket to
characterize the reentrant localization.

3.2. Spectra structure and skin effect
In general, the non-Hermitian Hamiltonians possess complex energy spectra, whose distribution on the
complex plane is tightly related to the localization property of the system. Especially for systems with
asymmetric hopping, the localization prohibits the imaginary parts of complex eigenenergies and the
extended–localized phase transition is usually accompanied by a real-complex transition of the energy
spectra.

Figure 4(a) shows the energy spectra of the system for different V with {α = 0.25, δ = 4} on the
complex plane. It can be seen that, while all the eigenenergies are complex (purely real) in the extended
phase (localized phase), only part of the eigenenergies are real in the intermediate phase. In figures 4(b) and
(c), we respectively plot the real and imaginary parts of the eigenenergies, together with their corresponding
IPR(i), as functions of V. It is clear that the critical points separating the complex–real, real–complex, and
complex–real transitions coincide with those of the localization transition, and moreover, within each
localized phases, the imaginary parts of the eigenenergies completely disappear as expected. These results
can be further confirmed by investigating the following ratio,

fIm = DIm/D, (7)

where DIm is the number of eigenenergies with nonzero imaginary parts, and D is the total number of
eigenenergies. As shown in figure 4(d), fIm is depicted as a function of α and V. It is found that the curves
(white-dashed curves) separating different values of fIm perfectly reproduces the boundaries between phases

4
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Figure 4. (a) Complex energy spectrum E of the non-Hermitian Hamiltonian (1) with various V. (b) and (c) show the real and
the imaginary part of the eigenvalue spectra versus V for the system with δ = 4. The color code indicates the values of IPR(i).
(d) fIm as a function of α and V with the white-dashed curve being the phase boundary. (e) Phase diagram of the reentrant
localization. The other parameters are the same as those in figure 2(d).

with different localization properties. To be specific, fIm = 1 (fIm = 0) corresponds to extended (localized)
phase, and 0 < fIm < 1 is related to intermediate phase. The spectra distribution on the complex plane,
together with the localization properties, can be summarized in a single diagram shown in figure 4(e).

Non-Hermitian systems with asymmetric hopping may exhibit distinct behaviors under different
boundary conditions. As a notable example, under OBC, all the extended eigenstates turn into skin modes
whose spatial distributions are mainly localized at the sample boundaries. In this section, we investigate the
effect of boundary conditions on the energy spectra and localization properties of the considered model.
Figure 5 shows the energy spectra in the complex plane for different V under both PBC and OBC. As shown
in figure 5(a), in the extended phase, the eigenenergies for PBC and OBC are completely separated, and
moreover, the skin modes are created under OBC (see the inset of figure 5(a)). Results for intermediate
phase are displayed in figures 5(b) and (d). It can be seen that, some of the eigenenergies are complex,
whose eigenstates are extended (skin modes) for PBC (OBC), and the others with localized eigenstates are
purely real. The purely real ones for PBC and OBC overlap in the complex plane, whereas those with
nonzero imaginary parts remain separated. The results for localized phase are plotted in figures 5(c) and
(e). It is clear that the energy spectra under PBC and OBC are the same, implying the localized states are
insensitive to the boundary conditions. From the above discussion, it is found that knowledge about
localization properties can be easily gained by inspecting the spectra structure in the complex plane and
vice versa. Of course, the information of the reentrant localization is also encoded in the spectra structure.

3.3. Wavepacket dynamics
Same as the Hermitian case, the localization property of the non-Hermitian system can also be effectively
captured by the wavepackets dynamics [69, 70]. We then expect that the wavepacket dynamics can help us
detect the reentrant localization.

We study the spreading of wavepacket initialized at the center of the lattice. The state vector at time t is
written as |ψ (t)〉 = e−iĤt |ψ (0)〉, where the initial state assumes |ψ (0)〉 = |δn,0〉. Since Ĥ is non-Hermitian
here, the Schrödinger equation itself does not preserve the norm of |ψ (t)〉. An additional normalization
operation acts as

|ψ (t)〉 = exp(−iĤt) |ψ (0)〉 /‖ exp(−iĤt) |ψ (0)〉 ‖, (8)

is needed in the numerical simulation [51, 54, 55]. Figure 6 shows the time evolution of the wavepacket for
different values of V under OBC. As shown in figure 6(a), when the wavepacket is initialized in the extended
phase, it is ballistically transported to one side of the lattice due to the presence of skin modes on the
corresponding boundary. In the localized phase, on the other hand, the wavepacket is frozen into its initial
position without spreading. The wavepacket propagating in the intermediate phase may exhibit some
singular behavior distinct from those in extended and localized phases. While initially localized for a short
time, it starts to spread and move to the right side of the lattice at certain time.

5
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Figure 5. Energy spectra in the complex energy plane for system with various V under PBC (blue circles) and OBC (red dots).
(a) V = 0.8, (b) V = 2.0, (c) V = 3.0, (d) V = 4.5, and (e) V = 5.5. The insets plot the distribution of eigenstates corresponding
to the eigenvalues labeled by the arrows under OBC. The other parameters are the same as those in figure 2(d).

Figure 6. Evolution of wavepacket initially localized at the center site of the lattice for various V with L = 800. (a) V = 0.8,
(b) V = 2.0, (c) V = 3.0, (d) V = 4.5, and (e) V = 5.5. The other parameters are the same as those in figure 2(d).

Different types of the wavepacket spreading dynamics can be quantitatively classified by the spreading
velocity

v ∼ σ (t)

t
, (9)

where σ (t) =
√∑

nn2|ψn (t)|2 is the mean square displacement. In general, for long enough time, σ (t)

obeys the power law σ (t) ∼ tγ , where γ is the quantum diffusion exponent. Here γ = 1, γ = 1/2, and
γ = 0 corresponds to the ballistic transport, diffusive transport, and localization, respectively. In figure 7,
we plot v as a function a V (red-circles curve). It is clear that v approaches 0 in the localized phases and
takes finite values otherwise. Another related observable is the survival probability, defined as

F (l) = lim
t→∞

∑
−l�n�l

|ψn (t)|2, (10)

which describes the probability of finding the excitation within the region (−l, l) in the long time limit.
Figure 7 (blue-squares curve) plots F (l = 10) as a function of V under OBC. It is shown that F (l = 10)
vanishes in the extended and intermediated phases, whereas in the localized phase F (l = 10) � 1.
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Figure 7. Survival probability F (blue-squares curve) and spreading velocity v (red-circles curve) as a function of V for t = 150.
The other parameters are the same as those in figure 2(d).

Figure 8. Upper panel: the scheme of the electric circuit to simulate Hamiltonian (1). C and Ca(b) denote the capacitance of the
capacitor and INIC for a capacitor, respectively. These two electric devices connect two neighboring nodes, which simulates the
nonreciprocal hopping. The on-site potential is simulated by grounding each nodes with two electric devices with capacitance
Cj,A(B) and C′

j,A(B), respectively. Lower panel: the structure of the INIC.

Therefore, the survival probability provide a feasible experiment route to observe the non-Hermitian
induced reentrant localization.

4. Possible experimental realization

We propose a possible experimental scheme by employing electrical circuits to simulate the reentrant
localization, as shown in figure 8. The nonreciprocal hoppings between neighboring sites can be simulated
by capacitor and the negative impedance converter with current inversion (INIC) [47, 71]. The impedance
of the INIC will be changed from positive to negative if the current orientation through the device is
reversed, or vice versa. The on-site potential is realized by grounding each nodes with appropriate electric
devices. According to Kirchhoff’s law, we have I = JV, where the vector components of I and V correspond
to the current and voltage of each node, respectively. We can use the circuit Laplacian J to simulate the
Hamiltonian. The circuit Laplacian in figure 8 reads

J = iω

⎛
⎜⎜⎜⎜⎜⎝

D1,A − (C − Ca) 0 . . . 0
− (C + Ca) D1,B − (C − Cb) . . . 0

0 − (C + Cb) D2,A . . . 0
...

...
...

. . .
...

. . . . . . . . . . . . DL,B

⎞
⎟⎟⎟⎟⎟⎠ , (11)

7
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Figure 9. (a) and (b) The 〈IPR〉 (a) and 〈NPR〉 (b) as a function of V with L = 754, 1220, 1974 and 2584. (c) and (d) The 〈IPR〉
(c) and 〈NPR〉 (d) as a function of 1/L with V = 2.0, 3.0, 4.5 and 5.5.

where D1,A = C − Ca − C′
1,A + C1,A, DL,B = C + Cb − C′

L,B + CL,B, and Dj,A = 2C + Cb − Ca − C′
j,A + Cj,A

and Dj,B = 2C + Ca − Cb − C′
j,B + Cj,B for 1 < j < L. Here, ω is the frequency of the current. To establish

the mapping between the parameters of two Hamiltonian systems, equations (1) and (11), we set
C ± Ca = J1e±α and C ± Cb = J2e±α. To model the diagonal terms, we can take C′

1,A = C − Ca,
C′

L,B = C + Cb, C′
j,A = 2C + Cb − Ca (1 < j < L), C′

j,B = 2C + Ca − Cb (1 < j < L), Cj,A = V1 cos[2πβ
(2j − 1) + ϕ] and Cj,B = V2 cos[2πβ(2j) + ϕ]. The energy spectrum is obtained from the admittance
spectrum of the circuit and the wavepacket dynamics can be detected by measuring the voltage response of
each node.

5. Discussion

In the above discussions, we have considered the staggered disorder with V1 = −V2 = V. However, this is
not a strict requirement for the existence of reentrant localization. Actually, the reentrant localization still
exists as long as V1V2 < 0. Another point is the finite size effects. To further confirm that the reentrant
localization is independent of the system size, we compute the 〈IPR〉 and 〈NPR〉 for different L, as shown in
figures 9(a) and (b). It is clear that the second intermediate region exists even in the large L limit. The finite
size analysis of 〈IPR〉 and 〈NPR〉 are shown in figures 9(c) and (d), respectively. These results indicate the
reentrant behavior of the localization transition.

Finally, the non-Hermiticity can also be introduced by the complex on-site potential [44, 49]. This can
be achieved by changing ϕ to ϕ+ ih in equation (2). The non-Hermitian parameter h significantly reduces
the reentrant localization regime, which has been discussed in reference [65]. This kind of non-Hermiticity
cannot induce the reentrant localization.

6. Conclusion

To conclude, we have studied the localization transition in a non-Hermitian dimerized lattice with staggered
quasiperiodic disorder. We have demonstrated that the non-Hermiticity with asymmetric hopping can
induce a reentrant localization for a wide range of parameters. By analyzing the spacial distribution of wave
functions and the corresponding eigenenergies, we found that such reentrant localization transition is
accompanied by a multi-complex–real transition. We have also investigated the impacts of boundary
conditions on the localization properties. It is found that the extended states turn into skin modes under
OBC, whereas the localization states are robust to different boundary conditions. Finally, we studied the
wavepacket dynamics in different parameter regimes to characterize and detect the reentrant localization.

8
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Our results can be examined in some experimentally feasible settings such as electric circuits [71], cold
atom systems [42, 72], and photonic systems [73].
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