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Abstract: A non-enzymatic electrochemical sensor, based on the electrode of a chitosan-derived car-
bon foam, has been successfully developed for the detection of glutamate. Attributed to the chelation
of Cu ions and glutamate molecules, the glutamate could be detected in an amperometric way by
means of the redox reactions of chelation compounds, which outperform the traditional enzymatic
sensors. Moreover, due to the large electroactive surface area and effective electron transportation of
the porous carbon foam, a remarkable electrochemical sensitivity up to 1.9 × 104 µA/mM·cm2 and a
broad-spectrum detection range from nM to mM scale have been achieved, which is two-orders of
magnitude higher and one magnitude broader than the best reported values thus far. Furthermore,
our reported glutamate detection system also demonstrates a desirable anti-interference ability as
well as a durable stability. The experimental revelations show that the Cu ions chelation-assisted
electrochemical sensor with carbon foam electrode has significant potential for an easy fabricating,
enzyme-free, broad-spectrum, sensitive, anti-interfering, and stable glutamate-sensing platform.

Keywords: carbon foam electrode; copper ion chelation; glutamate detection; high sensitivity

1. Introduction

Huntington’s disease (HD) is one of the most prevalent neurodegenerative diseases
(NDs), of which the symptoms typically begin in elderly age [1,2]. Similar to other NDs,
the symptoms of HD are generally mild at the start yet become worse over time and
interfere with daily life [3]. Several researchers have realized that the presence of glutamate
in the cerebral cortex is one of the key points for intracellular signal pathways, and the
concentration change of glutamate is possibly related to HD [1,4,5]. In addition, glutamate
is also an important biomarker for other diseases, such as musculoskeletal pain [6],
tumor cells [7], and Alzheimer’s disease [8]. Hence, the detection of glutamate can be
applied in clinical diagnoses as well as symptom monitoring during the treatments of
these diseases [9,10]. The concentrations of glutamate in plasma, serum, cerebral spinal
fluid, urine, whole blood and saliva are in the range of 5–100 µM, 97.4 ± 13.2 µM, 0.5–2 µM,
8.5 (3.3–18.4) µM mM−1 creatinine, 150–300 µM, and 0.232 ± 0.177 µM, respectively [11].
Therefore, the broader the detection range of glutamate is, the better, and the limit of
detection of the non-enzymatic glutamate sensors should be at least lower than 0.05 µM.
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Recent studies have reported a number of electrochemical biosensors for the detection
of glutamate [12–14]. Although enzymatic glutamate biosensors such as electrochemical
sensors using L-glutamate oxidase (GluOx) have demonstrated their capability for gluta-
mate detection, their low sensitivity is problematic due to indirect electron transfer [15].
Moreover, a few other shortcomings of enzymatic detection techniques also need to be
overcome, including the complicated enzyme purification procedures, high fabrication
costs, instability due to enzyme denaturation, and a narrow detection range. In addition, in
terms of the mechanism of glutamate detection in an electrochemical strategy, catalyzing
oxidative deamination of glutamate by the enzymes, and the redox reaction of glutamate to
oxoglutarate, which is ascribed from the catalytic effect of multivalent cationic metal ions,
are the main methods used thus far [16,17]. Unfortunately, the current strategies can only
offer a sensitivity of up to ~102 µA/mM·cm2 and a detection linear range in the µM scale,
which cannot fulfill the detection requirements. In this regard, undoubtedly, developing a
broad-spectrum and highly sensitive glutamate-sensing system is extremely important.

When addressing such formidable challenges of enzymatic detection, researchers have
made great efforts to exploit non-enzymatic sensors, which are called the fourth generation
of electrochemical glutamate sensors. Of the various factors previously highlighted for
establishing a high-performance non-enzymatic glutamate sensor, nanostructured materials
as sensing platforms hold an effective strategy for high sensitivity and broad detective
concentration ranges which ascribe from their large electrochemically active surface area, as
well as a desirable anti-interference, short response time and impressive stability. Therefore,
developing nanostructured materials that boosted non-enzymatic glutamate sensors is an
irresistible trend that could improve the stability and decrease the cost of sensors. For
example, Razeeb et al. firstly developed a non-enzymatic Pt/Ni nanowire array electrode
to detect glutamate in 2012 [16]. Disappointingly, despite the complicated and costly
synthesis process of the precisely structured nanowire, the sensitivity and linear range of
detection were far removed from expectations. Since then, even though the non-enzymatic
glutamate sensors have been developed for ten years, there are still a limited number of
works of literature published [18–23]. Islam et al. reported RuO2-doped ZnO nanoparticles
based on a non-enzymatic glutamate sensor, which reports a high sensitivity of up to
9.6 × 10−5 µA/mM·cm2 and the lowest detection limit of 0.0001 µM [22]. However, the
highest detection limit of this sensor is only 10 µM, which cannot fulfill the detection
requirement in many clinical environments, such as plasma, serum, and whole blood.

Owing to its affinitive chelation with Cu ions, glutamate has been employed as a
chelation agent to enhance the electrodeposition of copper and prevent the precipitation
of copper oxide [24]. This motivated us to develop a Cu ions chelation-assisted system
for high-performance glutamate sensing. Along with our recent advance in the synthesis
technique of porous carbon foams, we were able to directly detect the concentration of
glutamate in an amperometric way. Contributing to the large electroactive surface area
and effective electron transportation of the chitosan-derived carbon foam electrode, a high
electrochemical sensitivity and a broad-spectrum detection range can be achieved. This
study describes the new strategy of a facile and non-enzymatic detection of glutamate,
assisted by chelating with Cu ions, and to the best of our knowledge, it reports the highest
sensitivity and broadest detection range thus far.

2. Experimental
2.1. Chemicals and Apparatus

L-glutamic acid monosodium salt monohydrate (glutamate, ≥98%), copper chloride
(CuCl2, 97%), ascorbic acid (AA), uric acid (UA), dopamine hydrochloride (DA), glucose,
3,4-Dihydroxyphenylacetic acid (DOPAC), chitosan (medium molecule weight), and acetic
acid were purchased from Sigma-Aldrich (USA). Phosphate-buffered saline (10 mM of
PBS, pH = 7.4) was prepared from NaCl, KCl, Na2HPO4, and KH2PO4. All chemicals were
commercially available at analytical grade and were used without further purification.
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2.2. Preparation of Electrode Based on a Chitosan-Derived Carbon Foam

The chitosan-derived carbon foam was synthesized from a chitosan foam, which was
prepared through a temperature-controlled freeze-casting process [25]. In brief, chitosan
powders were dissolved into a 0.3 M acetic acid solution at a chitosan concentration of
10 mg/mL. Subsequently, the solution was frozen at −20 ◦C and lyophilized in a freeze-
dryer at −80 ◦C for 48 h. Afterwards, the resultant chitosan foam was annealed at 900 ◦C
for 2 h to obtain a cylindrical chitosan-derived carbon foam. The carbon foam was cut with
a thickness of 1 mm and attached to a gold plate (as a current collector) with a conductive
carbon tape.

2.3. Characterizations

The morphology of the chitosan-derived carbon foam was examined with field emis-
sion scanning electron microscopy (FE-SEM, HITACHI, SU8010, Tokyo, Japan). The pyrol-
ysis information was obtained from thermal gravimetric analysis (TGA, Mettler Toledo,
TGA 2, Zurich, Switzerland). Focused monochromatized Al Kα radiation (hν = 1486.6 eV)
was utilized for the X-ray photoelectron spectroscopy (XPS, ESCALAB, Thermo-Scientific,
Brno, Czech). All electrochemical measurements were performed using a VSP potentiostat
(Princeton Applied Research, Oak Ridge, TN, USA) at room temperature. A conventional
three-electrode system consists of the carbon foam electrode, a platinum plate and Ag/AgCl
(saturated KCl solution) as the working, counter and reference electrodes, respectively. The
electrochemical performance of the carbon foam electrode on glutamate was studied via
cyclic voltammetry (CV) between −0.55 and 0.65 V at a scan rate of 100 mV/s in 10 mM
PBS containing 2, 4, and 6 mM CuCl2, respectively. The amperometric responses were
operated by chronoamperometry (CA) in 10 mM PBS containing 4 mM CuCl2 at the excited
potentials of 0.03 V and 0.31 V, obtained from the previous CV.

3. Results and Discussion
3.1. Chitosan-Derived Carbon Foam Electrode

The chitosan-derived carbon foam was synthesized from a precursor of a chitosan
foam made through a freeze-casting process, as illustrated in Figure S1 from Supplementary
Materials [25]. The chitosan foam exhibited a porous cellular structure, with the chitosan
chains connected with each other, as shown in Figure 1a. After the subsequent pyrolysis
process to prepare the carbon foam, the cellular structure kept well while the pore size
obviously shrinks (Figure 1b). The change in the pore size was attributed to the weight
loss of the chitosan, where the weight after pyrolysis at 900 ◦C only remained at 22.43%
(Figure 1c). The decomposition of chitosan happened at the temperature of ~307 ◦C and the
weight loss occurred steadily at 900 ◦C, where the porous carbon foam was well synthesized.
XPS was checked to precisely demonstrate the N-doping in the carbon foam and chitosan
foam, as shown in Figure 1d and Figure S2 from Supplementary Materials. The content
of nitrogen in the carbon foam was 5.65%, which was derived from the nitrogen groups
in chitosan foam and confirmed from the N 1 s peak in the wide scan of XPS spectra. The
deconvoluted N 1 s peak of the N-doped carbon foam shows two distinguished peaks at
398.2 and 401.1 eV, which are attributed to pyridinic N and graphitic N, respectively [26–28],
indicating the successful N-doping in the carbon foam during the pyrolysis process.



Nanomaterials 2022, 12, 1987 4 of 12Nanomaterials 2022, 12, x 4 of 12 
 

 

 
Figure 1. (a) SEM image of chitosan foam; (b) SEM image of chitosan-derived carbon foam; (c) TGA 
thermogram of weight loss and its derivative of chitosan foam; (d) X-ray photoelectron spectroscopy 
(XPS) wide scan spectrum and deconvoluted spectra of N 1 s (inset) of carbon foam. 

3.2. The Electrochemical Characterization 
Porous nanocarbon materials, such as carbon nanotubes, have been widely used as 

biosensor electrodes for the detection of water-soluble species [29]. In our study, the 
highly porous chitosan-derived carbon foam was utilized as an electrode for glutamate 
detection. Figure 2a showed the cyclic voltammograms of the electrode in 10 mM PBS 
containing 100 μM of glutamate and 4 mM CuCl2 at different potential sweep rates in a 
wide range of 20–600 mV/s. The dependence of the anodic and cathodic peak currents of 
glutamate on the scan rates (ν) was depicted in Figure 2b,c. As shown in these figures, the 
currents of both the oxidation and reduction peaks increased with the increasing scan 
rates and the peak-to-peak separations also increased simultaneously. The linear regres-
sion equations were obtained as follows: 

Peak 1: Ipa = 7.55 × 10−4 ν + 1.1625, R2 = 0.9938 

Ipc = −4.84 × 10−4 ν − 0.3570, R2 = 0.9916 

Peak 2: Ipa = 0.0039 ν + 0.3239, R2 = 0.9976 

Ipc = −0.0029 ν − 0.2542, R2 = 0.9859 

The perfect linear relationship between the current and scan rates indicates a depo-
sition-controlled process (also called the surface-controlled process), which is ideal for 
glutamate detection [30–32]. 

The electrochemical properties of our carbon foam electrode and a gold electrode 
were evaluated by electrochemical impedance spectroscopy (EIS) in Figure 2d. The elec-
troactive surface areas of these two electrodes were estimated from EIS data and presented 
in Table S1 [33,34]. The Rs, Zw, Ret, and C in the equivalent circuit represent the solution 
resistance, the Warburg diffusion resistance, the electron-transfer resistance, and the dou-
ble-layer capacitance, respectively [35]. Moreover, the electrochemically active specific 
surface area (SA) can be calculated from the specific capacitance of the electrochemical 
double-layer by means of the relationship SA = C/Cd, where Cd is a constant value of 20 
μF/cm2 [36]. As shown in Table S1, the calculated SA of the carbon-based electrode is 11.66 
cm2/g, which is about 12 times higher than the commonly used gold electrode (0.98 cm2/g). 
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Figure 1. (a) SEM image of chitosan foam; (b) SEM image of chitosan-derived carbon foam; (c) TGA
thermogram of weight loss and its derivative of chitosan foam; (d) X-ray photoelectron spectroscopy
(XPS) wide scan spectrum and deconvoluted spectra of N 1 s (inset) of carbon foam.

3.2. The Electrochemical Characterization

Porous nanocarbon materials, such as carbon nanotubes, have been widely used as
biosensor electrodes for the detection of water-soluble species [29]. In our study, the highly
porous chitosan-derived carbon foam was utilized as an electrode for glutamate detection.
Figure 2a showed the cyclic voltammograms of the electrode in 10 mM PBS containing
100 µM of glutamate and 4 mM CuCl2 at different potential sweep rates in a wide range of
20–600 mV/s. The dependence of the anodic and cathodic peak currents of glutamate on
the scan rates (ν) was depicted in Figure 2b,c. As shown in these figures, the currents of
both the oxidation and reduction peaks increased with the increasing scan rates and the
peak-to-peak separations also increased simultaneously. The linear regression equations
were obtained as follows:

Peak 1: Ipa = 7.55 × 10−4 ν + 1.1625, R2 = 0.9938

Ipc = −4.84 × 10−4 ν − 0.3570, R2 = 0.9916

Peak 2: Ipa = 0.0039 ν + 0.3239, R2 = 0.9976

Ipc = −0.0029 ν − 0.2542, R2 = 0.9859

The perfect linear relationship between the current and scan rates indicates a deposition-
controlled process (also called the surface-controlled process), which is ideal for glutamate
detection [30–32].

The electrochemical properties of our carbon foam electrode and a gold electrode were
evaluated by electrochemical impedance spectroscopy (EIS) in Figure 2d. The electroactive
surface areas of these two electrodes were estimated from EIS data and presented in
Table S1 [33,34]. The Rs, Zw, Ret, and C in the equivalent circuit represent the solution
resistance, the Warburg diffusion resistance, the electron-transfer resistance, and the double-
layer capacitance, respectively [35]. Moreover, the electrochemically active specific surface
area (SA) can be calculated from the specific capacitance of the electrochemical double-layer
by means of the relationship SA = C/Cd, where Cd is a constant value of 20 µF/cm2 [36].
As shown in Table S1, the calculated SA of the carbon-based electrode is 11.66 cm2/g, which
is about 12 times higher than the commonly used gold electrode (0.98 cm2/g). It indicates
that the chitosan-derived carbon foam electrode can effectively provide a large active
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surface area, and its intrinsic porous structure can enhance the mass transport of glutamate
and decrease the diffusion pathway to reach excellent electrochemical performance for
glutamate detection.
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Figure 2. (a) Cyclic voltammograms for 4 mM CuCl2 chelation agent in 100 µM glutamate in PBS at
scan rates of 20, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, and 600 mV/s; (b) currents of redox
peak 1 obtained from (a) as functions of the scan rates; (c) currents of redox peak 2 obtained from
(a) as functions of the scan rates; (d) Nyquist plots of carbon-based electrode and flat gold electrode
in 10 mM PBS containing 100 µM glutamate and 4 mM CuCl2 solution.

3.3. The Sensing Performances

Figure 3a showed the CV response of the carbon-based electrode when detecting
glutamate in 10 mM PBS (pH = 7.4) containing 4 mM CuCl2 at the applied potentials
between −0.55 and 0.65 V with a scan rate of 100 mV/s. It is worth noting that, without
the existence of glutamate, the CV plot of 4 mM CuCl2 presents no obvious peak compared
with that of the glutamate solutions with different concentrations. While at the appearance
of glutamate, the glutamate would chelate with Cu2+, thereby forming [CuGlu2]2- [24,37].
Hence, the redox peaks are ascribed from the electro-oxidation and electro-reduction of
[CuGlu2]2-. As shown in Figure 3b,c, the currents are proportional to the logarithmic
concentration of glutamate over the range of 0.001 to 1000 µM for peaks 1 and 2 at the
potential of 0.03 and 0.31 V, respectively. The linear regression equations of the anodic peaks
are Ipa1 = 0.1545 log C + 0.8805, R2 = 0.9980 and Ipa2 = 0.0981 log C + 0.5736, R2 = 0.9976,
with the relative standard deviation (RSD) of 3.15% and 2.32%, respectively. The anodic
peaks represent the oxidation of the copper chelate compounds, while the cathodic peaks
around 0.17 V and −0.28 V are assigned to the reduction of the chelate compounds.

For confirming the good performance of the carbon foam electrode, the gold plate
was undertaken as the electrode for glutamate detection, as shown in Figure S3 (from
Supplementary Materials). It can be observed that the current obtained from the porous
carbon electrode is 10 times higher than that of using a gold plate electrode at the glutamate
concentration of 1 mM, and the glutamate can only be detected under the high glutamate
concentration of 0.5–2 mM. The good performance of the carbon electrode is ascribed to the
high specific surface area of the carbon foam, which can supply plenty of reaction sites and
increase the electrochemical signal. Moreover, the chitosan-derived carbon foams possessed
the intrinsic N-doped nature (Figure 1d) [38–40], which can also improve the hydrophilicity
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of carbon foam electrode and the affinity of the electrode and glutamate, resulting in a
broad glutamate detection range using the carbon foam electrode. In addition, Figure S4
(from Supplementary Materials) exhibits the CV curve of the 4 mM CuCl2 aqueous solution
using the carbon foam electrode and Figure S5 (from Supplementary Materials) shows the
detection of glutamate without the CuCl2. No obvious redox peak can be observed in the
CV curve of sole Cu2+ and the currents of the anodic peak exhibit no obvious difference
with the increasing glutamate concentration without Cu2+, demonstrating the effectiveness
of the Cu2+ chelation-assisted detection system.

In order to ensure the effectiveness of the detection method at 4 mM CuCl2, gluta-
mate detection was also conducted at 2 and 6 mM CuCl2, as shown in Figure S6 (from
Supplementary Materials). Under the condition of 2 mM CuCl2, only peak 2 existed in the
plots at various concentrations of glutamate, while both peaks 1 and 2 appeared when the
concentration of CuCl2 was 6 mM. The currents in peak 1 show a good linear relation with
the log C (R2 = 0.9926) for the detection of glutamate from 0.01 to 1000 µM, however, the
R2 at 4 mM CuCl2 is higher than that in 6 mM CuCl2, indicating a better performance for
the glutamate detection than 2 and 6 mM CuCl2.
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Figure 3. (a) Cyclic voltammograms of carbon-based electrode for the detection of the different
concentrations of glutamates (0, 0.001, 0.01, 0.05, 0.1, 1, 10, 100, 1000, 1500, and 2000 µM) in 10 mM
PBS containing 4 mM CuCl2; (b) calibration curve of Ip vs. log C of anodic peak 1; (c) calibration
curve of Ip vs. log C of anodic peak 2.

3.4. The Sensing Mechanisms

In order to understand the mechanism of the glutamate detection resulting from the
complex formation of Cu ions, the electron-transfer mechanism during the electrochemical
reactions was investigated. A good linear relationship between the potentials (Ep) of redox
peaks and the logarithm of the scan rates (ln ν) were plotted and shown in Figure 4a,b.
Laviron derived general expressions for the linear potential scan voltammetric response
are as follows [41,42]:

Epa = E0 + A ln ν (1)

Epc = E0 + B ln ν (2)

where the A = RT/(1−α)nF, and the B = RT/αnF. Epa and Epc are the anodic and cathodic
peak potentials, respectively, and the α, Ks, n and ν are the electron-transfer coefficient, the
apparent charge-transfer rate constant, number of electron transfer, and potential sweep
rate, respectively. From these expressions, it is possible to determine the α by measuring the
variation of the peak potentials with scan rates and the n can be determined for the electron-
transfer number between the electrode and the surface-deposited layer by measuring the
Ep values (R = 8.314 J/K·mol, T = 298 K, F = 96,485 C/mol). Plots of the Epa and Epc as
functions of the ln ν yield two straight lines with slopes equal to RT/(1− α)nF and RT/αnF
for the anodic and cathodic peaks, respectively. Figure 4c shows the plot of Ep versus ln
ν with slopes equal to 0.0650 and −0.0490 for anodic and cathodic peaks 1, respectively.
Using the slopes of plots, the value of α was specified as 0.57 and the electron-transfer
number was 1 (0.9194). Figure 4d shows the plot of Ep versus ln ν with slopes equal to
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0.0748 and −0.04083 for anodic and cathodic Peaks 2, respectively, thereby the value of α
was specified as 0.648 and the electron-transfer number is 1 (0.9722). Hence, all the electron
transfers of these two redox peaks are both 1.
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During the cyclic voltammetric process, dark brown copper appears on the carbon
foam electrode at the end of the cathodic process. According to this phenomenon and the
calculated electron-transfer number, the reaction mechanism could be speculated as follows:

Cathodic peak 1: [CuII(Glu)2]2− + e− → [CuI(Glu)x]n (3)

Cathodic peak 2: [CuI(Glu)x]n + e− → Cu0 + Glu2− (4)

Anodic peak 1: Cu0 + Glu2− − e− → [CuI(Glu)x]n (5)

Anodic peak 2: [CuI(Glu)x]n − e− → [CuII(Glu)2]2− (6)

where the [CuI(Glu)x]n stands for the complex formed between Glu2− and Cu+ [24,43]. Under
the appearance of copper ions, chelation compounds of [CuII(Glu)2]2− are formed [44,45], and
subsequently, the intermediate [CuI(Glu)x]n and final product Cu0 are synthesized on the
carbon foam electrode after the cathodic peak 1 and peak 2, respectively [24,46]. Therefore,
in the anodic process afterwards, glutamate interacts with CuI or CuII to form the chelation
compounds, in which the glutamate can be detected in an amperometric way due to the
redox reactions of Cu.

The amperometric sensing performances of glutamate were carried out under the oxi-
dation potentials of +0.03 V and +0.31 V, respectively. Figure 5a showed typical amperomet-
ric response curves of the successive addition of 0.001, 0.01, 1, 5, 50, 100, 200, and 1000 µM
of glutamate in 10 mM PBS containing 4 mM CuCl2 for the carbon foam electrode. The
current response increased directly after adding the glutamate and achieved a steady-state
within 10 s, suggesting the fast rate of electron transfer between glutamate and our pro-
posed electrode. In the calibration curves (Figure 5b), the carbon-based electrode provides a
linear range of glutamate from 0.001 to 1000 µM. The linear regression equations are [31,47]:
j (mA/cm2) = 0.0190 C (µM) + 2.6493, R2 = 0.9943 for 0.03 V; and j (mA/cm2) = 0.0054 C
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(µM) + 0.2106, R2 = 0.9928 for 0.31 V on carbon foam electrode. Compared with the other
reported electrochemical sensors for the detection of glutamate in Table 1, the carbon-based
sensor in this study exhibits the highest sensitivity (1.9 × 104 µA/mM·cm2) as well as the
comparable detection limit (0.001 µM) and linear range (0.001–1000 µM).

Table 1. Comparison of the performance of different sensor platforms for glutamate detection.

Electrodes Enzyme Linear Range
(µM)

Limit of
Detection (µM)

Sensitivities
(µA/mM·cm2) Reference

GlutOx/cMWCNT-AuNPs-
CHIT/Au GlutOx 5–500 1.6 155 [17]

GlutOx/Pt-SWCNT/PAA GlutOx 0.05–1600 0.0046 27.4 [31]
PU/GlutOx/MWCNT/PPy/Pt GlutOx 0.3–500 0.3 0.384 [48]

GlutOx/APTES/ta-C/Pt GlutOx 10–500 10 2.9 [49]
GlutOx/BDD/Pt GlutOx 0.5–50 0.35 24 [50]

Glutamate
dehydrogenase/CNT/GCE

Glutamate
dehydrogenase 2–225 2 0.71 [51]

GlutOx/ta-C/CNFs GlutOx 20–500 0.000767 18.8 [12]
GlutOx/ZnO nanorods/PPy/PGE GlutOx 0.02–500 0.18 N/A [52]

GlutOx/CeO2/TiO2/CHIT/o-
PD/Pt GlutOx 5–90 0.594 793 pA/µM [53]

Pt/Ni nanowire array No enzyme 500–8000 135 65 [16]
NiO/chit/GCE No enzyme 1000–8000 272 11 [18]
Ni@NC/GCE No enzyme 0.005–500 135 - [20]

GluBP/Au NP/SPCE No enzyme 0.1–0.8 0.15 - [21]
ZnO/RuO2 NPs/GCE No enzyme 0.0001–10 9.6 × 10−5 5.42 × 103 [22]

MWCNT/Ti-doped ZnO/GCE No enzyme 100–1000
1000–10,000 11.59 25

4.7 [23]

Cu2+ assisted carbon foam No enzyme 0.001–1000 0.001 1.9 × 104 This work

Selective electrochemical detection of glutamate is a challenging task because the
oxidizable and electroactive interferents easily interfere with the amperometric measure-
ment of glutamate [51]. To simulate an environment of glutamate in blood, 200 µM
of glutamate solution (150–300 µM of glutamate in whole blood) is used to character-
ize the selectivity and anti-interference ability of the carbon foam-based sensing system.
The interference experiment was carried out by the successive addition of 200 µM of
glutamate and a high concentration of 50 µM of different interferent species, including
3,4-Dihydroxyphenylacetic acid (DA), ascorbic acid (AA), uric acid (UA), glucose, and
dopamine hydrochloride (DH). The current in Figure 5c showed desirable stability under
the addition of interferent species. In addition, the current densities obtained at 200 µM
and 400 µM of glutamate are 6.84 mA/cm2 and 9.80 mA/cm2 (Figure 5c), exhibiting devia-
tions of 6% and 4% from the theoretical values calculated from the equation in Figure 5b,
respectively. It indicates satisfactory consistency and repeatability of our glutamate-sensing
system. Furthermore, these results demonstrate that the carbon foam-based glutamate
sensor possesses satisfactory anti-interference ability and selectivity.

In addition, the stability of our non-enzymatic glutamate detection system was also
evaluated from the CA performance for three different electrodes with a relative standard
deviation (RSD) of 3.2% in 10 mM PBS containing 4 mM CuCl2 and 100 µM of glutamate
over one month. The carbon foam-based electrode was stored at room temperature and
tested every five days. The current response toward 100 µM of glutamate retained 98.7%
of the initial value after 30 days, as shown in Figure 5d. Hence, our non-enzymatic
glutamate sensor exhibited impressive stability, which could be essential for glutamate-
sensing applications.
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tamate stock solution at +0.03 V and +0.31 V; (b) plots of the response currents from (a) against
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addition of 200 µM glutamate, 50 µM of different interference species (3,4-Dihydroxyphenylacetic
acid (DA), ascorbic acid (AA), uric acid (UA), glucose, and dopamine hydrochloride (DH) in 10 mM
PBS containing 4 mM CuCl2 at 0.03 V; (d) long-term stability of the carbon foam electrode measured
in 30 days.

4. Conclusions

In summary, we developed a novel Cu ion chelation-assisted non-enzymatic gluta-
mate detection system on the porous chitosan-derived carbon foam electrode, which was
pyrolyzed from a chitosan foam fabricated through a temperature-controlled freeze-drying
process. The porous morphology of the electrode provided a large electroactive surface
area, which was 12 times larger than the commonly used gold plate electrode, bringing
into a low limit of detection (0.001 µM), a broad detection rate of 106 µM scale (0.001 to
1000 µM) and a high sensitivity of up to 1.9 × 104 µA/mM·cm2. The sensing mechanism of
the Cu ions chelation-assisted system was finely investigated and proved to be on account
of the redox reactions of the chelation compounds of Cu ions and glutamate. Excellent
selectivity was also found for glutamate sensing upon various interferent reagents and the
sensing performance of our glutamate sensor retains up to 98.7% after 30 days of regular
use. We believe our developed non-enzymatic detection system can achieve a low-cost,
facile, sensitive, and broad-spectrum glutamate sensor and can also offer new insights into
the detection of other reagents.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano12121987/s1, Figure S1: Scheme of the synthesis process of chitosan-derived graphitic
carbon foams, Figure S2: XPS wide scan spectrum (a) and deconvoluted spectra of N 1 s (b) of
chitosan foam, Figure S3: (a) Cyclic voltammograms of flat gold electrode for the detection of
different concentrations of glutamates (0.5 mM, 1 mM, 1.5 mM, and 2 mM) and carbon electrode for
the detection of 1 mM glutamate in 10 mM PBS containing 4 mM CuCl2. The scan rate is 20 mV/s,
(b) calibration curve of peak currents of anodic peak in (a) vs. log C, Figure S4: CV curve of the 4 mM
CuCl2 aqueous solution measured using the carbon foam electrode, Figure S5: Cyclic voltammograms
of carbon foam electrode for the detection of the different concentrations of glutamates (0.5 mM, 1 mM,
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1.5 mM, and 2 mM) in 10 mM PBS without CuCl2, Figure S6: (a) Cyclic voltammograms of carbon-
based electrode for the detection the different concentrations of glutamates in 10 mM PBS containing
2 mM CuCl2; (b) calibration curve of Ip vs. log C of anodic peak in (a); (c) cyclic voltammograms
of carbon-based electrode for the detection of the different concentrations of glutamates in 10 mM
PBS containing 6 mM CuCl2; (d) calibration curve of Ip vs. log C of anodic peak 1 in (c), Table S1:
EIS data collected from the carbon foam electrode and gold electrode: Ret, C, and SA represent the
electron-transfer resistance, the double-layer capacitance, and the surface area, respectively.
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