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The recent experimental observation of topological magnon insulator states in a superconducting circuit chain marks
a breakthrough for topological physics with qubits, in which a dimerized qubit chain has been realized. Here, we extend
such a dimer lattice to superlattice with arbitrary number of qubits in each unit cell in superconducting circuits, which
exhibits rich topological properties. Specifically, by considering a quadrimeric superlattice, we show that the topological
invariant (winding number) can be effectively characterized by the dynamics of the single-excitation quantum state through
time-dependent quantities. Moreover, we explore the appearance and detection of the topological protected edge states in
such a multiband qubit system. Finally, we also demonstrate the stable Bloch-like-oscillation of multiple interface states
induced by the interference of them. Our proposal can be readily realized in experiment and may pave the way towards the
investigation of topological quantum phases and topologically protected quantum information processing.

Keywords: superconducting circuits, topological phase transition, edge state, interface state

PACS: 85.25.–j, 03.67.Ac DOI: 10.1088/1674-1056/ac5612

1. Introduction
As one of the leading quantum platforms for implement-

ing scalable quantum computation,[1–3] superconducting cir-
cuits have achieved great experimental progress in the past few
years. In particular, due to the site-specific control and read-
out techniques, as well as the flexible and engineerable system
designs,[4–6] a superconducting circuit system has emerged
as a rich platform for quantum simulation.[7–10] By perform-
ing analog quantum simulations, a wide range of many-body
physics has been employed in such simulators, such as the
Bose–Hubbard model,[11–13] many-body localization,[14–18]

quantum walks,[19–21] and dynamical phase transitions.[22]

Moreover, due to the flexibility and diversity of superconduct-
ing quantum circuits system, it is also an excellent platform
to realize exotic topological phases of matter and to probe and
explore topologically protected effects, including the detection
of topological invariant,[23] topological state transfer,[24,25]

and higher-order topological phases.[26,27]

In a recent experiment,[28] topological magnon insulator
states have been observed in a one-dimensional (1D) super-
conducting qubit chain with a tunable dimerized spin chain,
which is analogue to the Su–Schrieffer–Heeger (SSH) model
with two bands. Actually, various extended SSH models have
been proposed to study novel topological physics by con-
sidering some other modulation terms, such as long range
hoppings,[29] periodically driving,[30–32] and non-Hermitian
modulation.[33–36] Recently, 1D superlattices with multiple
sites (> 2) in each unit cell have garnered much interest.[37–40]

Such multiband systems show richer topological features than
two-band models, such as the ability to tune the number of
topological edge states by controlling the couplings, which al-
low one flexible control over the topological states in a new do-
main. Moreover, the superlattices with even sites in each unit
cell preserve the chiral symmetry, and the topological phases
can be characterized by the winding number.

In this work, we present an experimental feasible scheme
to achieve the simulation of topological superlattice in a super-
conducting qubit chain with tunable coupling strengths. Such
one-dimensional superlattices possess multiple topologically
nontrivial dispersion bands and tunable edge states. Specifi-
cally, by considering a quadrimeric superlattice (SSH4 model),
we show that the topological invariant (winding number) can
be effectively characterized by the dynamics of the single-
excitation quantum state through an extended mean chiral dis-
placement. Moreover, we explore the appearance and detec-
tion of the topological protected edge states in our qubit sys-
tem. Finally, we also demonstrate the Bloch-oscillation-like
dynamics induced by the interference of topological interface
states with different propagation constants.

This article is organized as follows. Section 2 gives the
feasible method to achieve one-dimensional superlattice in su-
perconducting circuits. Section 3 demonstrates the measure-
ment of topological winding number for quadrimeric lattice.
Section 4 explores the existence and detection of topological
edge states. Section 5 shows the dynamics of interface state
propagation.

†Corresponding author. E-mail: sxwuchua@163.com
© 2022 Chinese Physical Society and IOP Publishing Ltd http://iopscience.iop.org/cpb http://cpb.iphy.ac.cn
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2. Model and Hamiltonian
Based on the recent experiment,[28] we consider a one-

dimensional spin chain consisting of N capacitively coupled
qubits as shown in Fig. 1(a). The Hamiltonian of the system
can be expressed as

ℋ=
N−1

∑
j=0

ω j

2
σ
+
j σ

−
j +

N−1

∑
j=1

g j

(
σ
+
j−1 +σ

−
j−1

)(
σ
+
j +σ

−
j

)
, (1)

where σ
+
j (σ−

j ) is the raising (lowering) operator of the jth
qubit Q j with transition frequency ω j. The parameter g j de-
notes the coupling strength between qubits Q j−1 and Q j. In
general, the coupling strengths are not adjustable. To achieve
fully tunable coupling strengths, one can apply an ac magnetic
flux to periodically modulate the qubit frequencies,[41,42]

ω j = ω̄ j + ε j sin(v jt +ϕ j) , (2)

where ω̄ j is the mean operating frequency, ε j, v j, and ϕ j are
the modulation amplitude, frequency, and phase respectively.
By defining a rotating frame U =U1 ×U2 with

U1 = exp

[
−i

(
N−1

∑
j=0

ω̄ j

2
σ

z
j

)
t

]
, (3)

U2 = exp

[
i

N−1

∑
j=0

σ
z
j
α j

2
cos(v jt +ϕ j)

]
, (4)

where α j = ε j/v j, we can obtain the transformed Hamiltonian

ℋI = i
dU†

dt
U +U†HU

=
N−1

∑
j=1

g j

{
σ
+
j−1σ

−
j e i∆ jt exp

[
−iα j−1 cos

(
v j−1t +ϕ j−1

)]
exp [iα j cos(v jt +ϕ j)]+H.c.

}
, (5)

where ∆ j = ω̄ j − ω̄ j−1. We consider ∆ j = v j (−v j) for odd
(even) j.[41] Then, using the Jacobi–Anger identity

exp [iα cos(vt +ϕ)] =
∞

∑
l=−∞

il𝒥l (α) e il(vt+ϕ), (6)

with 𝒥l (α) being the lth Bessel function of the first kind,
and applying the rotating-wave approximation by neglecting
the high-order oscillation terms, the effective Hamiltonian be-
comes

ℋeff =
N−1

∑
j=1

g′jσ
+
j−1σ

−
j +H.c., (7)

with the effective coupling strength

g′j = g j𝒥1 (α j)𝒥0
(
α j−1

)
e±i(ϕ j±π/2), (8)

where ± denotes j being odd and even in g′j, respectively.
From Eq. (8), it is clear that the coupling strength g′j can

be conveniently tuned independently by changing α j = ε j/v j.
Moreover, there is a phase factor in each coupling which is de-
rived from the driving phase ϕ j. Such a superconducting qubit
chain with tunable couplings can be used to study quantum
state transfer,[43] quantum gate,[44] and gauge potentials.[45]

Moreover, we can realize generalized superlattice in addition
to the simple SSH model in such a qubit chain with fully tun-
able couplings.

(a)

(b)

⋯⋯

⋯ ⋯

J3J2 J4J1

Q0 Q1 Qj↩ Qj QN↩ QN↩

g1 gj gN↩

m m⇁

Fig. 1. (a) Schematic diagram of a qubit chain. Here, Q j denotes the
jth qubit, g j is the coupling between neighboring qubits. (b) Schematic
diagram of a quadrimeric superlattice with four qubits in each unit cell.
J1, J2, and J3 are the intra-cell couplings, whereas J4 is the inter-cell
coupling.

To demonstrate the topological properties of superlat-
tice in superconducting circuits, here we focus on a superlat-
tice qubit chain with four qubits in each unit cell denoted as
{1,2,3,4}, as shown in Fig. 1(b), which is known as the SSH4

model. For such a quadrimeric lattice, the Hamiltonian reads

H =
M

∑
m=1

(
J1σ

+
m,1σ

−
m,2 + J2σ

+
m,2σ

−
m,3 + J3σ

+
m,3σ

−
m,4

+J4σ
+
m,4σ

−
m+1,1 +H.c.

)
, (9)

where m is the unit cell index, M is the number of the unit cells,
J1, J2, and J3 denote the intracell qubit coupling strengths and
J4 is the intercell qubit coupling strength. For simplicity, we
take h̄ = 1 and set J1 as the energy scale.

Note that the Hamiltonian (9) describes an interacting
spin chain. Here, we consider the single-excitation case, i.e.,
one of the qubits is excited to the excited state |e⟩ and the oth-
ers stay in the ground state |g⟩.

3. Topological phase transition
To study the topological feature of the qubit superlattice,

we rewrite the Hamiltonian (9) in the momentum space as

H̃ (k) =
(

0 h†

h 0

)
=


0 0 J1 J4 e−ik

0 0 J2 J3
J1 J2 0 0

J4 e ik J3 0 0

 . (10)

The eigenvalues are given by E =±
√

(J±
√

J2 −4T )/2
with J = J2

1 + J2
2 + J2

3 + J2
4 and T = (J1J3)

2 + (J2J4)
2 −

2J1J2J3J4 cosk. It is found that there are four bands. If
J1J3 = ±J2J4, the gap between the middle bands is closed at
k = 0 or k = π .

088501-2
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By introducing the matrix Γ = I2 ⊗σz with I2 being the
2×2 identity matrix, one can verify that Γ H̃+H̃Γ = 0. There-
fore, the SSH4 model has a chiral symmetry and belongs to the
same class of the SSH model, and the corresponding winding
number can be obtained as follows:

w =
1

2π i

∫ 2π

0
dkz−1 dz

dk
, (11)

where z = det(h) = J1J3 −J2J4 e ik. Through a straightforward
calculation, we have

w =

{
1, |J1J3|< |J2J4| ,
0, |J1J3|> |J2J4| .

(12)

The winding number w= 1 (0) shows that the above qubit
chain [Eq. (9)] is in the topologically nontrivial (trivial) phase.

For one-dimensional chiral symmetric systems, the wind-
ing number is an important topological invariant used to char-
acterize the topological phase and can be measured through
the dynamics of quantum state. That is, the winding number
can be extracted from a time-dependent quantity–mean chiral
displacement (MCD), which has been measured experimen-
tally in cold atoms,[46] photonic system,[47] and superconduct-
ing qubit chain for the SSH-type model.[28] For the SSH4-type
qubit chain, we define the chiral displacement operator as (see
the appendix)

𝒞 = ∑
x

x(P̂e
1x − P̂e

2x + P̂e
3x − P̂e

4x), (13)

with P̂e
ix = |e⟩ix ⟨e| (i = 1,2,3,4). Here, x is the relabeled

unit cell index with {x = · · · ,−1,0,1, · · ·}. Then the dynam-
ics of the MCD is given as 𝒞 (t) = ⟨ψ (t)|𝒞 |ψ (t)⟩. Here,
|ψ (t)⟩ = e−iĤt |ψ (0)⟩ with |ψ (0)⟩ being the initial state at
time t = 0. The long-time average of the MCD, i.e., 𝒞 =

limT→∞ 1/T
∫ T

0 dt𝒞(t) can be used to characterize topological
invariant.

0 5 10

0

1

2
(a)

0 5 10 15
-0.5

0

0.5

M/

(b)

M/

0 5 10

0

1

2
(c)

0 5 10 15
-0.5

0

0.5
(d)

t t

Fig. 2. (a) and (b) The dynamics of 𝒞total (t) with J4 = 5 (a) and J4 = 0.2
(b), respectively. (c) and (d) The dynamics of ⟨𝒞total (t)⟩ with J4 = 5 (c)
and J4 = 0.2 (d), respectively. Here, ⟨· · · ⟩ denotes the disorder-averaged
𝒞total (t). The other parameters are chosen as J1 = J2 = J3 and W = 0.2.

In order to detect the winding number for the
SSH4-type qubit chain, we consider two single exci-
tation initial states localized on the central unit cell,
i.e., |ψ1(0)⟩ = |gggg, . . . ,eggg, . . . ,gggg⟩ and |ψ3(0)⟩ =

|gggg, . . . ,ggeg, . . . ,gggg⟩. The corresponding MCDs are de-
noted as 𝒞1(t) and 𝒞3(t), respectively. The topological wind-
ing number can be extracted from the total MCD–𝒞total(t) =
𝒞1(t)+𝒞3(t), that is,

w = 𝒞total. (14)

As shown in Figs. 2(a) and 2(b), we simulate 𝒞total(t) for
different configurations with J4 > J1(= J2 = J3) and J4 < J1(=

J2 = J3), corresponding to topological non-trivial and trivial
phases, respectively. It is clear that the curve of 𝒞total(t) os-
cillates around 1 when J4 > J1, which gives the topological
winding number w = 1. For J4 < J1, 𝒞total(t) oscillates around
the average values 0 corresponding to trivial phase with w = 0.
These results show that the long time dynamics of the chiral
operator [Eq. (13)] can be effectively characterized different
topological phases for SSH4-type qubit chain.

To demonstrate the robustness of the MCD, we add the
disorder to each qubit couplings as Jm

i = Ji +Wδ , where W
is the disorder strength and δ ∈ [−0.5,0.5] is a random num-
ber. In Figs. 2(c) and 2(d), we show the disorder-averaged
MCD ⟨𝒞total⟩ by averaging 𝒞total (t) over 30 independent dis-
order configurations for trivial and nontrivial phases. It can
be seen that ⟨𝒞total⟩ is robust to the weak disorder, maintain-
ing oscillation center around 1 and 0 for J4 > J1 and J4 < J1,
respectively.

4. Detecting of edge states

A hallmark feature of topological insulators is the topo-
logically protected boundary states. For the two-band SSH
model, it supports limited number (one or two) of topologi-
cal edge states. However, the superlattice systems show richer
topological features due to the multiple topologically nontriv-
ial dispersion bands. To determine the existence of topological
phases and edge states, it is convenient to analyze the sym-
metries of the Hamiltonian. For Hamiltonian (10), the sys-
tem possesses inversion symmetry, i.e., 𝒫H(k)𝒫−1 = H(−k)
with 𝒫 = σx ⊗σx when J1 = J3. Figure 4(a) shows the en-
ergy spectrum with J1 = J3. It is clear that there are two zero-
energy degenerate edge states in the middle gap for J4 > J4,0

(= J1J3/J2), and there are two degenerate edge states for
J4 > J4,1 (= J2) in the upper and lower gaps. Such topological
phases can be described by the Zak phase, which is defined
as γs = i

∫
π

−π
dk
〈
ψs,k
∣∣∂k ψs,k

〉
with ψs,k being the sth-Bloch-

wave functions. For multiband systems, the topological prop-
erties of the nth band gap is characterized by the sum of Zak
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phase of all the isolated bands below the corresponding band
gap, i.e.,

𝒵n = γ1 + · · ·+ γn. (15)

In Figs. 3(a1)–3(a3), we plot the Zak phase 𝒵n (n =

1,2,3) of the corresponding band gap of the SSH4 model un-
der the inversion symmetry. We find that 𝒵n is quantized and
can take the values zero or π , denoting the trivial and nontriv-
ial topological phases, respectively. The nontrivial Zak phase
implies that a pair of topologically protected edge states will
appear at the boundaries of the system.

In the case of J1 ̸= J3, the superlattice has no inver-
sion symmetry. Figure 3(b) shows the energy spectrum and
Figs. 3(b1)–3(b3) show the corresponding gap Zak phase 𝒵n

with J1 ̸= J3. It can be seen that the Zak phase of the middle
gap is quantized, and a pair of degenerate zero-energy edge
state emerge for J4 > J4,2 (= J1J3/J2). However, for the upper
and lower gaps, the Zak phases 𝒵1,3 are not quantized and vary
continuously. The non-degenerate edge states emerge without
experiencing a gap closing and reopening point, and they are
not topological.
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The above discussion shows that the number of topologi-
cal edge states can be controlled by tuning the inter- and intra-
cell couplings. The topological edge states can be detected
by the dynamics of the single-excitation quantum state. As
an example, in Fig. 4(a), we plot the energy spectrum with
J4 = 0.5 (blue circle) and J4 = 2 (red dot). In the topologi-
cal phase (J4 = 2), there are three pairs of edge state in the
gaps and the distribution wave functions of them are shown in
Figs. 4(b1)–4(b3). Figures 4(c) and 4(d) show the time evolu-
tion of the single-excited state (|ψ(0)⟩ = σ

+
1 |G⟩) population

for J4 = 0.5 and J4 = 2, respectively. For the non-topological
phase, the excited state spreads into the bulk over time, while
in the topological phase with edge states, the wave-packet re-
mains localized around the boundary unit cell.

5. Dynamics of interface state
Another important topological aspect is the existence of

interface states between two topological distinct insulators.
As shown schematically in Fig. 5(a), a topological interface
(shaded region) can be created by combining two SSH4-type
qubit systems with different topological properties [e.g., in
Fig. 5(a), the qubit array on the right (left) represents a topo-
logically nontrivial (trivial) array with J4 < J1 = J2 = J3 (J4 >

J1 = J2 = J3)]. The energy spectrum is sown in Fig. 5(b) with
{J1,2,3 = 1,J4 = 5}. There are three localized interface states
existing in the gap, and the distribution of these three states are
shown in Fig. 5(c).
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Fig. 5. (a) Schematic diagram of the two-coupled-qubit chain with dif-
ferent topological phases. The central shaded region denotes the in-
terface. (b) The energy spectrum of the qubit configuration shown in
(a). The red dots represent the interface states. (c) The distribution
wave function of the interface states. The parameters are chosen are
J1 = J2 = J3, J4 = 5 and M = 10.

To observe the dynamics of topological interface states,
we excite the central qubit of the interface region [Fig. 5(a)].
Such an initial state has a large overlap with the wave func-
tion of the interface states and it will propagate in the qubit
chain via the interface states. Compared with the localized
defect state in the SSH-type qubit chain, the interface states

of superlattice exhibit exotic behaviors.[37,39] Figures 6(a) and
6(b) show the time evolutions of single-excitation state popu-
lation with M = 4 and M = 2, respectively. It is found that the
dynamics of the single-excitation exhibits Bloch-like oscilla-
tion. Such breathing-like oscillation is due to the interference
of topological interface states with different propagation con-
stants, which is quite different from general Bloch oscillation
with a linear potential.[48] The results indeed indicate that the
single-excited state is localized in the center interface region
of the qubit chain, unambiguously demonstrate the existence
of the topological interface states.
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Fig. 6. Time evolutions of all qubit’s excited state population with
M = 4 (a) and M = 2 (b). The initial excitation is the central qubit
of the interface region as shown in Fig. 5(a). The other parameters are
the same as those in Fig. 5(b).

6. Conclusion
In summary, we have constructed one-dimensional su-

perlattices in superconducting circuits with tunable coupling
strengths. As an example, we consider the quadrimeric lattice.
Such a multiband system shows richer topological properties
than the dimeric case. Through the non-equilibrium dynamics
of a single-qubit excitation state, we show that the topological
winding number can be measured by a dynamical dependent
quantity, i.e., mean chiral displacement, which takes zero for
the trivial phase and 1 for the nontrivial phase. Moreover, we
have demonstrated the existence of topological edge state un-
der different parameters region. Finally, the stable Bloch-like
oscillation of multiple interface states induced by the interfer-
ence of them has been demonstrated. In the experiment, accu-
rate single-shot readout techniques enable us to synchronously
record the dynamics of all qubits and to observe the evolution
of a single-excitation state. In addition, the physics presented
here persists even for finite size, indicating the feasibility of
experimental measurements. Note that similar physics can be
extended to superlattices with arbitrary number of qubits in
each unit cell. Our work potentially paves the way for explor-
ing novel topological states of matter in controllable supercon-
ducting circuits.

Appendix A
Here, we derive the validity of the mean chiral displace-

ment in our quarimeric lattice.[49] First, let us define the pro-
jectors Pj =

∣∣ψ j
〉〈

ψ j
∣∣ and Q = ∑ j=1,2 Q j = ∑ j=1,2(Pj −P− j),
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where
∣∣ψ j
〉

( j = ±1, ±2) denotes the the eigenstate of the
Bloch Hamiltonian (10) with energy E j. These representa-
tions comes from the chiral symmetry where the eigenenergies
and eigenstates satisfy E j = −E− j and Γ̂

∣∣ψ j
〉
=
∣∣ψ− j

〉
. The

winding number can be computed through the integral over
the Brillouin zone of the skew polarization S = ∑ j∈occ S j, i.e.,

w =
∮ dk

π
S(k), where S j = i

〈
Γ ψ j|ψ ′

j

〉
with

∣∣∣ψ ′
j

〉
= ∂k

∣∣ψ j
〉
.

For a generic localized state |Ψ⟩, the mean chiral dis-
placement (

〈
𝒞(t)

〉
≡
〈

Γ̂ · x(t)
〉

) is given by〈
Γ̂ · x(t)

〉
Ψ̄

=
∮

∑
j=1,2

dk
2π

⟨Ψ |U†
t Γ (i∂k)Ut |Ψ⟩ , (A1)

where Ut = e−iHt is the unitary evolution operator and |Ψ⟩=∮ dk
2π

|Ψ⟩. Through a simple calculation, we have

Pj
[
U−t

Γ ∂kU t]Pj′

= δ j,− j′

[
PjΓ ∂k

e i2tE j

2
+ e i2tE j

∣∣ψ j
〉〈

ψ
′
− j
∣∣]

+ e it(E j−E j′ )
∣∣ψ j
〉〈

ψ− j|ψ ′
j′

〉〈
ψ j′
∣∣

= δ j,− j′

[
PjΓ ∂k

e i2tE j

2
+ e i2tE j

∣∣ψ j
〉〈

ψ
′
− j
∣∣]

− e it(E j−E j′ )
∣∣ψ j
〉〈

ψ
′
− j
∣∣Pj′ . (A2)

For simplicity, we define the projector on the subspace of
chiral-partner eigenstates, R j = Pj +P− j. Equation (A2) mul-
tiplied by i gives the sum of two terms, a term T1 which acts
in the subspace of chiral partner states with | j| = | j′| and a
term T2 which acts in the subspace of the states with | j| ̸= | j′|.
Using R jΓ = Γj, ∂kΓ = 0 and iQ jS j = ∂k (Q jΓ )/2, these two
terms become

T1 =
D/2

∑
j=1

S j [1− cos(2E jt)]R j + iR jΓ ∂k

[
cos(2E jt)

2

]
−Q jΓ ∂k

[
sin(2E jt)

2

]
− iQ jS j sin(2E jt)

=
D/2

∑
j=1

S j [1− cos(2E jt)]R j

+∂k

[
iΓj

cos(2E jt)
2

−Q jΓ
sin(2E jt)

2

]
, (A3)

T2 = ∑
j, j′=±1,±2 (| j|̸=| j′|)

〈
ψ− j|ψ ′

j′

〉∣∣ψ j
〉〈

ψ j′
∣∣ e it(E j−E j′ ).

(A4)

It is obvious that the term T2 is purely oscillatory, so it will
average to zero in the long time limit. Considering ⟨Γ ⟩

ψ j
= 0

and ⟨QΓ ⟩
ψ j

= 0, we have

〈
Γ̂ · x(t)

〉
Ψ̄

=
∮ dk

2π

〈
T2 + ∑

j=1,2
S j[1− cos(2tE j)]R j

〉
Ψ

.

(A5)

For the state
∣∣ψ j
〉

(=
∮ dk

2π

∣∣ψ j
〉
) and

∣∣Γj
〉

(= [sgn( j)
∣∣ψ j
〉
+

∣∣ψ− j
〉
/
√

2]), we have ⟨T2⟩ψ j
= ⟨T2⟩Γj

= 0 and
〈
R j
〉

ψ j′
=〈

R j
〉

Γj′
= δ j j′ , then obtain

∑
j=1,2

〈
Γ̂ · x

〉
Γ̄j
= ∑

j=1,2

〈
Γ̂ · x

〉
Ψ̄j

=
∮ dk

2π

D/2

∑
j=1

S j[1− cos(2tE j)]

=
w
2
+osc., (A6)

where osc. denotes the oscillatory term which tends to zero in
the long time limit.
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