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interacting Bose gases using high-order Bragg
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Abstract
The Feynman-Tan relation, obtained by combining the Feynman energy relation with the Tan’s two-body contact, can
explain the excitation spectra of strongly interacting 39K Bose-Einstein condensate (BEC). Since the shift of excitation
resonance in the Feynman-Tan relation is inversely proportional to atomic mass, the test of whether this relation is
universal for other atomic systems is significant for describing the effect of interaction in strongly correlated Bose
gases. Here we measure the high-momentum excitation spectra of 133Cs BEC with widely tunable interactions by
using the second- and third-order Bragg spectra. We observe the backbending of frequency shift of excitation
resonance with increasing interaction, and even the shift changes its sign under the strong interactions in the high-
order Bragg spectra. Our finding shows good agreement with the prediction based on the Feynman-Tan relation. Our
results provide significant insights for understanding the profound properties of strongly interacting Bose gases.

Introduction
Interactions are at the heart of the most intriguing

correlated quantum phenomena, which are intractable
when treated in full microscopic detail. While a lot of
universal relations, which are independent of the details of
interactions at the microscopic scale, allow greatly sim-
plify the description of interaction effect in quantum
many-body systems. Ultracold atomic gas is a funda-
mental paradigm for exploring universal physics1–3, where
the interatomic interaction is characterized by the atomic
s-wave scattering length and its strength can be tuned via
Feshbach resonances4. For example, Tan’s universal
relation was introduced for connecting the dependence of
the energy on the scattering length to the strength of two-
particle short-range correlations, where Tan’s contact

parameter characterizes the probability of finding two
colliding atoms with very small separation5–11.
In the elementary excitation of an interacting atomic

Bose-Einstein condensate (BEC), the Bogoliubov dispersion
relation was given for describing the linear response of
excitation energy shift to the strength of the interaction in
weakly interacting regimes12,13, which was verified in two-
photon Bragg spectra14–17. However, the breakdown of
Bogoliubov theory was observed in the excitation spectra of
strongly interacting 85Rb BEC18. Among the subsequent
theoretical interpretations19–23, the Feynman-Tan relation
was proposed for obtaining a good explanation for the
backbending dispersion exhibited in 39K BEC with tunable
interactions24. Owing to the significance of universal rela-
tion for the intellectual understanding of interaction-
dominated exotic phenomena, it is of particular interest
to test whether the Feynman-Tan relation is universal for
describing strongly correlated behavior in other atomic
systems, since the resonance frequency shift in this relation
is inversely proportional to atomic mass. Nevertheless,
extending the application of Feynman-Tan relation to dif-
ferent atomic species has so far remained out of reach.
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Here our experimental goal is to test the universality of
Feynman-Tan relation in strongly interacting Bose gases of
133Cs atoms with large mass difference compared to
the previous results of 39K atoms. We measure the high-
momentum excitation spectroscopy of 133Cs BEC with
widely tunable interactions by using the second- and third-
order Bragg spectra, in which the large momentum
transfers are involved in the stimulated four- and six-
photon processes in comparison to the general two-
photon Bragg spectroscopy14–18,24–30. In the high-order
Bragg spectra, we observe the backbending of the fre-
quency shift of excitation resonance in the moderate
interaction regions, and even the shift changes its sign
from positive to negative at the strong interactions. Our
results show good agreement with the prediction based on
the Feynman-Tan relation, and this provides the significant
evidence for extending the application of Feynman-Tan
relation to different atomic systems.

Results
Interactions affect the property of atomic gases, and

the previous Bogoliubov theory provides the basic fra-
mework of modern approaches to BEC with the tunable
mean-field interaction12,13. The Bogoliubov dispersion
relation for the elementary excitations in an interacting
BEC is given by

ε pð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2

2m
2U þ p2

2m

� �

s

ð1Þ
where p= ħq is the momentum transfer in the elementary
excitation with the reduced Planck’s constant ħ and the
wave vector q, m is the atomic mass, and the mean-field
interaction energy is U= 4πħ2ρa/m with the density ρ
and the s-wave scattering length a. For the BEC in a
harmonic trap, the averaged atomic density can be
obtained by the local density approximation with that
the Thomas-Fermi radius of condensate in the q direction
is larger than the excitation wavelength16. In the particle-
like excitation with p2/(2m) ≫ 2U, the Bogoliubov
approximation gives the interaction-induced frequency
shift ΔωB= ω− ω0= 4πħρa/m, where ω= ε(p)/ħ and
ω0= ħq2/(2m) correspond to the actual excitation energy
and the free-particle kinetic energy, respectively. In the
following experiment with

ffiffiffiffiffiffiffi

ρa3
p

<<1, the Lee-Huang-
Yang correction in the excitation energy of ground BEC
can be ignored, and the Bogoliubov approximation is
always valid13.
When the atomic interactions become sufficiently

strong, the beyond mean-field effect observed in 85Rb
BEC deviates the Bogoliubov dispersion relation18.
While the recently proposed Feynman-Tan relation can
capture the two-photon Bragg spectra of 39K BEC24,
where the Feynman energy relation is used to obtain the
excitation energy31. In the Bragg scattering process, the

static structure factor S(q), which is obtained by inte-
grating the structure factor S(q, ω) over ω, is the Fourier
transform of the density correlation function16. For the
low density with

ffiffiffiffiffiffiffi

ρa3
p

<<1, the Feynman energy relation
is given as

ωðqÞ ¼ �hq2= 2mð Þ=S qð Þ ð2Þ

In the excitations of Bose gases with strong short-range
interactions in the deep inelastic regime of large-q
momentum transfer, S(q) can be expressed in terms of the
universal two-body contact:

SðqÞ ¼ 1þ C
8ρq

1� 4
πaq

� �

ð3Þ

where C is Tan’s two-body contact density and reflects the
probability for two atoms to be at the same point in
space5–7. By inserting the contact density of C ≈ (4πρa)2 in
Eq. (3), the absolute value of static structure factor is
|S(q)| ≈ 1, and the resulting energy shift is given as
Δω= (1/S(q) − 1)ω0

23,24. Because of 1/S(q) − 1 ≈ 1 - S(q),
the Feynman-Tan relation gives the interaction-induced
frequency shift.

ΔωFT ¼ 4π�hρa
m

1� πqa
4

� �

ð4Þ

For the limit of qa→ 0, the interaction-induced fre-
quency shift ΔωFT in Eq. (4) is equivalent to the prediction
based on the Bogoliubov theory. However, ΔωFT dose not
change monotonously with increasing a. As indicated in
Eq. (4), ΔωFT will decrease after achieving the maximum
value and then change its sign under the strong interac-
tions. The backbending phenomenon was observed in
the previous experiment of 85Rb atoms18, where a was
increased to a ~ 2.5/(πq). In Ref. 24, a homogeneous 39K
BEC with the low density allows to measure the resonance
frequency shift for the larger a, and the sign change of
ΔωFT was observed under the strong interactions. Con-
sidering the significance of universal relation for under-
standing strongly interacting Bose gases, it is highly
desired to test the universality of Feynman-Tan relation in
other atomic systems with the large mass difference
relative to 39K atoms, because of the dependence of ΔωFT

on m in Eq. (4).
Our experiment starts with a 133Cs BEC of N= 4 × 104

atoms in the hyperfine state |F= 3, mF= 3 > , which fea-
tures a broad Feshbach resonance to continuously tune
atomic s-wave scattering length32–34. As shown in Fig. 1,
the BEC is confined in a quasi-1D optical trap, which is
comprised of two nearly orthogonal 1064-nm laser beams
(L1 and L2) with the ratio of 1/e radius ~1:6 and the
wavelength of λ= 1064 nm. The laser beam L1 mainly
provides the strong radial confinement, and the trap fre-
quencies are (ωx, ωy, ωz)= 2π × (125, 96, 10) Hz, where z
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represents the propagation direction of the laser beam L1.
The Bragg spectra are implemented by illuminating the
BEC with a pair of counter-propagating laser beams,
which is formed by retro-reflecting the trap laser beam
L135–39. Relative to the fixed frequency ω+ of incident
laser beam, the frequency ω− of retro-reflected laser beam
is precisely tuned for engineering the frequency detuneing
Δωres= ω+ − ω− for the Bragg diffractions.
In Fig. 1b, we show the schematic for a stimulated six-

photon process involved in the third-order Bragg diffrac-
tion, where the zero-momentum BEC is directly coupled to
the high-momentum state p= 6ħk with the wave vector of
Bragg laser k= 2π/λ. The condensed atom absorb three
photons from the incident laser beam and simultaneously
radiate three photons into the retro-reflected laser beam,
accompanying with the large momentum transfer 6ħk.
Figure 1c shows the energy diagram of third-order Bragg
resonance, where three pairs of counter-propagating pho-
tons have the same frequency difference of Δωres= 12ER/ħ
with the one-photon recoil energy ER= ħ2k2/(2m). In the
second-order Bragg resonance, the condensed atoms are
coupled to the momentum state p= 4ħk, and two pairs of
counter-propagating photons have the same frequency
difference of Δωres= 8ER/ħ.

We prepare the BEC at the scattering length of a= 210
a0, where a0 is the Bohr radius, and then ramp a in 6 ms
to the target value at which we perform the Bragg dif-
fraction for 1 ms. Figure 2a shows the two-photon Bragg
spectra with the momentum transfer ħq= 2ħk for two
different scattering lengths. The diffracted fraction of
atoms is plotted as a function of frequency shift, which is
normalized by referring the frequency difference in the
excitation resonance without interaction Δω=Δωres −
4ER/ħ. The maximal diffracted fraction is kept around
10%. The interaction-induced frequency shift can be
determined by the Gaussian fit to the data. We clearly
observe that the interaction with a= 800 a0 gives rise to
the positive shift relative to the zero shift in the non-
interacting limit.
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Fig. 1 Experiment setup and schematic for high-order Bragg
spectra. a Sketch of experimental setup. A 133Cs BEC is prepared in
a quasi-1D optical trap that consists of two nearly orthogonal
1064-nm laser beams (L1 and L2) with the different 1/e radius. A pair
of counter-propagating Bragg lasers, which are formed by retro-
reflecting the trap laser beam (L1), are used to illuminate the
optically trapped BEC for implementing Bragg spectra. b Schematic
of third-order Bragg diffraction involved with the six-photon
process. The atom absorbs three photons from the incident laser
beam and simultaneously radiates three photons into the retro-
reflected laser beam. c Illustration of energy diagram in the third-
order Bragg resonance. Three stimulated Raman transitions are
simultaneously driven for directly coupling the zero-momentum
BEC to the momentum state p= 6ħk, and the energy difference is
evenly divided into each transition
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Fig. 2 Two-photon Bragg spectra of BEC with tunable interaction.
a Two-photon Bragg spectra for two different scattering lengths (in
unit of Bohr radius of a0). Fraction of atomic BEC diffracted into the
momentum state p= 2ħk as a function of the frequency shift Δω,
which is referenced to the noninteracting free-particle energy 4ER/ħ,
after 1 ms Bragg pulse. The resonance shift is determined by a
Gaussian fit to the data (solid lines). Error bars denote the standard
errors. b Dependence of the frequency shift Δω extracted from the
fitting in (a) on the scattering length a. The grey solid line is obtained
by the Bogoliubov theory, and the red solid line is the prediction
based on the Feynman-Tan relation in Eq. (4). The averaged density of
ρ= 1.6 × 1013/cm3 is taken in the theoretical calculation. Error bars
denote the fitting errors
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In Fig. 2b we show the dependence of the frequency
shift Δω obtained via two-photon Bragg spectra on the
scattering length. For weak interactions with a ≤ 400 a0,
the data shows good agreement with the Bogoliubov
dispersion relation, where Δω is linearly dependent on a.
For the larger a, our measurement shows a significant
deviation from the Bogoliubov theory, and Δω bends
down under the strong interactions. Instead, the theore-
tical prediction based on the Feynman-Tan relation in
Eq. (4) captures the variation of Δω with a. In the
experiment, although the broad Feshbach resonance
allows to obtain the maximum scattering length of
a ~ 1800 a0

4, the three-body loss of atoms limits the
applied scattering length within a ≤ 1200 a0

40.
To compromise with the reachable maximum scattering

length, the sign change of frequency shift under the strong
interactions may be demonstrated by using large-q exci-
tation spectra according to Eq. (4). In Refs. 41,42, the sec-
ond- and third-order Bragg diffractions were theoretically
proposed for a large momentum transfer in the inter-
ferometry of ultracold atoms43–47. We use the second- and
third-order Bragg spectra with the stimulated four- and six-
photon processes (see Fig. 1b, c) to obtain large momen-
tum transfers with 4ħk and 6ħk, respectively.
Figure 3a shows the absorption images taken after the

1 ms second- and third-order Bragg diffractions and 22ms
time-of-flight, and about 10% atoms with the momenta
p= 4ħk and 6ħk are diffracted to the different positions in
momentum space. We show the second- and third-order
Bragg spectra for a= 3a0 in Fig. 3b, c. The fraction of
atoms diffracted to the high momentum is measured as a
function of frequency shift, which is normalized to the
frequency difference in the noninteracting limit with
Δω= 2(Δωres − 8ER/ħ) in Fig. 3b and Δω= 3(Δωres −
12ER/ħ) in Fig. 3c. The frequency shift of excitation
resonance corresponding to the maximum diffraction
fraction can be determined by using the Gaussian function
to fit the data.
We further measure the second- and third-order Bragg

spectra under the different interactions, and obtain the
frequency shift of excitation resonance by performing
the Gaussian fits as shown in Fig. 3b, c. In Fig. 4, we plot
the frequency shift Δω for two different momentum
transfers of 4ħk and 6ħk as a function of scattering length
a, and the maximum available value of qa is about 2.25 for
q= 6k. In compared to the low-q two-photon Bragg
spectroscopy, Δω arrives the maximum value at the
relative low a, because this critical a is given as a= 2/(πq)
(see Eq. (4)). Most importantly, we clearly observe that Δω
changes its sign from positive to negative under strong
interactions. The theoretical prediction based on the
Feynman-Tan relation reasonably agrees with the data in
Fig. 4. Moreover, both the experiment and theory show
that the position of crossing point with Δω= 0 shifts
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Fig. 3 High-order Bragg spectra. a Second- and third-order Bragg
diffractions correspond to the stimulated four- (I) and six-photon (II)
processes with the momentum transfers ħq= 4ħk and 6ħk,
respectively. Typical absorption images are taken after the 1 ms Bragg
pulse and 22ms time-of-flight, and about 10% atoms are coupled to
the high-momentum states. b, c Diffracted faction of atoms as a
function of frequency shift Δω normalized to the frequency difference
ħq2/(2m) in the noninteracting limit. The resonance shift is determined
by a Gaussian fit to the data (solid lines). Error bars denote the
standard errors. In all panels, the scattering length is fixed at a= 3 a0
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Fig. 4 Variation of frequency shift Δω obtained by using high-
order Bragg spectra with the scattering length a. The shifts Δω
under different scattering lengths are extracted from the second- and
third-order Bragg spectra with the large momentum transfers
ħq= 4ħk and 6ħk. The grey solid line is obtained by the Bogoliubov
theory, and both the blue and orange solid lines show the prediction
based on the Feynman-Tan relation. In comparison to the dramatic
deviation from the Bogoliubov theory, the Feynman-Tan relation
shows good agreement with the data. The averaged density of
ρ= 1.6 × 1013/cm3 is used for the theoretical calculations. Error bars
denote the fitting errors
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toward the lower a as q increases, where the zero-crossing
position is given as a= 4/(πq) in Eq. (4). Note that, the
discrepancy between the experiment and theory is likely
caused by the reduction of atomic density, which results
from the thermalization of atomic BEC during the high-
momentum excitations under the strong interactions.
In compared to 39K atoms in the previous experiment24,

133Cs atoms have a larger mass and provide a good plat-
form to test the influence of atomic mass on the
interaction-induced frequency shift in the Feynman-Tan
relation. The quantitative explanation for the dependence
of Δω on a in Figs. 2b and 4 verifies the inverse propor-
tional relationship between the atomic mass and reso-
nance frequency shift in Eq. (4). Our results also illustrate
that the Feynman-Tan relation can be used for the
description of excitation of a harmonically trapped
interacting Bose gases with the assumption of local den-
sity approximation, although the Feynman-Tan relation is
given with the homogenous density. In addition, we
compare the data obtained by the high-order Bragg
spectra with the Bogoliubov dispersion relation (grey line)
in Fig. 4, and the deviation becomes larger with increasing
q in comparison with the result in Fig. 2b. This indicates
that the Bogoliubov theory fails to give the role of the
momentum transfer in the interaction-induced frequency
shift in the excitation spectra of interacting BEC.

Discussion
In conclusion, we study the high-momentum excitation

of 133Cs BEC with widely tunable interactions, and test the
universality of Feynman-Tan relation in the description of
interaction effect on the excitation spectra of interacting
BEC. The Feynman-Tan prediction shows good agreement
with the experimental data. Because of the large mass of
133Cs atoms relative to 39K atoms in the previous experi-
ment24, the quantitative explanation for the observed
maximum frequency shift confirms the significant role of
atomic mass in the resonance frequency shift in Eq. (4).
Considering the effective range of qa < 3 for the Feynman-
Tan relation shown in the experiment of 39K BEC, we will
prepare the low-density BEC to measure the excitation
spectra at the stronger interactions4 and check the effective
application range of Feynman-Tan relation. In addition, the
elementary excitation based on the high-order Bragg dif-
fraction may provide more deep insights for the under-
standing of inelastic scattering in many-body systems.

Materials and methods
Experimental setup. As described in Ref. 34, we prepare a

133Cs BEC through the hybrid evaporation in a trap com-
prised of magnetic field gradient and several optical dipole
trap laser beams. The condensate is then produced in a
quasi-1D trap formed mainly from one of these dipole laser
beams, which is retro-reflected for driving the Bragg

diffraction. We use two acousto-optic modulators (AOMs)
in the retro-reflected laser beam, and the frequency detuning
Δωres between the counter-propagating Bragg laser beams
can be precisely controlled by tuning the frequency differ-
ence of the rf driving signals for two AOMs. For the two-
photon Bragg diffraction, the zero-momentum BEC is
coupled to the momentum state p= 2ħk, and the frequency
detuning is finely scanned around the free-particle excitation
energy 4ER/ħ. The two-photon Bragg spectroscopy is
obtained by measuring the dependence of the fraction of
diffrated atoms on the normalized frequency detuning by
referring the free-particle kinetic energy Δω=Δωres− 4ER/ħ.
For the second- and third-order Bragg diffractions, the

zero-momentum BEC is coupled to the momentum states
p= 4ħk and 6ħk through the stimulated four- and six-
photon precesses, respectively. In the free-particle excita-
tion, the frequency detunings between the every two
counter-propagating photons are 8ER/ħ and 12ER/ħ in the
second- and third-order Bragg spectra, respectively. Due to
the distinguishable energy difference, we can implement
the second- and third-order Bragg spectra by scanning the
frequency detuning around the corresponding free-particle
energies. In the experiment, the Bragg coupling is often
tuned for guaranteeing that the maximal diffraction frac-
tion is about 10% after 1ms Bragg pulse.
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