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Non-Hermiticity-induced topological transitions in long-range Su-Schrieffer-Heeger models
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The interplay of topology and non-Hermiticity opens a new avenue for engineering novel topological matter
and generating various unique effects. Here, we demonstrate that the non-Hermiticity can induce rich topological
phase transitions in a long-range Su-Schrieffer-Heeger model. We find that the non-Hermiticity is able to drive
topological transitions between different winding numbers: ν = 0 → 1 and 2 → 1. These topological phase
transitions can be characterized by the bulk band gap, edge states, complex Zak phase, and hidden Chern number.
Interestingly, by extending to more general long-range Su-Schrieffer-Heeger lattices, the non-Hermiticity can
drive exotic transitions associated with the corresponding Hermitian topological phases. Finally, we demonstrate
the experimental feasibility of our scheme in an electric circuit system. Our paper could be useful for the study
of non-Hermitian topological states and their device applications.
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I. INTRODUCTION

As a complex extension of conventional Hermitian sys-
tems, non-Hermitian systems have garnered great interest both
theoretically and experimentally in recent years [1–5]. Be-
sides being ubiquitous in nature, the non-Hermitian systems
exhibit some hallmark features such as nonorthogonal eigen-
vectors [6,7], exceptional points [8,9], and unconventional
localization [10,11]. Remarkably, there have been consid-
erable efforts in exploring the interplay of non-Hermiticity
and topological physics [12,13]. The topological open sys-
tems described by non-Hermitian Hamiltonians exhibit a
rich variety of unique properties with no counterpart in
the traditional Hermitian case, including novel topological
invariants [14–17], non-Hermitian skin effect [18–25], non-
Bloch bulk-edge correspondence [26–33], Weyl exceptional
rings [34,35], and novel topological classifications with new
symmetries [36–39]. Moreover, the unconventional and in-
triguing phenomena of non-Hermitian topological systems
have profound applications in topological lasing [40,41], en-
hanced sensing [42–44], and topological light funneling and
steering [45,46].

Recently, due to the flexible tunability and fine controlla-
bility of gain and loss in photonic lattices, electrical circuits,
and ultracold atoms, non-Hermitian topological phases with
complex on-site potential have been considered. A paradig-
matic example is the non-Hermitian Su-Schrieffer-Heeger
(SSH) model with PT symmetry, where the non-Hermiticity
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has no effect on the topological phases [47–50]. Intrigu-
ingly, a transition from trivial to topological nontrivial phases
can emerge solely by controlling gain and loss possess-
ing specific symmetry. Such topological phase transitions
(TPTs) driven by non-Hermiticity have been explored in
one-dimensional topological insulators [51–55], Chern in-
sulators [56,57], higher-order topological insulators [58,59],
and quantum spin Hall insulators [60], where the topological
phases are divided into trivial and nontrivial ones. A natural
question is what topological phase transitions can be induced
by the non-Hermiticity in topological systems with rich topo-
logical phases (e.g., high winding number).

In this paper, we address this question by considering a
non-Hermitian long-range SSH lattice, in which the complex
on-site potentials and the third nearest-neighbor hopping are
included. We find that the non-Hermiticity can drive topolog-
ical transitions between different winding numbers: ν = 0 →
1 and 2 → 1. The topological phase transitions are character-
ized by the closing and reopening of the band gap, topological
edge states, complex Zak phase, and hidden Chern number.
By extending to the more general long-range SSH model,
it is found that the non-Hermiticity drives exotic topologi-
cal transitions associated with the topological phases of the
corresponding Hermitian case. Finally, a simple experimental
scheme based on electric circuits is proposed. Our paper could
be useful for exploring non-Hermitian topological states and
their device applications.

II. MODEL AND HAMILTONIAN

As shown in Fig. 1(a), we consider a one-dimensional
extended SSH model with staggered nearest-neighbor
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FIG. 1. (a) Schematic of the non-Hermitian SSH model with
staggered nearest-neighbor hoppings J1 (straight lines) and J2 (wavy
lines), and long-range hopping J0 (red dashed lines). The open circles
(filled circles) indicate positive (negative) imaginary parts, ±ig. Each
unit cell (shaded region) contains four sites labeled by {1, 2, 3, 4}.
(b) Phase diagram of the Hermitian long-range SSH model with
g = 0, i.e., the Hamiltonian (2), where J1 = 1 is set as the energy
unit. The winding number of each phase has w = {0, 1, 2}.

hoppings J1 and J2, and long-range hopping J0 that pre-
serves chiral symmetry. Each unit cell contains four sites
(labeled by {1, 2, 3, 4}) with the complex on-site potentials
(ig,−ig,−ig, ig). The corresponding Hamiltonian is written
as

H = HS + HN (1)

with

HS =
L∑
j

[J1(a†
j,1a j,2+a†

j,3a j,4)+J2(a†
j,2a j,3+a†

j,4a j+1,1)

+ J0(a†
j,1a j−1,2 + a†

j,3a j−1,4) + H.c.] (2)

and

HN = ig
L∑
j

(a†
j,1a j,1 − a†

j,2a j,2 − a†
j,3a j,3 + a†

j,4a j,4), (3)

where a†
j,l (l = 1, 2, 3, 4) and aj,l are the creation and annihi-

lation operators at site l in the unit cell j, and L = 4N is the
length of the lattice with N being the number of the unit cells.
H S and HN describe the Hamiltonians of the long-range SSH
model and the non-Hermitian term, respectively.

In the momentum space, the Hamiltonian (1) is rewritten
as

H (k) =

⎛
⎜⎜⎜⎝

ig hk 0 J2e−ik

h∗
k −ig J2 0

0 J2 −ig hk

J2eik 0 h∗
k ig

⎞
⎟⎟⎟⎠, (4)

with hk = J1 + J0e−ik . Note that H (k) satisfies a pseudo-anti-
Hermiticity, ηH†(k)η−1 = −H (k) with η = σ0 ⊗ σz. This
symmetry induces a nontrivial topology with pairwise eigen-
values E (k) = −E∗(k). In addition, it also possesses particle-
hole symmetry with ηH∗(k)η−1 = −H (−k), time-reversal
symmetry T+HT −1

+ = H (−k) with T+ = σ0 ⊗ σ0, and anti-
PT symmetry (PT )H (k)(PT )−1 = −H (k) with P = iσx ⊗
σy and T being the complex conjugation operator. Here, σx,y,z

are the Pauli matrices and σ0 is the 2 × 2 identity matrix.
Therefore, the system belongs to the BDI class in the non-
Hermitian Altland-Zirnbauer topological classification [36].
The corresponding topological invariant is governed by the
winding number ν.

In the Hermitian case (i.e., g = 0), the Hamiltonian (2)
reduces to the long-range SSH model with HS(k) =
hx(k)σx + hy(k)σy, where hx(k) = J1 + J2 cos k + J0 cos(2k)
and hy(k) = J2 sin k + J0 sin(2k). The topological proper-
ties can be characterized by the winding number w =

1
2π

∫ π

−π
dk hx∂khy−hy∂khx

h2
x+h2

y
[49]. Figure 1(b) shows the topological

phase diagram as functions of J2/J1 and J0/J1. It can be found
that three topological phases can be clearly identified with
w = 0, 1, and 2. Compared with the standard SSH model
which has two phases with w = 0 and 1, the long-range hop-
ping provides richer topological phases with higher winding
number. According to the bulk-boundary correspondence, the
number of pairs of edge states corresponds to w, and the pairs
are protected by the chiral symmetry.

In previous studies of non-Hermitian driven topological
transition, the emergence of non-Hermitian topological phases
as well as the corresponding Hermitian topological phases are
divided into trivial and nontrivial ones. In a one-dimensional
system, it was shown that the winding number transitions
from ν = 0 to 1 as the non-Hermitian parameter increases.
Yet, the effects of non-Hermiticity in topological systems
with rich topological phases (e.g., w = 0, 1, 2) have not been
explored. In the following, we focus on the interplay of the
non-Hermiticity with anti-PT symmetry and the long-range
SSH model admitting multiple topological phases, and show
that the non-Hermiticity can induce rich topological phase
transitions.

Note that the non-Hermitian long-range SSH model con-
sidered here does not exhibit the non-Hermitian skin effect.
Thus, the topological properties can be characterized by the
non-Hermitian extension of the Zak phase in the Brillouin
zone [48]. Hereafter, we set J1 = 1 as the energy unit for
simplicity.

III. NON-HERMITICITY-INDUCED TOPOLOGICAL
TRANSITIONS

Before discussing the topological phase transition, we con-
sider the eigenvalues of the Hamiltonian (4), which is given as

E±,±(k) = ±
√

A − g2 ± 2J2

√
B − g2, (5)

where A = J2
1 + J2

2 +J2
0 + 2J0J1 cos k and B = J2

1 cos2(k/2)+
J2

0 cos2(k/2) + 2J0J1 cos(k/2). The bands E+,+ (E−,+) and
E+,− (E−,−) touch at k = ±π when g = 0. Particularly, the
energy gap between the bands E+,− and E−,+ at k = 0 is

012211-2



NON-HERMITICITY-INDUCED TOPOLOGICAL … PHYSICAL REVIEW A 106, 012211 (2022)

FIG. 2. Band structures of the Hamiltonian (4) for g = 0 (a), g =
1 (b), g = √

5 (c), and g = 3 (d), when J0 = 2 and J2 = 2. The gray
and red dashed curves indicate the real and imaginary parts of the
energy spectrum, respectively. We have taken J1 = 1 as the unit of
energies.

obtained as

�E = 2J2 − 2
√

(J0 + J1)2 − g2, (6)

which is a function of the non-Hermitian parameter g. It

follows that �E vanishes when g =
√

(J0 + J1)2 − J2
2 . More-

over, all eigenvalues become complex with nonzero imaginary
part when g > J0 + J1. This non-Hermitian tuned band gap
implies the existence of topological phase transition.

A. Topological transition with ν = 2 → 1

We start by considering the contribution of the non-
Hermiticity in the high-winding number phase by choosing
J0 = 2 and J2 = 2, which is located in the w = 2 topological
phase without gain and loss, as shown in Fig. 1(b). Figure 2
shows the band structures for different g. It is clear that the
edge degenerate points at k = π with g = 0 [Fig. 2(a)] turn
into exceptional points in the presence of the non-Hermitian
parameter g [Fig. 2(b)], which is associated with the anti-PT
symmetry. With the increasing of g, the exceptional points
gradually move toward the center of the Brillouin zone. At the
critical value g = √

5 [Fig. 2(c)], the middle two bands (E+,−
and E−,+) touch around Re(E ) = 0 at k = 0, and reopen for
g >

√
5. This implies a topological transition occurs at this

critical point. Further increasing g, the pairs of upper and
lower bands overlap and have the split imaginary bands when
g > 3 [Fig. 2(d)]. These critical points are consistent with the
analytical results.

For a deeper insight into the topological phase transition,
we plot the energy spectrum as a function of g, as shown
in Figs. 3(a) and 3(b). It can be seen that as g increases,
the bulk gap closes and reopens at the critical point g ≈ √

5
[black dashed line in Fig. 3(a)], indicating the emergence
of a topological phase transition. Notably, the midgap states
always exist. To further illustrate this point, we plot the

FIG. 3. The real (a) and imaginary (b) energy spectra of the
Hamiltonian (1) as functions of g, when J0 = 2 and J2 = 2. (c) The
real energy spectra with g = 1. The inset shows the correspond-
ing imaginary eigenvalue. The red dots denote the eigenstates with
Re(E ) = 0. (d) The probability distributions of the zero-energy edge
states corresponding to (c). (e) and (f) show the same as (c) and
(d) but g = 3. Here, we choose N = 20.

energy spectrum for g = 1 in Fig. 3(c). There are four states
with Re(E ) = 0 in the gap. A pair of degenerate states sat-
isfies Im(E ) > 0 and another one satisfies Im(E ) < 0. The
corresponding probability distributions of these two pairs of
states are shown in Fig. 3(d), which are localized at the
boundary of the lattice. A remarkable difference is that the
edge states with Im(E ) > 0 are strongly localized at the two
end sites while the edge states with Im(E ) < 0 are not. Fig-
ures 3(e) and 3(f) show the energy spectrum and the midgap
edge states distribution for g = 3, respectively. In this case,
there are only two degenerate states in the gap. Each state
with Re(E ) = 0 is localized at the left or right end of the
lattice. These indicate that the non-Hermitian parameter g
indeed leads to a topological phase transition from ν = 2 to
1, according to the bulk-boundary correspondence. Note that
the non-Hermitian winding number ν is further illustrated in
Sec. III C.

B. Topological transition with ν = 0 → 1

We further assess how the non-Hermiticity affects the
topological properties in the trivial phase with w = 0. For
simplicity, we choose J0 = 0.2 and J2 = 0.5 as an example.
From Eq. (6), the bulk gap between the bands E+,− and E−,+
closes at k = 0, when g = √

1.19. With a larger g > 1.2, all
eigenvalues become complex with nonzero imaginary part.
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FIG. 4. Band structures of the Hamiltonian (4) for g = 0.5 (a),
g = √

1.19 (b), g = 1.2 (c), and g = 2 (d), when J0 = 0.2 and J2 =
0.5. The gray and red dashed curves indicate the real and imaginary
parts of the energy spectrum, respectively.

These results are further clarified in Fig. 4, which indicates
the existence of a topological phase transition at the critical
point g = √

1.19.
In Figs. 5(a) and 5(b), we plot the real and imaginary

parts of the energy spectrum as functions of g. As we can
see from the real energy spectrum, the bulk states close and
reopen at g ≈ 1.09 (black dashed line), which is consistent
with Fig. 4(b). The states with Re(E ) = 0 exist in the gap
for g > 1.09. In Figs. 5(c) and 5(d), we plot the energy
spectra and the density distributions of the midgap states
with g = 1.5. Two degenerate states occur in the gap and
are strongly localized at the end of the lattice. Obviously,

FIG. 5. The real (a) and imaginary (b) energy spectra of the
Hamiltonian (1) as functions of g, when J0 = 0.2 and J2 = 0.5.
(c) The real energy spectrum with g = 1.5. The inset shows the
corresponding imaginary eigenvalue. Red dots denote the eigenstates
with Re(E ) = 0. (d) The probability distributions of the zero-energy
edge states corresponding to (c). Here, we choose N = 20.

FIG. 6. (a, b) The winding numbers ν as functions of g for {J0 =
2, J2 = 2} (a) and {J0 = 0.2, J2 = 0.5} (b). (c, d) Phase diagrams of
ν in the J0-g plane for J2 = 0.5 and J2 = 1.5, respectively.

the non-Hermiticity drives a topological transition from the
trivial to nontrivial (ν = 1) topological phases, which can be
characterized by the closure of the band gap in the momentum
space.

C. Characterization of the topological transition

As demonstrated above, the closings and reopenings of the
bulk band gaps and the emergence of the gapless edge states
indicate the change of the bulk topological properties. Here,
we clarify topological invariants to characterize the topologi-
cal phase transition.

The non-Hermitian Zak phase of the nth band is de-
fined as Zn = i

∮
dk〈ϕn|∂k|ψn〉, where |ψn〉 and |ϕn〉 are the

right and left Bloch eigenstates satisfying H |ψn〉 = En|ψn〉,
H†|ϕn〉 = E∗

n |ϕn〉, and 〈ϕn|ψm〉 = δmn. For our system, the
topological number can be described by the partial global
Zak phase summed over for all occupied bands below the
gap [51,61]:

Z = Z1 + Z2. (7)

Here, E1,2,3,4 corresponds to the energy bands {E−,−, E−,+,

E+,−, E+,+}, respectively, with the corresponding wave func-
tions |ψ1,2,3,4〉. The non-Hermitian winding number is ob-
tained as ν = Z/2π .

In Figs. 6(a) and 6(b), we calculate the winding numbers
ν as functions of g with {J0 = 2, J2 = 2} and {J0 = 0.2, J2 =
0.5 }, respectively. The transition points agree with the clos-
ing points of the bulk gap. Figures 6(c) and 6(d) show the
phase diagrams of ν in the J0-g plane with J2 = 0.5 and 1.5,
respectively. By increasing g, the system can experience the
topological transitions ν = 2 → ν = 1 and 0 → ν = 1.

Remarkably, the topology of one-dimensional non-
Hermitian chiral-symmetric systems [i.e., ηH†(k)η−1 =
−H (k)] can also be characterized by a hidden Chern
number [62]. This Chern number is described by an ef-
fective two-dimensional Hermitian Hamiltonian Heff(k, ε) =
η[ε − iH (k)], where ε is the imaginary part of the en-
ergy. From Eq. (4), the effective Hamiltonian of our

012211-4



NON-HERMITICITY-INDUCED TOPOLOGICAL … PHYSICAL REVIEW A 106, 012211 (2022)

system is

Heff(k, ε) =

⎛
⎜⎜⎜⎝

ε + g −ihk 0 −iJ2e−ik

ih∗
k g − ε iJ2 0

0 −iJ2 ε − g −ihk

iJ2eik 0 ih∗
k −ε − g

⎞
⎟⎟⎟⎠. (8)

In order to overcome the periodicity of ε, we take
H ′

eff(k, ε) = RεHeff(k, ε)R†
ε with Rε = exp[i π

4 (1 + tanh ε)G]
and G = σx ⊗ σ0. In this case, H ′

eff(k, ε → −∞) =
H ′

eff(k, ε → +∞) = −|ε|η. It should be noticed that the
energy spectrum of H ′

eff is consistent with Heff. The Chern
number C of the Hamiltonian (8) can be obtained as [63]

C = 1

2π

∫ +∞

−∞
dε

∫ π

−π

dk�k,ε , (9)

where the Berry curvature

�k,ε =
∑
n�nF
m>n F

Im
2
〈
φn

k,ε

∣∣∂kH ′
eff

∣∣φm
k,ε

〉〈
φm

k,ε

∣∣∂εH ′
eff

∣∣φn
k,ε

〉
(
En

k,ε
− Em

k,ε

)2 . (10)

Here, |φn
k,ε〉 is the eigenstate of Heff(k, ε) with eigenvalue En

k,ε ,
and nF is the number of occupied bands.

In Figs. 7(a)–7(c) and 7(d)–7(f), we plot the band struc-
tures of the effective Hermitian Hamiltonian (8) for different
g with {J0 = 2, J2 = 2} and {J0 = 0.2, J2 = 0.5}, respec-
tively. It is clear that the middle pair of bands closes at
critical points g = √

5 and
√

1.19, respectively. This sug-
gests the occurrence of topological phase transition described
by the Chern number defined in the ε-k space. The calcu-
lated Chern number is shown in Figs. 7(g) and 7(h). We
find that the non-Hermiticity can drive the topological tran-
sition from C = −2 to −1 and C = 0 to −1. The transition
points agree with the non-Hermitian winding number shown
in Figs. 6(a) and 6(b). According to bulk-boundary corre-
spondence, the zero-energy edge states can also be obtained
from the Hamiltonian H eff

obc(k, ε) = η[ε − iHobc], where Hobc

is the Hamiltonian (1) with the open boundary condition. In
Figs. 7(i) and 7(j), we show the phase diagrams of C in the J0-g
plane for J2 = 0.5 and 1.5, respectively. It can be seen that
the phase boundaries are consistent with those in Figs. 6(c)
and 6(d).

IV. NON-HERMITICITY-INDUCED TOPOLOGICAL
PHASE TRANSITIONS IN THE MORE GENERAL

LONG-RANGE SSH MODEL

In Secs. II and III, we focus on the non-Hermitian SSH
mode with the third nearest-neighbor hoppings. The maxi-
mum winding number is ν = 2. In this section, we extend the
above discussions to a more general long-range SSH model
with the higher winding number and further demonstrate the
influences of the non-Hermiticity.

As shown in Fig. 8(a), we consider the long-range SSH
model with both the third and fourth nearest-neighbor hop-
pings J0 and J ′

0. The gain and loss are introduced as the
same in Fig. 1(a). Note that both long-range hoppings pre-
serve the chiral symmetry of the system. The Hamiltonian
of the Hermitian long-range SSH lattice is H ′

S(k) = h′
xσx +

h′
yσy with h′

x = J1 + J2 cos k + J0 cos(2k) + J ′
0 cos(3k) and

FIG. 7. (a–c) Band structures of the Hamiltonian (8) for g = 1
(a), g = √

5 (b), and g = 3 (c), when J0 = 2 and J2 = 2. (d–f) Band
structures of the Hamiltonian (8) for g = 0.5 (d), g = √

1.19 (e), and
g = 1.5 (f), when J0 = 0.2 and J2 = 0.5. (g, h) The corresponding
Chern number C as a function of g, when {J0 = 2, J2 = 2} (g) and
{J0 = 0.2, J2 = 0.5} (h). (i, j) Phase diagrams of C in the J0-g plane
for J2 = 0.5 and J2 = 1.5, respectively.

h′
y = J1 + J2 sin k + J0 sin(2k) + J ′

0 sin(3k). Considering the
non-Hermitian gain and loss, the Hamiltonian in the momen-
tum space is obtained as

H ′(k) =

⎛
⎜⎜⎜⎝

ig hk 0 h′
k

h∗
k −ig J2 + J ′

0eik 0
0 J2 + J ′

0e−ik −ig hk

h′∗
k 0 h∗

k ig

⎞
⎟⎟⎟⎠, (11)

where h′
k = J2e−ik + J ′

0e−2ik .
When J0 = 0 and J ′

0 �= 0, the system has three topo-
logical phases characterized by w = {0, 1, 3} without non-
Hermiticity, as shown in Fig. 8(b). The non-Hermitian
parameter only drives a topological phase transition from a
trivial phase to a nontrivial phase with ν = 1 [Fig. 8(c)].
However, when both J0 and J ′

0 exist, the Hermitian system has
richer topological phases with w = {0, 1, 2, 3} [Fig. 8(d)]. In
this case, the non-Hermiticity drives the system from ν = 0
to 1 and from ν = 2 to 3, as shown in Fig. 8(e). These
results indicate that the topological transitions driven by the
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FIG. 8. (a) Schematic of the non-Hermitian SSH model with
long-range hoppings J0 (red dashed lines) and J ′

0 (dash-dotted lines).
(b) Phase diagram of the Hermitian long-range SSH model for the
winding number w = {0, 1, 3}, when J0 = 0 and J ′

0 �= 0. (c) Non-
Hermitian winding number ν as functions of g, when {J2 = 0.2, J ′

0 =
0.2} (upper panel) and {J2 = 1, J ′

0 = 1} and {J2 = 0.5, J ′
0 = 2}

(lower panel). (d) Phase diagram of the Hermitian long-range SSH
model for the winding number w = {0, 1, 2, 3}, when J0 �= 0 and
J ′

0 �= 0. We set J0 = J1 = 1. (e) Non-Hermitian winding number ν

as functions of g, when {J2 = 1, J ′
0 = 0.5} (upper panel) and {J2 =

0.5, J ′
0 = 1} (lower panel).

non-Hermiticity are closely related to the topological phase of
the corresponding Hermitian case.

In Table I, we summarize the main results of the
non-Hermiticity-induced topological phase transitions in the
general long-range SSH model. We conclude that the non-
Hermiticity can induce topological transitions from νρ to νρ±1

with the following constraints.

TABLE I. Summary of results for the non-Hermiticity-induced
TPTs in a long-range SSH model. J1 and J2 denote the intra- and
intercell hopping strengths, and J0 and J ′

0 denote the third and the
fourth nearest-neighbor long-range hoppings. w is the winding num-
ber without non-Hermiticity and ν is the winding number in the
presence of non-Hermiticity.

Hopping Hermitian topological Non-Hermiticity-induced
amplitudes phases TPTs

J1, J2 w = {0, 1} ν = 0 → ν = 1
J1, J2, J0 w = {0, 1, 2} ν = 0 → ν = 1, ν = 2 → ν = 1
J1, J2, J ′

0 w = {0, 1, 3} ν = 0 → ν = 1
J1, J2, J0, J ′

0 w = {0, 1, 2, 3} ν = 0 → ν = 1, ν = 2 → ν = 3

(i) The winding number νρ = ρ is an even number.
(ii) The topological phases with {νρ, νρ±1} also exist in the

corresponding Hermitian case.
(iii) If the maximum winding number of the system is equal

to νρ , the non-Hermiticity drives the topological transitions
νρ → νρ−1; otherwise, the non-Hermiticity drives the topo-
logical transitions νρ → νρ+1.

V. PROPOSAL FOR CIRCUIT DEMONSTRATION

Recently, electric circuits have been regarded as a powerful
platform for synthetic topological matter [64,65]. Because
of the wide choice of circuit components, electric circuits
provide us with unprecedented convenience and flexibility in
engineering non-Hermitian topological insulators with non-
reciprocal hoppings or on-site gain and loss [55,66,67]. In
this section, we propose a possible experimental scheme by
employing electrical circuits to simulate the non-Hermiticity-
induced topological phase transition.

As shown in Fig. 9, the staggered nearest-neighbor hop-
pings are represented by capacitors C1 and C2, and the
long-range hopping is represented by capacitors C0. The on-
site gain and loss are introduced by the resistive elements
R and R′. According to Kirchhoff’s law, the response of the
circuit at frequency ω is given by I(ω) = J(ω)V(ω), where
I denotes the current input and V is the voltage measured
against ground at each node, and J is the circuit Lapla-
cian. The Hamiltonian (1) can be implemented through J(ω).
Considering the periodic boundary condition, the bulk-circuit
Laplacian in the momentum space (Fig. 9) is written as

J(ω, k) = iω

⎛
⎜⎜⎜⎝

σ1 J12 0 −C2e−ik

J∗
12 σ2 −C2 0
0 −C2 σ3 J34

−C2eik 0 J∗
34 σ4

⎞
⎟⎟⎟⎠, (12)

where σ1,4 = C0 + C1 + C2 − 1
ω2L0

+ 1
iωR , σ2,3 = C0 + C1 +

C2 − 1
ω2L0

+ 1
iωR′ , and J12 = J34 = −(C1 + C0e−ik ). By setting

the midgap frequency ω0 = [(C0 + C1 + C2)L0]−1/2, the in-
ductive and capacitive components in the diagonal terms are
canceled out. The non-Hermitian gain and loss terms are re-
alized by employing the negative and positive resistors. The
negative impedance converter can be used to implement gain
(negative resistance).

FIG. 9. The scheme of the electric circuit to simulate the Hamil-
tonian (1). C0,1,2 denote the capacitances of the capacitors, which
simulate the hoppings. The on-site gain and loss are controlled by
the resistive elements R and R′. The inductor L0 tunes the resonance
frequency of the circuit.
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The response of the system to a given input current signal
is governed by the eigenstates of J(ω). In the experiment,
we can measure the admittance band structure with peri-
odic boundary condition and the eigenstates (eigenvalues)
with open boundary condition. By tuning the positive and
negative resistors in the circuit, the system can switch be-
tween different topological phase regions. In addition to the
electric circuits, a photonic resonator network with synthetic
dimensions [68] is also a promising platform to simulate
the non-Hermiticity-induced topological transitions of this
paper.

VI. CONCLUSIONS

In summary, we have studied topological transitions in a
non-Hermitian long-range SSH model, in which the complex
on-site potential (ig, −ig, −ig, ig) and the third nearest-
neighbor hopping are included. By analyzing the bulk band
gap, topological edge states, and complex Zak phase, we

found that the non-Hermiticity can drive topological transi-
tions ν = 0 → 1 and 2 → 1. We have also investigated the
impacts of non-Hermiticity on the topological properties in
a more general long-range SSH model. It is found that the
non-Hermiticity can drive exotic topological transitions as-
sociated with the topological phases of the corresponding
Hermitian case. Finally, we have proposed a feasible ex-
perimental scheme to realize such non-Hermiticity-induced
topological transitions. Our paper may pave the way for the
study of non-Hermitian topological states and their device
applications.
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