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Abstract: Transition bimetallic alloy-based catalysts are regarded as attractive alternatives for the
oxygen evolution reaction (OER), attributed to their competitive economics, high conductivity and
intrinsic properties. Herein, we prepared FeNi3/C nanorods with largely improved catalytic OER
activity by combining hydrothermal reaction and thermal annealing treatment. The temperature
effect on the crystal structure and chemical composition of the FeNi3/C nanorods was revealed,
and the enhanced catalytic performance of FeNi3/C with an annealing temperature of 400 ◦C was
confirmed by several electrochemical tests. The outstanding catalytic performance was assigned to the
formation of bimetallic alloys/carbon composites. The FeNi3/C nanorods showed an overpotential
of 250 mV to afford a current density of 10 mA cm−2 and a Tafel slope of 84.9 mV dec−1, which
were both smaller than the other control samples and commercial IrO2 catalysts. The fast kinetics
and high catalytic stability were also verified by electrochemical impendence spectroscopy and
chronoamperometry for 15 h. This study is favorable for the design and construction of bimetallic
alloy-based materials as efficient catalysts for the OER.

Keywords: FeNi3 alloy; nanorods; bimetallic; oxygen evolution reaction

1. Introduction

There is a global consensus that producing hydrogen energy via electrochemical
water splitting will lighten the burden of consuming energy from fossil fuels and replace
unsustainable energy sources [1–5]. The oxygen evolution reaction (OER) is a half-reaction
of the electrolysis of water, but the issue of slow reaction kinetics during the complicated
four-electron transfer process critically needs to be solved [6,7]. The energy conversion
efficiency of catalysts for practical water splitting is affected by the high overpotential and
energy consumption of catalysts during the OER process [8,9]. Ruthenium dioxide (RuO2)
and iridium dioxide (IrO2), as effective OER catalysts [10–12], can facilitate a combination
of OH− ions in the alkaline electrolyte for the OER. However, the high price and scarcity
of resources restrict its wide application in energy conversion systems [13,14]. Therefore,
cost-competitive catalysts with high catalytic activity urgently need to be explored.

Recently, earth-abundant and low-cost transition metal (TM)-based catalysts with im-
proved catalytic OER stability have been an effective strategy for water splitting. Transition
metal (i.e., Fe, Co, Ni, and Mo) oxides or hydroxides can form hydroxide intermediates
during the OER process [15–18], but their high energy barrier and sluggish kinetics are
still difficult to overcome due to fact of their poor conductivity [19–22]. Therefore, many
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efforts have been reported on the study of TM-based derivatives with modification of the
surface electronic structure [23,24] including metal phosphides [25,26], sulfides [27,28],
and fluorides [29,30]. Bimetal-based catalysts have the merits of enhanced reactivity and
abundant active sites by the adjusted electronic structure at the metal/metal interfaces,
which are important for improving the electrocatalytic performance [31]. Meanwhile,
bimetal-based catalysts can form more oxygen vacancies and reduce the adsorption energy
of anions in electrolytes [32]. As demonstrated by many reports, the incorporation of Fe3+

into transition metal-based catalysts can significantly increase the reactivity and catalytic
activity during the OER process [33,34]. The iron–nickel bimetallic catalyst near the top of a
volcano plot shows an excellent catalytic OER performance [35–38]. Importantly, the intro-
duction of a conductive matrix in a bimetal system is favorable for increasing the electronic
conductivity and catalytic stability, such as graphene [39], nickel foam [40], and amorphous
carbon [41]. A couple of FeNi alloys with carbon supports can significantly increase the
electrical conductivity, and the controllable construction of an FeNi/C hybrid can provide
fast ion diffusion and enhance the electrocatalytic stability during the OER process.

Herein, we report iron–nickel/carbon (FeNi3/C) nanorods as an effective OER catalyst
through hydrothermal and activation approaches. The nanorod morphology can increase
the amount of exposed surface and the number of effective catalytic active sites, which are
beneficial for increasing the electrochemical activity. The effect of the activation temperature
on the crystallinity and catalytic OER behavior of the FeNi3/C nanorods were studied
by physical characterization and electrochemical tests. As the optimal temperature was
400 ◦C, the FeNi3/C nanorods showed excellent OER performance. Only 250 mV of
the overpotential was required at 10 mA cm−2 with a Tafel slope of 84.9 mV dec−1. The
improved electrochemical stability was studied by chronoamperometry, which was indexed
to the effect of rough morphology and optimal composition.

2. Experimental Section
2.1. Synthesis of the FeNi3/C Nanorods

A mixture of deionized (DI) water (12 mL) and ethylene glycol (36 mL), as the solvent
to dissolve 200 mg of NiCl2·6H2O and 200 mg of FeCl2, and 200 mg of oxalic acid were
subsequently slowly added under continuous ultrasonication. The solution was transferred
to a stainless-steel autoclave (100 mL) and maintained at 150 ◦C for 12 h. As the temperature
naturally cooled down, the precipitate was repeatedly washed with DI water/ethanol and
dried at 60 ◦C under vacuum conditions overnight to obtain the FeNi nanorods. The FeNi
nanorods were further thermally activated at 400 ◦C for 2 h with flowing N2 gas, and
the target sample was named FeNi3/C. The FeNi3/C was thermally activated at 300 and
500 ◦C and labeled as FeNi3/C-300 and FeNi3/C-500. The related catalytic performances of
FeNi3/C-300 and FeNi3/C-500 were compared. The synthetic process of the Fe nanorods
and the Ni nanorods was the same as for the FeNi nanorods, and the precursor only
included a single metal salt, either FeCl2 or NiCl2·6H2O. The samples were thermally
activated at 400 ◦C, and the obtained powders were labeled as Fe/C and Ni/C nanorods
for further use.

2.2. Characterization

The crystal structure was characterized by powder X-ray diffraction (XRD) (Bruker D8
Advance powder X-ray diffractometer, Cu Kα1, λ = 1.5405 Å, 40 KV, and 40 mA, Bruker,
Saarbrucken, Germany). Scanning electron microscopy (SEM) images were obtained
using an S-4800 II, Hitachi (Tokyo, Japan). The morphological structure was confirmed by
transmission electron microscopy (TEM, Philips, TECNAI 12, Amsterdam, The Netherlands)
and high-resolution transmission electron microscopy (HRTEM) (FEI Tecnai G2 F30 STWIN,
300 kV, FEI, Hillsboro, OR, USA). X-ray photoelectron spectroscopy was measured using a
Thermo Science ESCALAB 250Xi (Thermofisher, Waltham, MA, USA).
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2.3. Electrochemical Measurements

The electrochemical performance was performed using an electrochemical workstation
(CHI 660E, Shanghai, China). The active material loaded on a glassy carbon electrode (GC,
3 mm diameter, 0.07 cm−2), graphite rod, and saturated calomel electrode (SCE) acted as
the working, counter, and reference electrodes, respectively. The potentials were calculated
to the reversible hydrogen electrode (RHE) by E(RHE) = E(SCE) + 0.0591 × pH + 0.24 V. The
catalyst ink was prepared by mixing 5 mg of catalyst, 950 µL of ethanol, and 50 µL of Nafion
solution (5 wt.% NafionTM in lower aliphatic alcohols and water, 15–20% water) under bath
sonication. Then, the catalyst ink (10 µL) was dropped onto the GC and naturally dried.
All data are presented with IR compensation unless otherwise noted.

The polarization curves were measured as the potential from 1.04 to 1.64 V vs. RHE at
5 mV s−1. Electrochemical impedance spectroscopy (EIS) was measured from 106 Hz to
10−2 Hz. One thousand CV cycles were measured within the potential ranging from 1.04 to
1.64 V vs. RHE in 1 M KOH at a scan rate of 150 mV s−1, and a linear sweep was measured
under a sweep rate of 5 mV s−1 after 1000 cycles. Chronoamperometry (CA) was tested at
a voltage of 1.48 V for 15 h.

3. Results and Discussion

The iron–nickel alloy with conductive carbon (FeNi3/C) nanorods were synthesized
via facile hydrothermal and thermal treatment methods. The high reducibility of ethylene
glycol as the solvent could strongly couple the metal ions with oxalic acid, and the content
of iron was accurately controlled to adjust the morphology of catalysts. After activation at
a high temperature of 400 ◦C, the carbon ligands decomposed into carbon materials, which
can improve the conductivity of the catalysts. Finally, the FeNi3/C nanorods were obtained.

To probe the morphological structure of the FeNi3/C nanorods, scanning electron
microscopy (SEM) was carried out. The FeNi nanorods were uniform and had an average
length of 1.5 µm, as shown in Figure 1a, which was different from the Ni nanorods, which
had irregular lengths, and the Fe nanorods, which had longer lengths of approximately
2 µm (Figure S1a,b). As a comparison to the precursors, the morphology of the FeNi
nanorods was adjusted by the electrostatic interaction of metal ions, which is favorable
for exposing abundant surface area. After thermal activation, the surfaces of the FeNi3/C
nanorods became relatively rough due to the formation of the FeNi3 alloy and the decom-
position of the carbon ligands (Figure 1b), which can provide abundant active sites. This
morphology was further confirmed by transmission electron microscopy (TEM) images, as
shown in Figure 1c. The average thickness of the nanorods was approximately determined
to be 90 nm (Figure S2). Two d-spacings of 0.176 and 0.203 nm of the FeNi3/C nanorods
corresponded to the (200) and (111) planes of the FeNi3 (Figure 1d). Figure 1e shows the
corresponding selected area electron diffraction (SAED). The existence of concerned ele-
ments were found using energy-dispersive spectroscopy (EDS) (Figure S3a and Table S1),
and the elemental mapping results confirmed that the distribution of the Fe, Ni, C, and O
elements in FeNi3/C was uniform (Figure 1f).

The change in the crystal structure of FeNi3/C was characterized by X-ray diffraction
(XRD) (Figure 2a). The broadened peak at 25.8◦ corresponded to the (002) plane of graphitic
carbon. The characteristic peaks for the FeNi nanorods were indexed to the existence
of NiFe2O4 (JCPDS card No. 54-0964). In comparison, the FeNi3/C nanorods showed
strong characteristic peaks at 44.2◦, 52.0◦, and 75.7o, owing to the (111), (200), and (220)
planes of the FeNi3 alloy (JCPDS card No. 38-0419), which is agreement with the TEM
results. The disappearance of the diffraction peaks of NiFe2O4 for FeNi3/C was attributed
to the decomposition of metal oxides during thermal activation. Meanwhile, the effect
of the annealing temperature on the crystallinity of the FeNi3/C nanorods was studied
by XRD analysis (Figure S3b), and the average crystal size of the FeNi3/ nanorods was
approximately 15.6 nm. As the activation temperature increased, the domain characteristic
peaks of the FeNi3/C nanorods became stronger than for FeNi3/C-300, indicating the
increased crystallinity due to the formation of FeNi3 alloys. There were no obvious changes
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in the characteristic peaks between FeNi3/C and FeNi3/C-500, demonstrating that the
optimal temperature of 400 ◦C was high enough to form a stable catalyst.
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Figure 2. (a) XRD spectra of the FeNi and FeNi3/C nanorods (the asterisk and oranges squares
represent the diffraction peaks of NiFe2O2 and FeNi3); high-resolution (b) Fe 2p, (c) Ni 2p, and
(d) O1s XPS spectra of the FeNi3/C nanorods.
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The surface chemical circumstances of the FeNi3/C nanorods were probed by X-ray
photoelectron spectroscopy (XPS), and C 1s at 284.8 eV was applied to standardize the
binding energy. From the full scan of the XPS spectra, the FeNi3/C nanorods contained
11.6 atom% of O, 22.0 atom% of C, 19.5 atom% of Fe, and 46.9 atom% of Ni elements
(Figure S4a). The C 1s spectra showed two dominant peaks at 284.8 eV for a C-C bond and
at 288.6 eV for C-O bonds (Figure S4b). Figure 2b shows the deconvoluted Fe 2p spectra,
and two distinct peaks were indexed to the spin-orbit coupling of Fe 2p1/2 and Fe 2p3/2
accompanying the satellite peaks. The peak was divided into Fe0 (706.9 and 719.8 eV) and
Fe3+ peaks (711.3 and 724.8 eV), respectively [42]. The Ni 2p spectra were deconvoluted
into Ni0 (852.5 and 869.7 eV) and Ni2+ (855.3 and 873.2 eV) with the related satellite peaks
in Figure 2c [43], respectively. An energy difference of 17.8 eV was calculated between
Ni 2p3/2 and Ni 2p1/2, implying that the Ni2+ state was dominant [44]. In addition, two
peaks at 852.2 eV and 869.3 eV corresponded to Ni metal. The FeNi3/C nanorods with
contents of Fe3+ and Ni2+ can act as active material, and the electrocatalytic behavior can
be dramatically affected by the boosted active sites arising from the conversion of Ni2+ to
Ni3+ during the OER process [45]. The deconvoluted O 1s spectra are shown in Figure 2d,
and the two peaks at 529.5 and 532.3 eV corresponded to metal-O and C=O bonds [41].
The existence of metal-O bonds can probably be ascribed to the formation of oxidized
states on FeNi3 alloy surfaces during thermal activation, and the internal high-oxygen
coordination defects of the nanorods are generally considered as the dominant catalytic
sites for increasing the oxidation kinetics and catalytic activity during the OER.

The electrocatalytic OER performance of the FeNi3/C nanorods was initially evaluated
by cyclic voltammetry (CV) using a three-electrode configuration, and an aqueous 1 M KOH
was the electrolyte with N2 purification. To reflect the effect of the activation temperature
on the catalytic OER performance, the polarization curves of the FeNi3/C nanorods were
compared (Figure S5a). To receive a current density of 10 mA cm−2, the overpotential of
the FeNi3/C nanorods (250 mV) was smaller than 280 mV for FeNi3/C-300 and 290 mV
for FeNi3/C-500, and the Tafel slope for the FeNi3/C nanorods (84.9 mV dec−1) was lower
than 99.2 and 101.1 mV dec−1 for FeNi3/C-300 and FeNi3/C-500 (Figure S5b). As shown
in Figure 3a, the FeNi3/C nanorods showed a lower overpotential at 10 mA cm−2 than
that of Fe/C (370 mV), Ni/C (330 mV), commercial IrO2/C (327 mV), and other reported
FeNi-based electrocatalysts for the OER (Table S2). The low overpotential of FeNi3/C
implies a high OER activity due to the incorporation of Fe ions with Ni ions [46,47]. In
addition, The Tafel slope can reflect the rate-determining step with the related reaction
mechanism during the OER process, and Tafel slopes of 120, 60, and 40 mV represent the
RSD of one-electron, chemical, and electron–proton reaction steps [48–50]. According to the
Tafel slopes shown in Figure 3b, FeNi3/C had a smaller value of 84.9 mV dec−1 compared
to 102.2 and 121.2 mV dec−1 for Fe/C and Ni/C, indicating faster catalytic kinetics for
FeNi3/C. Chemical reactions with O2 formation as an intermediate on the catalytic sites
was dominant for FeNi3/C, and the impact of the electron transfer process was no longer
the primary step for the OER. The electrochemical dynamics and interfacial properties
of the electrode were elucidated by electrochemical impedance spectroscopy (Figure 3c),
and the calculated resistances are listed in Table S3 and were fit using Nyquist plots with
an equivalent circuit in Figure S6. The charge transfer resistances (Rct) were 15.2, 110,
and 26 Ω for the FeNi3/C, Fe/C, and Ni/C nanorods, respectively. The smaller Rct value
indicates a faster charge transfer behavior as well as higher catalytic activity of FeNi3/C.

A catalyst exposing abundant active sites can show high electrochemical activity. The
electrochemical surface area (ECSA) was estimated by CV measurement in a non-Faradic
field (Table S4), and the double-layer capacitance (Cdl) value was calculated by linearly
fitting the current density versus scan rates (Figure S7). Specific activity was obtained
by normalizing the origin current to the ECSA. The FeNi3/C nanorods with the optimal
temperature of 400 ◦C had a specific activity of 0.24 mA cm−2 at the overpotential of 300 mV,
which was higher than that of all control samples (Figure S8). The FeNi3/C nanorods had
a Cdl value of 4.14 mF cm−2, as shown in Figure 3d, which was approximately 9.6 and
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3.23 times higher than 0.43 and 1.28 mF cm−2 for Fe/C and Ni/C, respectively. This result
confirms that FeNi3/C provided an enlarged catalytic active surface for facilitating ion
diffusion and promoting the electrochemical reaction.
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The long-term stability of the FeNi3/C nanorods was initially evaluated by performing
1000 CV cycles, as shown in Figure 4a. The initial and 1001st CV curves almost overlap,
and the overpotential at 10 mA cm−2 was a negligible change. Furthermore, chronoam-
perometry (CA) was measured at the potential of 1.48 V for 15 h (Figure 4b). The FeNi3/C
nanorods exhibited no obvious change in current density at the initial 10 h, and the current
density remained at 90% for the next 5 h. The Faraday efficiency of FeNi3/C was measured
by comparing the experimental and theoretic amounts of oxygen gas produced during con-
stant voltage electrolysis for 60 min (Figure S9), and the experimental volume was close to
the theoretical oxygen volume, indicating that the oxygen evolution efficiency was close to
100%. These results demonstrate the outstanding electrocatalytic OER activity and stability
of the FeNi3/C nanorods, attributed to the in situ formation of the FeNi3/C composites.

The morphological change of the FeNi3/C surface after the stability test was char-
acterized by TEM, as shown in Figure 5a. The morphology of FeNi3/C nanorods was
maintained, and the slight collapse or fracture phenomena were caused by the partial
oxidation of FeNi3 during the catalytic reaction in an alkaline solution. The change in the
surface chemistry after the electrocatalytic test was confirmed by XPS. In comparison to the
pristine state, the intensity of the metal-O bond after the CA test slightly increased with a
shift of 0.4 eV because of the formation of intermediates. For the Ni element, the change in
the Ni 2p spectra can be seen in Figure 5c, and the Ni 2p3/2 peak downshifted with by a
value of 0.1 eV, attributed to the formation of nickel hydroxides or hydroxyl oxides after
long-term CA testing. The Fe element showed a similar result, suggesting the formation of
electroactive intermediates during the stability test, as shown in Figure 5d.
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During the OER process, the high-valence nickel in the catalysts was more conducive
to the rapid formation of intermediates (Ni-OH) in the electrolyte, which was further
combined with the OH− to form a nickel oxyhydroxide followed by the removal of oxygen.
Therefore, the high content of Ni2+ in FeNi3/C was more conducive to the OER, and the
adjusted surface electronic structure by incorporation of Fe3+ increased the absorbabil-
ity of OH−, which resulted in the boosted catalytic activity of the catalysts during the
OER process.
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4. Conclusions

In summary, FeNi3/C nanorods as effective catalysts for the OER were constructed
by combining the facile hydrothermal reaction and further thermal annealing treatment.
The temperature and compositional effect on the catalyst were discussed. The FeNi3/C
nanorods with an annealing temperature of 400 ◦C showed the best electrocatalytic perfor-
mance such as a low overpotential of 250 mV at 10 mA cm−2, small Tafel slope of 84.9 mV
dec−1, and high catalytic stability after CA testing for 15 h. The improved electrocatalytic
behaviors were indexed to the controllable structure and optimal chemical composition
by hybridizing bimetallic alloy with carbon. This work provides a strategy for preparing
efficient catalysts for the OER by coupling bimetallic alloys with a carbon matrix.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nano12152525/s1, Figure S1: SEM images of (a) Ni and (b) Fe
nanorods; Figure S2: TEM image of FeNi3/C nanorods; Figure S3; (a) EDS data of FeNi3/C nanorods;
(b) XRD patterns of FeNi3/C nanorods with different thermal annealing temperatures; Figure S4:
XPS spectrum of FeNi3/C nanorods at (a) full scan and (b) C 1s; Figure S5: (a) Polarization curves
and (b) Tafel plots of FeNi3/C nanorods with different thermal annealing temperatures; Figure S6:
The equivalent circuit model of the EIS analysis of all samples; Figure S7: CV curves of (a) FeNi3/C
nanorods; (b) Ni/C nanorods; (c) Fe/C nanorods at the potential of 1.04 V–1.14 V in 1 M KOH;
Figure S8: (a) The specific activity of FeNi3/C at different activation temperatures; (b) the specific
activity of FeNi3/C, Ni/C and Fe/C at the overpotential of 300 mV; Figure S9: Faraday efficiency of
FeNi3/C for OER; Table S1: The atomic ratio of all elements from EDS; Table S2: The comparison of
other FeNi-based OER catalysts in alkaline medium; Table S3: EIS fitting parameters from equivalent
circuits for as-prepared catalysts; Table S4: The value of Cdl and ECSA for FeNi3/C with different
annealing temperature. References [51–60] are cited in the Supplementary Materials.
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