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Abstract: Parametric modulation is an effective tool to measure the trap frequency and investigate
the atom dynamics in an optical dipole trap or lattices. Herein, we report on experimental research
of parametric resonances in an optical dipole trap. By modulating the trapping potential, we
have measured the atomic loss dependence on the frequency of the parametric modulations. The
resonance loss spectra and the evolution of atom populations at the resonant frequency have been
demonstrated and compared under three modulation waveforms (sine, triangle and square waves).
A phenomenological theoretical simulation has been performed and shown good accordance with the
observed resonance loss spectra and the evolution of atom populations. The theoretical analysis can
be easily extended to a complex waveform modulation and reproduce enough of the experiments.

Keywords: optical dipole trap; parametric excitation; multi-waveform modulation

1. Introduction

The quantum degenerate gases prepared by laser cooling and evaporation cooling [1]
have proved to be fantastic systems in the investigations of quantum nonequilibrium
dynamics and quantum for many body physical problems [2–4]. They can be confined
in a potential trap with high optical controllability, such as an optical lattice [5] or an
optical dipole trap (ODT). In an ultracold atomic ensemble, the most common application
of parametric modulation is modulating power (trapping potential) for the ODT [6]. The
parametric modulation has been widely used in various ultracold atomic ensembles [7,8].
The parametric heating of bosons has been realized in a periodically-driven 2D lattice, in
which exponential decay rates are observed [9]. Direct condensation of thermal atoms in
an optical lattice is also achieved using this technique [10]. Furthermore, the creation of
bosonic fractional quantum Hall states is expected in periodically-driven optical lattices [11].
Note that parametric modulation can be used to selectively remove the high-temperature
atoms, resulting in degenerate Fermi gases [12]. Besides, it can be used to measure the
trap frequency and the spring constant of an ODT, and to study the dynamical instability
and the collisional processes of atoms in optical lattices [13]. Parametric modulation-
induced cooling has been accomplished for either bosonic atoms in a magnetic trap [14] or
fermionic atoms in a standing wave lattice [15]. However, these experiments only study the
parametric modulation effect of a sinusoidal signal. The best modulation type to measure
trap frequency of the ODT through parametric heating has not been investigated. The
different dynamic effects caused by different waveform modulations are still worthy of
further study.

In this study, we have applied three common waveforms (sine, triangle, and square
waves) to modulate the trapping potential of the ODT. The trap frequency is systematically
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measured for the different cases. We have investigated the evolution of the trapped
atom populations at the modulation frequency ωp = 2ω0, where ω0 is the trap frequency
(the principal circular frequency) of the unperturbed trapped atoms. The evolution of
the trapped atom population at the frequency of 2ω0 and the resonance loss spectra are
also theoretically simulated. Theoretical studies correlate with the experimental results
fairly well.

This paper is organized in four main sections. Section 2 introduces the experimental
setup and schemes. In Section 3, we introduce the theoretical model simulations with
parametric modulation. Section 4 is the experimental results. Finally, the conclusion is
presented in Section 5.

2. Experimental Setup

Figure 1 is a part of the experimental apparatus. The experimental apparatus has three
parts: the oven chamber, the intermediate chamber, and the science chamber. The oven
chamber contains 25 g sodium that is heated to 532 K. At this temperature, sodium has a
vapor pressure of ∼6.7 × 10−8 Torr. The intermediate chamber is a Zeeman slower which
connects the oven and the science chamber. An ion pump (Agilent Star Cell, 150 L/s) and a
Ti-sublimation pump are used to maintain the pressure at ∼2.3 × 10−11 Torr in the science
chamber. Sample preparation and manipulation are performed in the science chamber.

CCD

MOT coolingand repump

MOT coolingand repump

Zeeman slowing beam

atoms

MOT coils

ODT

MOT cooling

im
age beam

Figure 1. Experimental apparatus of the science chamber and a part of the Zeeman slower. The science
chamber is an octagonal chamber with 12 viewports. Magneto-optical trap (MOT) cooling beams
(yellow arrows) and repump beams (blue line in yellow arrows) are coupled together. The Zeeman
slowing beam (brown arrow) is used to decelerate the ejected atoms (yellow ball). A focused ODT
(red arrow) along a cooling beam captures the atoms. The orange arrows represent the image beams.

The Zeeman slower [16] performs the first cooling step to slow down the atoms
ejected from a pin hole in the oven chamber. A magneto-optical trap (MOT) [17] is used
to further cool and collect the atoms. The MOT is constructed with six cooling beams in
three orthogonal directions, two repump beams, and a pair of 12-turn anti-Helmholtz coils
(Figure 1). The cooling and repump beams are provided by a frequency-doubled diode laser
(TA-SHG pro, Toptica), of which the frequency is locked to the 23Na atomic D2 transition line
(|F = 2〉 → |F′ = 3〉). The MOT cooling beams are detuned by δcooling = −20 MHz from the
cycling transition, have a power of 4.5 mW, and two of them combine with one 2.2 mW MOT
repump beam. The magnetic field gradient is 10 G/cm. The frequency of MOT repump
beams is nearly in resonance with the |F = 1〉 → |F′ = 2〉 transition. After 8 s of MOT
loading, we collect 6 × 109 sodium atoms. Next, the atoms are transferred to a compressed
MOT (CMOT) and an optical molasses [18] process efficiently cool 5 × 108 atoms to 45 µK
(Figure 2). The atom gas is compressed by increasing the power of MOT cooling beams
to 15 mW and reducing the power of MOT repump beams to 10 µW as well as changing
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δcooling to −15 MHz in 3 ms. In this CMOT stage, we kept the magnetic field gradient
unchanged to keep the atoms stable. The optical molasses performs 17 ms, in which the
frequency of MOT cooling beams are detuned to δcooling = −30 MHz. Simultaneously, the
power of the MOT cooling beams and the magnetic field gradient are linearly drops to
3.6 mW and 0.2 G/cm, respectively. The whole experimental sequence is shown in Figure 2.
To de-pump atoms into the F = 1 hyperfine state, the repump beams are extinguished 1 ms
before the MOT cooling beams, and the magnetic field gradient are turned off.

Figure 2. Experimental sequence of parametric excitation of atoms in the ODT. The axes are not
to scale.

The next step is to load the pre-cooled atoms into the ODT. An ODT captures the
atoms by the interaction of the induced dipole moment with the intensity gradient of the
light field. For a far-off-resonance-detuned laser, the scattering rate Γsc and the optical
potential Udip for atoms are given by [19]:

Γsc ≈
3πc2

2h̄ω3

(
Γ
∆

)2
I(r), (1)

Udip(r) ≈
3πc2Γ
2ω3

I(r)
∆

, (2)

where c is the speed of light, h̄ is the reduced Planck constant, ω is the resonant transition
frequency, ∆ is the detuning of the laser, Γ = 1

τ is the natural decay rate of the excited
state in radians per second, I is the intensity of the laser, and r is the spatial coordinate.
Equations (1) and (2) show that a large-detuned and high-intensity dipole trap can maintain
low scattering rates for a certain potential depth.

In the experiment, a fiber-amplified laser (1070 nm, IPG-FLR-LP) with a power of
100 W is used to provide a large-detuned and high-intensity dipole trap laser. A dipole
trap laser is focused to the atoms and has a waist of 32 µm. As shown in Figure 2, the
power of the dipole trap laser is kept at half power (7 W) during the entire laser cooling
process and is then jumped to the maximum (14 W). This process can effectively improve
the ODT capture efficiency of atoms. [20] After a 400 ms ODT loading, the ODT captures
about 1 × 106 atoms at a temperature of ∼80 µK. The phase space density is ∼0.3 × 10−3.
According to Equation (1) and the parameters of our ODT, we have calculated that the trap
frequency ω0/(2π) is about 2.46 kHz.

Then we need to parametrically modulate the trapping potential that the atoms
experience. An arbitrary function generator (Textronix AFG31153) is used to generate a
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modulation signal with an adjustable frequency, amplitude and waveform. The modulation
signal and the analog signal are mixed by a summing amplifier (SRS SIM980). (The analog
signal is used to control the power of the dipole trap laser. The power of the dipole trap
laser can be modulated by the modulation signal.) The mixed signal is sent to a voltage-
controlled oscillator (VCO) to generate a synthesized signal that can control the diffraction
efficiency of the acousto-optic modulator (AOM). The synthesized signal is sent to the AOM
through an amplifier to control and modulate the power of the first-order diffracted beam
(the dipole trap laser). After the AOM, the diffracted beam is sent to the atoms through
an optical fiber, which avoids the effects on the position change of the beam when the RF
power of the AOM is modulated. Therefore, the trapping potential (the power of the dipole
trap laser) can be modulated with an amplitude σ and a frequency ωp. The modulation
time T is set to 50 ms. Absorption imaging of the atoms for each experiment is performed
after the dipole trap and the modulation were turned off.

Two trap frequencies in both radial and axial directions exist, and the trap frequency in
the loosely confined axial direction is far less than the trap frequency in the closely confined
radial direction. In our experiment, we predominantly consider the evolution of the atoms
at the radial resonances.

The modulation induces the atoms to oscillations at the modulation frequency in
the ODT. If the modulation frequency equals twice the axial or radial trap frequency, the
parametric heating is most drastic and most atoms loss would happen. Regarding the
lowest energetic atoms, the modulation energy is insufficient for them to escape from the
trap, as it would happen for a harmonic potential. [21] Conversely, atoms with high energy
are easily heated out of the trap. The number of lost atoms will increase as the modulation
amplitude (modulation depth) increases.

The relationship between the proportion of traped atoms and modulation frequency
for three waveforms are shown in Figure 3. The range of the modulation frequency is set to
0.5–8.5 kHz, which covers 1 to 3 times the theoretical value (2.46 kHz), and each data point
is measured three times. In order to avoid distortion of the modulated signal, we slightly
reduce the power of the ODT. The initial number of atoms is about 6 × 105. We used
the same modulation depth of 0.15 for the three wave forms to avoid the influence of the
integral absolute intensities of the modulation signals. The modulation depth is the ratio
of the effective amplitude to the total amplitude. In Figure 3, we can clearly see the three
resonances loss at ∼2.47 (±0.19) kHz, ∼4.89 (±0.15) kHz and ∼7.31 (±0.27) kHz in the loss
spectra. The three resonances loss match the frequency of ω0, 2ω0, and 3ω0. By identifying
three resonance frequencies and comparison with the theoretical value, the trap frequency
ω0/2π ' 2.47 (±0.19) kHz. The measured trap frequency is equal to the calculated value
and should be accurate for the atoms at low levels of the harmonic potential. The trap
frequency measurements for three type modulation is precise, and each modulation type
can be used to measure the trap frequency.

Figure 4 shows the results of the evolution of the trapped atoms population. As
modulation time increases, the atom loss of sin and triangle wave modulation is faster
than that of the square wave modulation. We also measured the lifetime of the atoms
without modulation as 7.2 (±0.2) s (The data after 200 ms are not shown in the Figure 4).
The comparison of the evolution of the trapped population with and without modulation
shows that modulation can cause intense trap losses in a brief time.
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Figure 3. The experimental spectrum of the losses associated to parametric excitation of the ODT
modulated by a sine wave (black data), a triangle wave (red data) and a square wave (blue data).
The modulation depth is 0.15. Gaussian fits were used to determine the resonance center position.
The measured resonance positions are 2.47 (±0.19) kHz, ∼4.89 (±0.15) kHz and ∼7.31 (±0.27) kHz,
corresponding to the frequencies of ω0, 2ω0, and 3ω0, respectively.
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Figure 4. Experimental result (data points) and theoretical fitting (colorful solid lines) of the evolution
of the trapped atom population. The modulation frequencies are 2ω0 and the modulation depths
are 0.15. The green points show an experimental trap loss measurement without modulation as
a comparison.
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3. Theoretical Simulation

To simulate the parametrically modulate optical potentials, in many previous works
(e.g., [22] and references therein) the classical kinetic scheme with the transition probabilities
computed in the first-order quantum mechanical perturbation theory for the model of the
harmonic oscillator was employed. This approach implies a loss of the quantum coherence
between transitions. However, the atomic ultracold ensembles are characterized by the
long-living coherence. So, we apply a fully-coherent quantum mechanical calculation in
the simulation.

The standard time-dependent Schrödinger equation is

ih̄
dΨ(t)

dt
= H(t)Ψ(t), H(t) =

p2

2M
+ V(t), (3)

where t is the time, H(t) is the Hamiltonian, V(t) is the time-dependent potential function,
Ψ(t) is the wavepacket of an atom in an ODT, p = −ih̄ (∂/∂x) is the momentum, x is the
spatial coordinate, M is the mass, h̄ is the reduced Planck constant.

Assume that the potential function V(t) takes the form

V(t) = V0 + δV(t) = V0 + (V0 + δV0)ε(t), (4)

where V0 is a time–independent zero-th order potential, δV0 is a contribution to the overall
perturbation, which could arise from a distortion of the shape of the potential well during
the modulation and can also effectively comprise an effect of the time-independent pertur-
bations, keeping the zeroth-order potential as simple as possible, and ε(t) is some function
of t (modulation signal). Then, {En, Ψn} is the spectrum of the zero-th order potential:

H0Ψn = EnΨn (n = 0, 1, 2, · · · ), H0 =
p2

2M
+ V0. (5)

Ψn(t) = e−
it
h̄ En Ψn. n = 0, 1, 2, · · · (6)

The quantities we are interested in are the time-dependent populations of the zero-th
order states:

Pn(t) = |An(t)|2, (7)

where
An(t) = 〈Ψn(t)|Ψ(t)〉 (8)

are the corresponding amplitudes. We assume that the number of atoms remained trapped
by the instant t can be approximated by P0(t) or, maybe, by a limited sum of few lowest Pn.

In principle, the set of equations above can be solved directly.
Using Equation (3) with the substitution Equation (4), we can derive an equation for

the amplitudes Equation (8)

ih̄
d〈Ψn(t)|Ψ(t)〉

dt
= ∑

l
e

it
h̄ (En−El)〈n|δV(t)|l〉〈Ψl(t)|Ψ(t)〉 (9)

Introducing the matrix notations

A(t) =


Ψ0(t)|Ψ(t)
Ψ1(t)|Ψ(t)
· · ·

Ψn(t)|Ψ(t)
· · ·

(An(t) ≡ 〈Ψn(t)|Ψ(t)〉), (10)



Photonics 2022, 9, 442 7 of 13

W(t) =


〈0|δV(t)|0〉 e

it
h̄ (E0−E1)〈0|δV(t)|1〉 · · ·

e
it
h̄ (E1−E0)〈1|δV(t)|0〉 〈1|δV(t)|1〉 · · ·

· · ·
e

it
h̄ (En−E0)〈n|δV(t)|0〉 e

it
h̄ (En−E1)〈n|δV(t)|1〉 · · ·

· · ·


(

Wn,m(t) ≡ 〈Ψn(t)|δV(t)|Ψm(t)〉 ≡ e
it
h̄ (En−Em)〈n|δV(t)|m〉

)
, (11)

we can recast Equation (9) into the matrix form

ih̄
dA(t)

dt
= W(t) · A(t) (12)

with all the multiplications understood in the matrix sense. The text-book time dependent
perturbation theory results in its solution:

A(t) = Texp
[
− i

h̄

∫ t

0
W(τ) dτ

]
· A(0), (13)

where Texp is the time-ordered exponent.
Within the model of Equation (4), we have for the matrix elements of W (Equation (11)):

Wn,m(t) =
(

e
it
h̄ (En−Em)ε(t)

)
〈n|V0 + δV0|m〉.

Hence, the first-order evolution operator in Equation (13) between the time instants τ1
and τ2 can be written as:

T (1)
n,m (τ2 ← τ1) = 1− i

h̄
φn,m(τ2 ← τ1)

(
W(0)

n,m + W(1)
n,m

)
, (14)

for which we only have to compute relatively simple integrals

φn,m(τ2 ← τ1) =
∫ τ2

τ1

(
ε(t)e

it
h̄ (En−Em)

)
dτ, (15)

while the quantities

W(0)
n,m ≡ 〈Ψn|V0|Ψm〉, W(1)

n,m ≡ 〈Ψn|δV0|Ψm〉 (16)

are time-independent and can be computed beforehand from a precomputed spectrum of
the time-independent Schrödinger equation (Equation (5)).

With a small enough time step δt, the evolution of the amplitude vector A(t) can be
approximated by

A(t) ≈ T (1)(t← t− δt) · A(t− δt), A(t = 0) = A0. (17)

Further on, we adopt the approximation of the harmonic oscillator:

V0 =
Mω2

0
2

x2 H0 =
p2

2M
+ V0 En = 〈n|H0|n〉 = h̄ω0

(
n +

1
2

)
, (18)

where n = 0, 1, 2, · · · is the vibrational quantum number. In this case the matrix elements
of W can be computed analytically.

In terms of the dimensionless coordinate,

ξ =

√
2Mω0

h̄
x = i

(
a− a†

)
(19)
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V0 =
h̄ω0

4
ξ2, (20)

where a and a† are the standard annihilation and creation operators, the recurrence relations

〈m|ξk+1|n〉 = i
(√

m + 1 〈m + 1|ξk|n〉 −
√

m 〈m− 1|ξk|n〉
)

. (21)

are valid, enabling a computation of the matrix elements 〈m|ξk|n〉 for all k, n, m of interest
starting with 〈m|ξ0|n〉 = δn,m (δn,m is the Kronecker symbol). We also assume that the term
δV0 in the perturbation can be expressed as a power series in ξ:

δV0 =
kmax

∑
k=3

h̄ωk
4

ξk (22)

with ωk measured in the units of the circular frequency ω0. This way, all the quantities W(0)
n,m

and W(1)
n,m (Equation (16)) as well as the entire matrix W (Equation (11)) are easily computed.

Let ε(t) be a periodic function with the period T = 2π
ω so that

∫ T
0 ε(τ) dτ = 0. For

the simplest modulation signals of our interest, the integrals φn,m(t) (Equation (15)) can be
computed analytically, e.g., for the sinusoidal signal in a pure harmonic approximation:

ε(t) = C sin(ωt), (23)

φn,n(t) =
C
ω
(cos(ωt)− 1),

φn±2,n(t) = C
ω− e±2iω0t (ω cos(t ω)∓ 2iω0 sin(t ω))

ω2 − 4ω02 .

However, such expressions contain indeterminate forms 0/0 at ω = 2ω0, requiring
special treatment. In practical computations, it is easier to estimate the integrals φn,m(t)
(Equation (15)) directly with some numerical algorithm. For the small enough time
step δt = τ2 − τ1 (δt � h̄/|Em − En|, δt � (2π)/w) the simple approximation can
be appropriate:

φn,m(τ2 ← τ1) = ε

(
τ2 + τ1

2

)
e

i(τ2+τ1)
2h̄ (En−Em)δt, (24)

however, in our computations we used a more elaborate integration procedure (see below).
Besides the sinusoidal signal, we consider the square modulation signals:

ε(t) = C
{

+1
−1

if
0 < t′ < T

2
T
2 < t′ < T

(25)

and the triangular modulation signal

ε(t) = C


4t′
T

2− 4t′
T

4t′
T − 4

if
0 < t′ < T

4
T
4 < t′ < 3T

4
3T
4 < t′ < T

, (26)

where t′ = (t mod T) is the modulo (remnant in division of t by T).
In the material above, we implied that a physical Hamiltonian is the Hermitian

operator, resulting in the unitary evolution operator. In this case, the evolution remains
conservative, so that no atoms escape the system, showing a kind of an oscillatory behavior
of the individual levels’ populations. In order to simulate a possible escape from the
ODT after every time step of the length δt (with Equation (17)), we first renormalized the
vector A(t) (it is necessary as the first-order evolution operator (T (1)(t)) is able to violate
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the norm conservation) and then multiplied the amplitudes An(t) by a damping factor
exp(−δt/tesc) with an adjustable parameter tesc for all levels starting with n = 1 (i.e., the
lowest level n = 0 retained untouched).

In agreement with our experimental parameters, we performed test computations:
ω0 = (2π) 2500 ≈ 15,700 rad/s; T0 = (2π)/ω0 = 0.4 ms; tesc = T0/2 = 0.2 ms; ω3 = 0
(the pure harmonic approximation) and ω3 = 0.3 ω0 ≈ 4710 rad/s (the cubic perturbation);
An(0) = δn,0; the computation included 11 (n = 0, 1, , · · · , 10) lowest levels of the
harmonic potential well. The amplitude C is set to 0.15×

√
2, 0.15×

√
3, and 0.15 for sin,

triangle, and square wave modulations, respectively, to ensure the same effective amplitude.
The time step was chosen δt = T0/20 = 0.02 ms, the integrals φn,m(t) (Equation (15)) were
estimated with the rectangular rule using a net of 50 nodes within every δt-interval.

The results are shown in Figures 5–7.
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Figure 5. Decimal logarithms of the simulated population of the lowest level vs. the relative
frequency ω/ω0 of the modulation signal at the instant t = 50 ms, within the model described above:
black—the sinusoidal modulation signal, red—the triangular modulation signal, blue—the square
modulation signal.

Figure 5 shows the loss spectra at the terminal time t = 50 ms computed with the cubic
perturbation δV0 ∼ x3(see Equations (4) and (22)). The classical theory of the parametrically
driven harmonic oscillator [23] results in a conclusion that the resonance occurs at the
modulation circular frequency of 2ω0 with ω0 being the principal circular frequency of the
unperturbed harmonic oscillator. In our theoretical simulation, the majoring resonance
at ω = 2ω0 and two other strong resonances at ω = ω0 and ω = 3ω0 appeared. Their
origin is the transitions with |m− n| = 1, 3 (m and n are vibrational quantum numbers)
and δE = h̄ω0, 3h̄ω0, allowed for in this more elaborate model. The extra resonances
at ω = 2ω0/k (k = 3, 5, · · ·) [24], clearly seen in Figure 7, contribute noticeably to the
square-wave case as well. The forms of the resonances in Figure 5 resemble the ones
observed experimentally, in spite of the relative simplicity of our computational model.

Figure 6 shows the time evolution of the lowest n = 0 level populations for the three
modulation signals, computed within our model. The harmonic potential is completely
bound, so the excited atoms would not leave its range. The real ODT potential is unbound;
hence, the part of atoms with high enough energy would escape as soon as their energy
reaches the ODT potential limit. We expect that this process goes on exponentially, [25]
resulting in an approximately exponential time dependence of the observed atomic losses.
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The experimental results (Figure 4) under different waveforms correlate well with the
theoretical analysis. As expected, they exhibit exponential-like behavior in Figure 6. We
consider the evolution of the population of atoms in the trap under different types of
ODT modulation.
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Figure 6. Simulated time evolution of the lowest level population vs time (s) at the frequency ω = 2 ω0

of the modulation signal, within the model described above: black—the sinusoidal modulation signal,
red—the triangular modulation signal, blue—the square modulation signal.
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Figure 7. Decimal logarithms of the simulated population of the lowest level vs the relative frequency
ω/ω0 of the modulation signal at the instant t = 50 ms, within the pure harmonic (i.e., with ω3 = 0)
model described above: black—the sinusoidal modulation signal, red—the triangular modulation
signal, blue—the square modulation signal.
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Figure 7 shows the loss spectra at the terminal time t = 50 ms computed within the
pure harmonic approximation (δV0 = 0) for the three types of the modulation signal. All
the spectra exhibit one strong resonance at the frequency of the modulation signal ω = 2ω0,
reflecting the fact that transitions between the levels separated by |m− n| = 2 with the
uniform energy intervals δE = 2h̄ω0 are only possible. The case of the square wave (and
of the triangle one but much weaker) also exhibits extra resonances at the frequencies
ω = 2ω0/k with the odd integer k = 3, 5, · · ·. These extra resonances occur due to the
fact that the square- and triangular-wave signals with the frequencies ω = 2ω0/k contain
noticeable harmonics of the majoring resonance frequency 2ω0; the ones with even integer
k do not contribute because the corresponding integrals Equation (15) over the full period
T0 are zero for the kind of signals considered here.

In order to substantiate our approach, we estimated the average time between colli-
sions of the gas kinetic theory as tc = (

√
2π(2R)2ρ)/v, with our measured values of the

atomic spatial density ρ and the mean velocity v, while for the radius R of the sodium atom
we took a standard table value of 200 pm. The estimated time was close to 1 s, which is
several orders of magnitude longer than the time scale of our experiments. This means that
most atoms in the ODT do not experience collisions during the experiment and behave
as independent quantum particles in the ODT potential. This justifies our pure quantum-
mechanical treatment. On the other hand, we deal with a quite simple model of the ODT
potential, so that both our quantum-mechanical and the kinetic approaches remain no more
than phenomenological and are appropriate as long as they are able to explain the physics
behind the observations. The theoretical model considered the three simple modulation
types that can be easily extended to some complex waveform modulation.

4. Discussion

For the modulation of sine and triangle waves in Figure 3, the experimental results
show a good accordance with the theoretical simulation and the maximum atom loss occurs
at ωp = 2ω0. However, for the square wave modulation in Figure 3, the maximum atom
loss occurs at ωp = ω0, which is inconsistent with our theoretical model. Considering
the high-order harmonics of the square wave, the resonances loss near 1/4 and 1/2ω0 are
predicted to exist in the theoretical model (Figure 5) but not observed in Figure 3. Their
superpositions possibly caused the loss at ωp = ω0 to be deeper and wider than predicted.
Apart from that, the experimental results show a good accordance with the theoretical
simulation for the square wave modulation.

For a continuous waveform modulation, the theoretical model shows good experimen-
tal reproducibility. However, for a discontinuous waveform modulation, the theoretical
model shows some defects. One of the reasons for the more noticeable disagreement of
the modeled and experimental spectra in the case of the square-wave modulation can be
the use of the first-order perturbation theory. Indeed, this approach presumes that the
signal changes slowly within the time step of the computational scheme. Meanwhile, the
square-wave signal exhibits abrupt discontinuities. Nevertheless, even for this signal, our
approach showed clear resonances at expected frequencies. Experimentally, another reason
for the discrepancy in the experiment of square wave modulation is the distortion of the
signals caused by the response time of the AOM.

5. Conclusions

We have investigated both experimentally and theoretically the resonance loss spec-
tra and the time evolution of the trapped atom populations in an ODT by a parametric
excitation using the multi-waveform modulation. The trap frequency is systematically
measured under three common waveform modulations (sine, triangle, and square waves).
We presented a heuristic model for the excitation in a harmonic trapping potential under
various waveforms. Although the model does not provide a sufficient explanation of the
real physical situation, the theoretical simulations correlate well with the principal features
of both the spectra of trap losses, including the appearance of resonances, and the time
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evolution of the total number of trapped atoms. The theoretical analysis can be easily
extended to complex waveform modulation and reproduces enough of the experiments.
Parametric modulation is also an effective method for studying atomic dynamics. The
dynamical analysis can be easily extended to a higher dimensional optical trap or lattice.
The modulation of different waveforms can lay the foundation for a more detailed un-
derstanding of the shape of the potential trap and dynamic analysis of atoms in a trap in
the future.
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