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Topological phases of ultracold molecules in an optical tweezer ladder
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The recent experimental realization of optical tweezer arrays of ultracold molecules provides a versatile
platform for exploring molecular phases of matter. Here we show that by programming tweezers, the dipolar
interactions in an optical tweezer ladder could be tailored to implement a generalized Su-Schrieffer-Heeger
model. Through calculating topological invariants, nonlocal string-order parameters, many-particle ground-state
degeneracy, and entanglement spectrum, we demonstrate that this ladder at the single-particle level supports two
different chiral topological phases and at the many-particle level features two different interacting topological
phases and, respectively, possesses much richer topological edge states. We also discuss the detection of these
topological phases and their robustness to systematic imperfections. Further generalization to a high dimension
could offer opportunities for preparing diverse ultracold molecular topological phases.
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I. INTRODUCTION

Ultracold molecules possess rich internal structures and
long-range dipolar interactions, as compared to ultracold
neutral atoms. Leveraging these unique properties, ultra-
cold molecule systems promise unique directions in quantum
computation [1–7] and simulation [8–18], quantum chem-
istry [19,20], and precision measurements [21,22]. To realize
the full potential of such a system, large-scale ultracold
molecular arrays combined with full quantum control on
individual molecules are required. The past three years
have witnessed rapid experimental progress in scaling up
ultracold molecular arrays via optical tweezers [23–36], in-
cluding the creation of optical tweezer arrays of rovibrational
ground-state molecules [36] and the improvement of rota-
tion coherence time to nearly 100 milliseconds in optical
tweezers [32]. With the success of this bottom-up approach,
ultracold molecular tweezer arrays are becoming a scalable
quantum platform for quantum science applications [23,37–
39], particularly for quantum simulation of exotic phases of
matter.

Topological phases of matter are now of great interest
across many areas of physics [40–48]. Distinct from con-
ventional phases, topological phases are protected by global
topological invariants and therefore inherit natural robustness
against perturbations and noises, enabling both fascinating
physics and exciting applications. By engineering sophisti-
cated external fields to manipulate the dipolar interactions,
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previous studies have shown that topological phases could be
implemented in ultracold dipolar molecules based on optical
lattices, including topological flat bands [49,50], fractional
Chern insulators [51], Weyl excitations [52], and Hopf topo-
logical insulator phases [53,54]. However, this system lacks
the ability to create arbitrary geometry of topological lat-
tices and in situ manipulate the position-dependent dipolar
interaction, thereby limiting its flexibility and versatility. An
alternative route is to use programmable optical tweezer ar-
rays, which allows us to create arbitrary lattice geometry and
arbitrary boundaries and tune the position-dependent dipolar
interactions into wanted spatial anisotropy [23]. A recent ex-
periment has demonstrated that the paradigmatic topological
Su-Schrieffer-Heeger model can be naturally implemented by
using optical tweezer arrays of Rydberg atoms [55].

In this paper, we investigate topological phases of ultracold
molecules in optical tweezer arrays. Through programming
optical tweezer configurations, we show that the dipolar in-
teractions in an optical tweezer ladder could be tailored to
implement a generalized Su-Schrieffer-Heeger model. Com-
pared to the standard one, as we will show, this model supports
two different nontrivial topological phases and has two dif-
ferent kinds of topological edge states, both in the single-
and many-particle case. As for the previous case, this ladder
system possesses two nontrivial chiral topological phases,
distinguished by two different topological winding numbers,
signified by the single-particle edge states with quite different
localization features. We also present a method to directly
probe both the topological winding numbers and topolog-
ical edge states by using spin dynamics. Furthermore, we
study the topological phases in the many-particle case, basing
on exact diagonalization and density matrix renormalization
group calculations. The numerical results of nonzero string-
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order parameters indicate that the optical tweezer ladder
system supports two different interacting symmetry-protected
topological (SPT) phases, featuring fourfold degeneracy of
ground states, twofold degeneracy of entanglement spectra,
and two different edge states in the quasiparticle energy spec-
tra. We also exhibit that in both cases these topological phases
are robust to systematic imperfections.

The paper is organized as follows. Section II presents
how to realize a generalized Su-Schrieffer-Heeger model from
molecular dipolar interactions in an optical tweezer ladder.
Section III studies the single-particle topological properties
and their detection. Section IV investigates the topological
properties of interacting SPT phases and their robustness.
Section V gives a summary and outlook for this paper.

II. ULTRACOLD MOLECULES IN AN OPTICAL
TWEEZER LADDER

We consider ultracold polar molecules trapped in an optical
tweezer array with one molecule per tweezer. Motivated by
recent experiments [25,36], we could choose NaCs or CaF
as our molecular species. As demonstrated below, by encod-
ing two rotational states into a spin, the dipolar interaction
between polar molecules realizes a spin-exchange interaction
and the exchanging of a spin-up state between tweezers sim-
ulates the hopping of a hard-core boson between lattice sites.
Specifically, the dipole-dipole interaction between molecules
is given by

Hdd = 1

2

∑
i �= j

κ

R3
i j

[di · d j − 3(di · Ri j )(d j · Ri j )], (1)

where κ = 1/4πε0, di is the dipole moment of molecule i
and Ri j is the vector connecting the two molecules i and j.
In the spherical coordinates, the dipole-dipole interaction can
be rewritten in spherical tensor form as

Hdd = −
√

6

2

∑
i �= j

κ

R3
i j

2∑
p=−2

(−1)pC2
−p(θ, φ)T 2

p (di, d j ), (2)

where C2
−p(θ, φ) =

√
4π
5 Y2,−p(θ, φ) and the spherical tensors

are given by T 2
±1 = (dz

i d±
j + d±

i dz
j )/

√
2, T 2

±2 = d±
i d±

j , T 2
0 =

(d−
i d+

j + 2dz
i dz

j + d+
i d−

j )/
√

6. As illustrated in Fig. 1(a), the
optical tweezer array is confined to the x-z plane and arranged
into a structure of two-leg ladder geometry. With respect to
this configuration, θ is the angle between the z axis and the
vector Ri j and φ = 0.

Each ultracold polar molecule trapped in an optical tweezer
could mimic a spin. As for this paper, we investigate the
spin-1/2 case where the two spin states are encoded by two
rotational states, i.e., | ↑〉 = |0, 0〉 and | ↓〉 = |1,−1〉 [15]. In
the absence of electric fields, by projecting the Hamiltonian
Hdd into the Hilbert space spanned by {| ↑〉, | ↓〉}, we obtain
a spin-exchange interaction Hamiltonian,

H =
∑
i> j

Ji j (S
+
i S−

j + S−
i S+

j ), (3)

where S+
i is the spin raising operator on the site i and Ji j =

−κd2
↑↓Vdd(Ri j )/2 is the long-range spin-exchange interaction

(a)

(c)

(b)

FIG. 1. (a) An optical tweezer ladder in which each tweezer traps
a single molecule. The quantization axis set by the magnetic field is
oriented along the z direction. By reconfiguring optical tweezers, two
coupled dimerized optical tweezer chains are naturally implemented,
which can be described by a dimerized hard-core lattice model as
shown in (c), with two sublattices a and b. (b) The geometric factor
Vdd(Ri j ) between the origin and the tweezer site (x, z).

strength. d↑↓ = 〈↑ |d+| ↓〉 is the transition dipole moment.
The long-range feature is manifested by the geometric factor
Vdd(Ri j ) = (1 − 3 cos2(θ ))/R3

i j shown in Fig. 1(b). An inter-
esting feature is that the long-range spin-exchange interaction
could vanish when the angle is tuned to θc = ± arccos(1/

√
3),

irrespective of Ri j .
The superiority for using optical tweezers is that the spatial

anisotropy of spin-exchange interaction could be tuned by
controlling the tweezer locations to engineer Ri j and θ . As
displayed in Fig. 1(a), the tweezers in each leg are arranged
along the x direction, which gives θ = π/2, so the spin-
exchange interaction strengths for the x direction are only
dependent on the distances Ri j . With this feature, by control-
ling the separation distances d1 and d2 to separately tune J1

and J2, two dimerized spin chains are naturally implemented
in the two legs, where each unit cell has two spins, labeled by
a and b. Between the two legs, the spin-exchange couplings
are also dependent on θ , which allows us to turn on or off
the couplings. For example, by arranging the tweezer config-
uration to make α = θc or β = θc, one can, respectively, turn
off the intraleg couplings J3 or J4. As calculated in Fig. 1(b),
the couplings beyond nearest neighbors are much smaller
than the nearest-neighbor couplings J1,2,3,4. As we will show,
the topological properties of the system can be qualitatively
captured by the nearest-neighbor couplings, and the influence
of the couplings beyond nearest neighbors is minor.

The spin-exchange interaction model could be mapped to a
hard-core lattice model, where the spin-up state is referred to
as a hard-core bosonic excitation and the spin-down state as
the absence of such an excitation. As depicted in Fig. 1(c), the
optical tweezer ladder can be described by a generalized hard-
core Su-Schrieffer-Heeger model [56], with the corresponding
hard-core lattice Hamiltonian written as

H =
N∑

j=1

J1b†
ja j+1 + J2a†

j b j+1 + J3a†
j b j

+ J4a†
j a j+1 + J4b†

jb j+1 + H.c., (4)

where a†(b†) = S+
a (S+

b ) is the bosonic creation operator. The
single molecules in each tweezer are initially prepared into

023318-2



TOPOLOGICAL PHASES OF ULTRACOLD MOLECULES IN … PHYSICAL REVIEW A 106, 023318 (2022)

the spin-down state that also can be flipped into the spin-up
sate through microwave pulses. As a result, the number of
hard-core boson particles (spin-up states) in this system can
be precisely manipulated by controlling the number of excited
molecules in the tweezer array, which allows us to study both
noninteracting single-particle and interacting many-particle
topological phases.

III. NONINTERACTING SINGLE-PARTICLE
TOPOLOGICAL PHASES

A. Noninteracting topological phases

We first study single-particle topological phases in the op-
tical tweezer ladder model. For this purpose, we transfer the
real space single-particle Hamiltonian H into the momentum
space through a Fourier transformation, which gives H (kx ) =∑

kx
c†(kx )h(kx )c(kx ), where c(kx ) = [a(kx ), b(kx )]T ,

h(kx ) = h0(kx )I + hx(kx )σx + hy(kx )σy, (5)

with

h0 = 2J4 cos(kx ), hx = J3 + (J1 + J2) cos(kx ),

hy = (J1 − J2) sin(kx ). (6)

The Bloch Hamiltonian h(kx ) respects a chiral symmetry
when J4 = 0, i.e., 
h(kx )
−1 = −h(kx ), where 
 = σz is the
chiral symmetry operator. As shown in Fig. 1(a), the coupling
J4 = 0 is realized by arranging the optical tweezer config-
uration to adjust β = θc. The topological properties for the
corresponding energy bands are characterized by topological
winding numbers, defined as

ν = 1

2π

∫
(nx∂kx ny − ny∂kx nx )dkx, (7)

where (nx, ny) = (hx, hy)/|h|. Substituting Eqs. (6) into
Eq. (7), the topological winding number values are analyti-
cally calculated as

ν =
⎧⎨
⎩

1, |J1 + J2| > |J3| and |J1| > |J2|
−1, |J1 + J2| > |J3| and |J1| < |J2|
0, |J1 + J2| < |J3|.

(8)

This result shows that, in addition to the trivial topological
phase ν = 0, our system also supports two different nontrivial
topological phases ν = ±1.

In experiment, by arranging the optical tweezer configu-
rations in the two legs, one can vary the ratio d1/d2 to tune
J1,2,3, and at the same time fix the angle β to θc so J4 = 0.
The topological winding number value as a function of d1/d2

is numerically calculated in Fig. 2(a). We find that ν = 1 for
d1/d2 < 0.54, ν = 0 for 0.54 < d1/d2 < 1.86, and ν = −1
for d1/d2 > 1.86. As a consequence, optical tweezer ladders
could be expediently tuned into different topological phases
and utilized to explore topological phase transitions.

B. Bulk-edge correspondence

Bulk-edge correspondence is a basic theorem associated
with topological phases. According to the bulk-edge cor-
respondence, the topological invariant values determine the
number of topological edge modes. As an illustration, we
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FIG. 2. (a) Topological winding number values as a function of
d1/d2. (b)–(d) Edge-state energy spectra of three different topolog-
ical phases without (dots) and with (crosses) the couplings beyond
nearest neighbors. The systematic parameters are (b) d2 = 1.2d1,
J1 = −0.25J3. and J2 = −0.14J3, (c) d2 = 2.5d1, J1 = −2.54J3, and
J2 = −0.16J3 and (d) d2 = d1/3, J1 = −0.19J3, and J2 = −5.19J3.
The density distributions in the tweezer ladder for the two zero-
energy modes are shown in the insets of (c), (d). The other parameters
are β = θc and J4 = 0. J3 is used as the energy unit.

study such correspondence through the three topological
phases ν = 0,±1 shown in Fig. 2(a). By numerically calcu-
lating the real-space energy spectra of H in the subspace of
single spin-up excitation and in the presence of open boundary
conditions (OBCs), the edge-state energy spectra for the three
topological phases are shown in Figs. 2(b)–2(d). As shown,
for the trivial topological phase ν = 0, there are no zero-
energy topological edge modes in the OBC energy spectrum,
whereas for the nontrivial topological phase ν = ±1, there are
one pair of zero-energy topological edge modes, manifested
by the particle density distributions shown in the insets of
Figs. 2(c) and 2(d). Although the two nontrivial topological
phases cannot be distinguished from whether having zero-
energy edge modes, the localization features for the edge-state
wave functions allows us to distinguish them. Specifically,
the left topological edge states in the topological phases
ν = 1 (ν = −1) only occupy the a-type (b-type) sublattices
and maximally inhabits the leftmost a-type (b-type) tweezer,
whereas for the right topological edge states, the situation
is opposite. Such different internal structures can be used to
promote robust quantum state transfer via topological edge
states [57].

C. The influences of long-range couplings

In Figs. 2(b)–2(d), we also study the influence of long-
range couplings (beyond nearest neighbors) on the zero-
energy topological edge modes. This is done by quantitative
comparison of the OBC energy spectra of the system between
without (dots) and with (crosses) long-range couplings. It
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turns out that the zero-energy topological edge modes are
quite robust to the presence of smaller long-range couplings.
The reason is that, in the presence of long-range couplings
between different sublattices, the system still respects chi-
ral symmetry, which guarantees that the in-gap zero-energy
topological edge modes remain intact if J1,2,3 dominate those
couplings, which is the case for our system, whereas for the
long-range couplings between the same sublattices, which
break the chiral symmetry and shift the zero-energy modes
to non-zero energies, but the in-gap edge modes still exist
provided those couplings are not large enough to mix the two
energy bands. For our system, the long-range couplings be-
tween the same sublattices are very small, so the zero-energy
features for the in-gap edge modes nearly remain unchanged.
In the insets of Figs. 2(c) and 2(d), we find that the couplings
beyond nearest neighbors also do not affect the edge localiza-
tion features for the two zero-energy modes. Therefore, the
couplings beyond nearest neighbors have very little effects,
and the essential topological features can be qualitatively de-
termined by the nearest-neighbor couplings J1,2,3.

D. Experimental detection

For ultracold molecules, quantum dynamics of spin states
governed by the spin-exchange interaction have been ex-
perimentally observed in optical lattices by using coherent
microwave spectroscopy technique [15]. Here we show that,
with such dynamics in an optical tweezer ladder, both the
topological invariants and the topological edge states could be
directly detected, which thus provides an experimentally ac-
cessible method for detecting ultracold molecular topological
phases.

To detect the bulk topological invariants, we use a mi-
crowave pulse to flip one of the single molecules that is
trapped in the bulk of the optical tweezer ladder into a spin-up
rotational state. The resulting single spin-up excitation state
being the initial state of the system is written as |ψ (t = 0)〉 =
| ↓↓ ·· ↑ ·· ↓↓〉. After an evolution time t , the final state of the
system becomes |ψ (t )〉 = e−iHt |ψ (0)〉. The winding number
can be detected from such spin dynamics by the time-resolved
mean chiral displacement

C(t ) = 〈ψ (t )|Xc|ψ (t )〉, (9)

where Xc = ∑
x x(a†

xax − b†
xbx ) is the chiral displacement op-

erator. In the long-time limit, there is a relationship between
the winding number value and the time-averaged mean chiral
displacement C̄ = limT →∞ 1

T

∫ T
0 dt C(t ) [58], i.e.,

ν = 2C̄, (10)

where C̄ can be seen as the oscillation center of the time-
resolved mean chiral displacement C(t ), which has been
experimentally measured in cold atom systems [59,60]. We
notice that the chiral displacement operator is exactly the
chiral polarization operator. It was previously found that the
chiral polarization corresponding to the Wannier function is
equal to half the topological winding number [61]. This im-
plies that the time-averaged mean chiral displacement indeed
measures the chiral polarization and explains why it can be
connected with the topological winding number.
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FIG. 3. (a)–(c) Mean chiral displacements versus evolution time,
without (solid line) and with (dashed line) long-range couplings.
(d)–(f) Time evolution of spin-up density distribution for the cases
where the single molecules trapped at the leftmost (d), (e) a-type, and
(f) b-type tweezers are initially prepared into the spin-up state. For
clear illustration, the tweezer ladder with 20 tweezers is mapped into
a linear lattice. The systematic parameters are (a), (e) d2 = 1.2d1,
J1 = −0.25J3, and J2 = −0.14J3, (b), (d) d2 = 2.5d1, J1 = −2.54J3,
and J2 = −0.16J3 and (c), (f) d2 = d1/3, J1 = −0.19J3, and J2 =
−5.19J3.

The time evolution of the mean chiral displacements is
numerically calculated in Figs. 3(a)–3(c). When the system is
tuned into |J1 + J2| < |J3|, as shown in Fig. 3(a), the oscilla-
tion center for C(t ) is around 0m whereas into |J1 + J2| > |J3|
and |J1| > |J2| (|J1| < |J2|), Fig. 3(b) [Fig. 3(c)] shows that
the corresponding oscillation center becomes 0.5 (−0.5).
These oscillation centers are also insensitive to the presence
of smaller long-range couplings, as shown in Figs. 3(a)–3(c).
Using Eq. (10), the topological winding number values are
measured as twice the oscillation centers.

Molecular topological edge states also can be detected by
spin dynamics. As an example, we show how to detect the
left topological edge state. To detect such an edge state, the
system is initialized into the single spin-up excitation state
|ψ (t = 0)〉 = | ↑↓ ·· ↓↓〉, with the single molecules trapped
at the leftmost a-type tweezer flipped into the spin-up state.
For the system in the topological phase ν = 1, the initial
state |ψ (t = 0)〉 has a large overlap with the wave function
of the left topological edge state, thus the left zero-energy
edge mode is excited. Consequently, the time evolution of
|ψ (t = 0)〉 is basically decided by the left edge mode. This
point is numerically confirmed in Fig. 3(d) by the dynamics of
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|ψ (t = 0)〉, which displays that the spin-up density is always
maximal in the leftmost a-type (odd parity) lattice site and
primarily distributed in the a-type sublattice, in according
with the characteristic of the left topological edge state in
the topological phase ν = 1. Figure 3(d) also indicates that
the wave packet partially propagates into the b-type sublat-
tices. This is due to finite-size effect which causes a coupling
between the left and right edge states. In contrast, for the
trivial topological phase ν = 0 and in the absence of the left
topological edge state, the initial state |ψ (t = 0)〉 in this case
is a superposition of different bulk eigenmodes. As shown
by its time evolution in Fig. 3(e), the wave packet evolves
into the bulk, without edge localization behavior, showing
the absence of the edge state. In a similar way, to detect the
left edge state associated with the topological phases ν = −1,
the left edge mode is excited by initializing the system into
|ψ (t = 0)〉 = | ↓↑↓ ·· ↓↓〉. From its time evolution shown
in Fig. 3(f), we can see that the spin-up density is always
maximal in the leftmost b-type (even parity) lattice site and
mostly distributed in the b-type sublattice, conforming to the
characteristics of the left edge state in the topological phase
ν = −1.

IV. INTERACTING SYMMETRY-PROTECTED
TOPOLOGICAL PHASES

A. Interacting topological phases

We further study the many-particle topological proper-
ties in the optical tweezer ladder. As we will demonstrate,
the system at half filling has a nonzero excitation gap.
The resulting many-body gapped phase is an interacting
SPT phase that is a developing class of exotic topolog-
ical phases and currently is highly perused [62–68]. The
SPT phase is characterized by nonlocal string-order pa-
rameters [69,70], lacking local order parameters. For our
system, as demonstrated below, there exist two different non-
trivial SPT phases, labeled type-I and type-II SPT phases,
featuring different edge states. Specifically, the topological
natures of gapped ground states in the type-I and type-II SPT
phases are, respectively, characterized by the following two
nonlocal string-order parameters:

OI = −〈
Zb1 ei π

2

∑N−1
i=2 (Zai +Zbi )ZaN

〉
,

OII = −〈
Za1 ei π

2

∑N−1
i=2 (Zai +Zbi )ZbN

〉
, (11)

where Zci = 1 − 2c†
i ci (c = a, b). To be specific, the nontrivial

SPT phases are distinguished from the trivial ones by nonzero
string-order parameters. Figure 4(a) presents the numerical
results of OI and OII as a function of d1/d2. As shown, the
value of OI (OII) is finite for d1/d2 < 0.54 (d1/d2 > 1.86),
the system is therefore in the type-I (type-II) SPT phase;
While for 0.54 < d1/d2 < 1.86, both OI and OII vanish and
the system is in the trivial SPT phase.

Another signature associated with nontrivial SPT phases is
the fourfold degeneracy of ground states. In Figs. 4(b)–4(d),
based on exact diagonalization, we calculate the full energy
spectrum of the system under OBCs as a function of the
number of hard-core particles for a lattice size N = 16. As
shown in Fig. 4(b), for the system in the trivial SPT phase,
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FIG. 4. (a) Nonlocal string-order parameters as a function of
d1/d2. Full energy spectra as a function of particle number for the
many-particle system in the (b) trivial SPT phase and nontrivial
(c) type-I and (d) type-II SPT phases. The systematic parameters
are (b) d2 = 1.2d1, J1 = −0.25J3, and J2 = −0.14J3, (c) d2 = 2.5d1,
J1 = −2.54J3, and J2 = −0.16J3, and (d) d2 = d1/3, J1 = −0.19J3,
and J2 = −5.19J3. The lattice size is N = 16.

there is a single gapped ground state at half filling (the case of
eight particles). In contrast, for the system in the nontrivial
type-I and type-II SPT phases, as displayed in Figs. 4(c)
and 4(d), respectively, the corresponding gapped ground states
have fourfold degeneracy, including the ground states in the
cases of seven, eight (twofold degenerate), and nine particles.

The ground-state degeneracy can be directly observed
in the perfectly dimerized limits. For the case of a triv-
ial SPT phase in the limit J1 = J2 = 0 and J3 < 0, there
is a single ground state that can be analytically derived as
|G〉 = ∏N

i=1(a†
i + b†

i )/
√

2|00〉aibi , while for the type-I SPT
phase in the limit J2 = J3 = 0 and J1 < 0, there are four
ground states |GI

x,y〉 = |xy〉a1bN

∏N
i=1(b†

i + a†
i+1)/

√
2|00〉biai+1 ,

with x, y ∈ {0, 1}; Similarly, for the type-II SPT phase with
J1 = J3 = 0 and J2 < 0, the four ground states are |GII

x,y〉 =
|xy〉b1aN

∏N
i=1(a†

i + b†
i+1)/

√
2|00〉aibi+1 . As shown, the lattice

ends a1 and bN (b1 and aN ) in the SPT phases are decoupled
from the Hamiltonian in the perfectly dimerized limits, which
results in two zero-energy edge modes. As a consequence,
the energies costed for zero, one, and two particles occupying
the two zero-energy edge modes are the same. For example,
for a 16-site lattice with eight particles filled (half-filling), in
addition to seven particles occupying the bulk modes, one par-
ticle left for occupying the two zero-energy edge modes (two
lattice ends), leading to twofold degenerate ground states;
for seven or nine particles fillings, zero or two particles, re-
spectively, occupy the two zero-energy edge modes, giving
rise to two more degenerate ground states. Consequently, the
four ground states in the type-I or type-II SPT phases are
degenerate.
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(a) (b)

(c) (d)

FIG. 5. The quasiparticle energy spectra as a function of parti-
cle number for the many-body system in the (a) trivial SPT phase
and nontrivial (b) type-I (circles) and type-II (stars) SPT phases.
The particle density distribution for the left (star) and right (cir-
cle) in-gap quasienergy edge modes in the type-I and type-II SPT
phases are, respectivel, shown in (c) and (d). The systematic param-
eters are (a) d2 = 1.2d1, J1 = −0.25J3, and J2 = −0.14J3, (b) d2 =
2.5d1, J1 = −2.54J3, and J2 = −0.16J3 (stars), and d2 = d1/3, J1 =
−0.19J3, and J2 = −5.19J3 (circles). The lattice size is N = 60.

B. Edge states in quasiparticle energy spectrum

The appearance of in-gap edge states are a hallmark of non-
trivial topological phases. Here we show that, for nontrivial
interacting SPT phases, there are two in-gap edge modes in the
quasiparticle energy spectrum. Suppose Eg

n is the ground-state
energy of the system (under OBCs), with n particles populated
inside. The quasiparticle energy spectrum is calculated as

δEn = Eg
n+1 − Eg

n , (12)

where δEn is the energy for adding one particle to a system
with n particles. In Figs. 5(a) and 5(b), we use density matrix
renormalization group method to calculate the quasiparticle
energy spectra of the system, for a larger lattice size N = 60,
taking into account long-range couplings. For the system in
the trivial SPT phase, Figure 5(a) shows that there is no eigen-
mode in the quasiparticle energy gap around the half filling.
By contrast, for the case of nontrivial type-I and type-II SPT
phases shown in Fig. 5(b), there is one pair of in-gap modes
at the zero quasiparticle energy.

To demonstrate that the in-gap zero-energy modes are cor-
responding to edge states, we further numerically calculate
their density distributions. The particle density distribution for
the quasiparticle eigenmodes is defined as

δn j = 〈
ψ

g
n+1

∣∣n̂ j

∣∣ψg
n+1

〉 − 〈
ψg

n

∣∣n̂ j

∣∣ψg
n

〉
, (13)

where |ψg
n〉 is the ground-state wave function of the system

populating n particles. Figures 5(c) and 5(d) plot the density
distributions of the two in-gap zero-energy modes, respec-
tively, for the system in the type-I and type-II SPT phases. As
shown, the particle density maximally distribute on the two
edges, verifying that the two degenerate zero-energy in-gap

(a)

(b) (c)

FIG. 6. (a) An optical tweezer ladder perturbed by one random
tweezer out of the ladder. Low-lying entanglement spectra as a
function of d1/d2 for the Hamiltonian (b) without and (c) with such
perturbations. Triangles, points, circles, and stars, respectively, rep-
resent the lowest four levels.

modes are the left and right edge states. Interestingly, we find
that the quasiparticle edge states in the interacting SPT phases
have the same localization features as those in noninteracting
topological phases. That is, the left (right) edge state in the
type-I SPT phase only occupies the a-type (b-type) sublat-
tices, whereas the left (right) edge state in the type-II SPT
phase only populates the b-type (a-type) sublattices. Such a
feature allows us to distinguish the type-I and type-II interact-
ing SPT phases.

C. Symmetry-protected robustness

The SPT phases in the dipolar tweezer ladder are protected
by the following symmetry: UHU −1 = H [62–68], where
the symmetry operator is defined as U = ∏

i(ai + a†
i )(bi +

b†
i )K , with K being complex conjugation. We now show

that the topological properties of SPT phases are robust to
small perturbations that respect this symmetry. As shown
in Fig. 6(a), small perturbations are introduced by shifting
one of the middle b-type tweezers out of the ladder, which
leads to couplings breaking chiral symmetry. Consequently,
this small perturbation affects the topological properties as-
sociated with previously discussed single-particle topological
phases. In contrast, it respects the symmetry operation U ,
thus it does not affect the characteristics of SPT phases.
Through numerical calculations, we have checked that the
influences on the string-order parameters, ground-state degen-
eracy, and quasiparticle edge states are minor, as compared
to Figs. 4 and 5. To clearly see the symmetry-protected ro-
bustness, we exhibit the change of entanglement spectrum
that is more sensitive to perturbations. For SPT phases, it is
well-known that the entanglement spectrum features double
degeneracy [71]. As shown in Figs. 6(b) and 6(c), in com-
parison with the case without perturbations, the entanglement
spectrum distribution in the presence of small perturbations
has a slight change, but in the nontrivial SPT phase regions
the double degeneracy of the entire spectrum remains un-
changed. This proves that the SPT phases are protected by
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the symmetry U and robust to small symmetry-preserving
perturbations.

D. Experimental detection

Before summarizing, we give a brief comment on the
experimental detection of interacting SPT phases. Notably,
in two very recent experiments, both the edge states and
string-order parameters for characterizing SPT phases have
been successfully probed in ultracold atom systems [55,72]
by using site- and spin-resolved measurements and detect-
ing nonlocal correlation functions. The strategy demonstrated
there also can be applied to our proposed ultracold molecules
system. For example, using coherent microwave spectroscopy
technique, with their verified strategy one can directly mea-
sure magnetization distributions in the optical tweezer ladder
to reveal the edge states and their localization features, and
perform density-density correlation measurements to extract
the two different nonlocal string-order parameters.

V. SUMMARY AND OUTLOOK

In summary, we have shown that an optical tweezer ladder
of ultracold molecules can be naturally programed to imple-
ment a generalized topological Su-Schrieffer-Heeger model.
As demonstrated, such a ladder system possesses two different
chiral topological phases at the single-particle level and fea-
tures two different interacting SPT phases at the many-particle
level. With the state of the art in ultracold molecules, all

signatures associated with these topological phases can be
unambiguously probed. Our study exhibits that programmable
optical tweezer arrays can open up more possibilities for
implementing different topological spin lattice models and
exploring diverse ultracold molecular topological phases.

In the near future, it would be quite interesting to study
how to reconfigure high-dimensional optical tweezer arrays
and tailor the long-range dipolar interactions for creating
and exploring high-order topological phases [73–75] or even
amorphous topological phases [76,77]. Moreover, taking into
account interactions in this platform also provides possibilities
for realizing and understanding high-dimensional interacting
symmetry-SPT phases [64].
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