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Bacteria are everywhere in the natural environment. Although most of them are harmless, there are still

some hazardous bacteria that will harm human health, so it is particularly important to identify bacteria

quickly. Compared with traditional time-consuming and complicated identification methods, laser-

induced breakdown spectroscopy (LIBS) is one of the potential technologies for rapid identification of

bacteria. In this paper, six weakly active bacteria, including Escherichia coli, Enterococcus faecalis,

Bacillus megaterium, Bacillus thuringiensis, Pseudomonas aeruginosa and Bacillus subtilis, are taken as

analysis samples. The thawed bacteria are placed in deionized water, and then uniformly smeared on five

kinds of substrates to verify the feasibility of using LIBS to identify these bacteria. Spectrum filtering,

normalization and principal component analysis (PCA) are used to preprocess the spectra, and a multi-

class identification method based on the one-against-all linear kernel function of support vector

machine (SVM) is proposed to establish the prediction model. The identification performance is

evaluated by using precision and recall. The experimental results show that high-purity graphite is the

best substrate with the least interference to the LIBS spectrum of bacteria. The prediction precision of

these six bacteria is 77.27%, 92.86%, 84.21%, 94.12%, 81.82% and 76.92%, respectively, recall is 85%,

100%, 94.12%, 80%, 81.82% and 75% respectively, and the identification rate is 84.17%. It can be seen that

the direct identification of bacteria can be preliminarily realized by smearing bacteria on the graphite

substrate and analyzing its LIBS spectra, which provides a feasible way for simple, rapid and on-site

bacterial identification.
1 Introduction

In recent years, for the sake of safety, bacteria and other
microorganisms have received more and more attention.
Although most bacteria are benecial to humans and the
environment, there are still a few harmful or even hazardous
bacteria that can cause plant wilting or human food poisoning.
Therefore, rapid identication of bacteria is very important for
timely and effective decontamination. Traditional identication
generally relies onmorphological identication, which includes
the culture method, staining method and simple biochemical
tests, such as observation of colony appearance characteristics,
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Gram-staining, spore staining and the catalase method. These
methods are simple and easy to use, but they are only applicable
to cultured organisms in vitro, and the identication rate is
poor. The methods of bacterial identication developed in
recent years, such as polymerase chain reaction1 and 16S rDNA,2

can clarify the genetic relationship between bacteria quickly
and accurately in essence, but they require a variety of reagents,
expensive instruments, highly professional skills and time-
consuming sample preparation, so they cannot be used for
eld analysis. At present, the rapid methods of bacterial iden-
tication include Raman spectroscopy3–5 and hyperspectral
spectroscopy,6 but the former has high requirements for the
culture conditions and preparation process of bacteria, while in
the latter it is difficult to select a characteristic wavelength that
varies with the kind of bacteria.

Laser-induced breakdown spectroscopy (LIBS) uses a high-
energy pulsed laser to focus on the sample surface for abla-
tion to generate plasmas. By analyzing the spectral information
of plasma radiation, such as the wavelength and intensity, the
sample can be identied and classied. LIBS is a qualitative and
semi-quantitative rapid analysis technique7 with simple opera-
tion, few sample preparation and almost no damage,8,9 and has
Anal. Methods, 2023, 15, 297–303 | 297
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Fig. 1 Experimental LIBS setup for bacterial identification.
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potential to be used to identify bacteria. Baudelet et al. used
femtosecond LIBS (femto-LIBS) to establish a microelement
hyperspace based on the concentrations of Na, Mg, P, K and Ca.
Acinetobacter baylyi, Bacillus subtilis, Erwinia chrysanthemi,
Escherichia coli and Shewanella oneidensis were classied aer
lyophilizing treatment and it was found that the discrimination
ability was enhanced with the increase of the dimension of
hyperspace.10 Baudelet et al. performed experiments with
femtosecond laser and nanosecond laser, and found that femto-
LIBS is more sensitive to molecular bonds and can measure the
CN bond released by bacteria.11 J. Rehse et al. studied the effect
of nutrient media on LIBS identication, and found that the cell
membrane integrity of Pseudomonas aeruginosa cultured on
a MacConkey plate containing bile salts was disrupted, and the
identication of specic bacteria was better than that on tryp-
ticase soy agar (TSA) and blood agar plate.12 R. Gamble et al.
tried to change the water sources for bacterial isolation and
culture by using deionized water, tris(hydroxymethyl)amino-
methane (TRIS) buffered water, phosphate buffered saline water
and reverse osmosis water, and found that the rst two were
better.13 Marcos-Martinez et al. directly extracted Pseudomonas
aeruginosa, Escherichia coli and Salmonella typhimurium from
the frozen culture and grew them on common Petri dishes, and
then the identication certainty of LIBS was 95%.14 Zhao et al.
used principal component analysis (PCA) and genetic algorithm
(GA) to select spectral features and compress data, and estab-
lished articial neural network (ANN) and support vector
machine (SVM) models to classify six bacteria, which were
cultured, centrifugated, washed and lyophilized. The identi-
cation rate of PCA-GA-ANN and PCA-GA-SVM reached 97.5%
and 100%, respectively.15 Rao et al. compared the spectra of
graphite, slides and lter paper and found that the lter paper
had the least interference on the LIBS spectrum. PCA was used
to identify Bacillus fusiformis, Pseudomonas koreensis, Bacillus
subtilis, Bacillus thuringiensis and Escherichia coli, which were
obtained by centrifugal treatment aer drying.16 The above
studies require complex sample preparation, such as thawing,
rejuvenation, culture, centrifugation and lyophilization. It is
more urgent to classify and identify bacteria directly, rapidly
and effectively.

In this paper, we try to verify the identication rate of LIBS
for bacteria in the case of simple sample pretreatment of
bacteria through substrate optimization and an appropriate
spectral analysis algorithm.

2 Experimental
2.1 Experimental setup

The experimental LIBS setup for bacterial identication is
shown in Fig. 1. The Nd:YAG laser (Q-smart 450) produced 5 ns
and 50 mJ pulses at 532 nm with a xed repetition frequency of
1 Hz. The laser beam passed through a half-wave plate aer
being reected by a mirror, and was then divided into two
beams by using a polarizing beam splitting prism. The hori-
zontally reected laser entered a power meter, while the trans-
mitted one was focused on the sample surface by using a convex
lens (f = 50 mm) to generate plasmas. The plasma uorescence
298 | Anal. Methods, 2023, 15, 297–303
was converged into the optical ber through a concave mirror
and a plano-convex lens and transmitted to a four-channel
spectrometer (AVASPEC-ULS4096CL-EVO) with a working
wavelength of 192–1044 nm and resolution of 0.14–0.18 nm. All
LIBS spectra were measured at 300 ms delay and 1 ms integra-
tion time. The samples were placed on an electronically
motorized X–Y stage.
2.2 Bacteria samples

Six bacteria samples were used in the experiment, including
Escherichia coli (ATCC25922, E. coli), Enterococcus faecalis
(ATCC29212, E. faecalis), Bacillus megaterium (ATCC11107, B.
megaterium), Bacillus thuringiensis (ATCC10792, B. t), Pseudo-
monas aeruginosa (ATCC9027, P. aeruginosa) and Bacillus subtilis
(ATCC6633, B. subtilis). The sample pretreatment process was:
aer thawing for 30 minutes, a small amount of bacteria was
diluted in 600 ml deionized water, and then placed on a clean
workbench. Aer half an hour, 100 ml of the diluted strain was
taken, smeared on a substrate as evenly as possible, and then
dried naturally. In the experiment, ve high-purity simple
substances, graphite, silicon, aluminum, zinc and stannum,
were used as substrates, and the best one was selected through
spectral comparison for subsequent bacterial identication
experiments.
2.3 Identication method

2.3.1 Spectral preprocessing. First, the effective spectra are
selected according to the signal-to-noise (SNR) ratio of the
spectral line. For example, if each spectrum contains 15 412
data, N groups of effective spectra of six samples will form a N×

15 412 matrix as the input matrix for training and testing of
network. Then, the original matrix was normalized to the
interval [0, 1] according to eqn (1), and PCA was used to reduce
the dimension through linear projection.17 In this way, fewer
dimensions can retain most features of the original spectra
without losing information. Assuming that the original feature
This journal is © The Royal Society of Chemistry 2023
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has only two dimensions, this method can centralize all the
features and obtain a new set of feature values to replace the
original. Aer obtaining the covariance matrix according to eqn
(2), the eigenvalue l of covariance matrix C and the corre-
sponding eigenvector u can be obtained according to eqn (3):

x = (x − xmin)/(x − xmax) (1)

C ¼
"
Covðx1; x1Þ Covðx1; x2Þ
Covðx2; x1Þ Covðx2; x2Þ

#
(2)

Cu = lu (3)

At this time, each li corresponds to a feature vector ui.
Sorting the feature values from large to small, selecting the
largest rst k eigenvalues and taking out the corresponding
feature vectors, {(l1, u1), (l2, u2), ., (lk, uk)} can be obtained.
Here, the largest rst k eigenvalues and corresponding eigen-
vectors are selected and projected as dimension reduction. For
each sample Xi, the original eigenvalue is (x1

i, x2
i, ., xk

i)T, the
new feature aer projection is (y1
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i)T, and the calcula-
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In this way, each sample Xi changes from the original Xi =

(x1
i, x2

i)T to Xi = y1
i, and the dimension reduction is completed.

2.3.2 Identication model. SVM is used to train and predict
the data, because it can separate data samples by constructing
hyperplanes, and thus effectively solve the linear classication
and nonlinear classication problems.18 The hyperplane con-
structed by SVM requires the distance between data points and
the plane to be maximized as far as possible. By maximizing the
classication interval, the fault tolerance rate can be increased,
and the expected risk can be minimized, thus ensuring that the
learning machine has better generalization ability. For the
nonlinear inseparable problem in the input space, the vector
points in the original data set can be transformed into a higher
dimensional space through nonlinear mapping and an optimal
Fig. 2 Mapping from low dimensional space to high dimensional
space.

This journal is © The Royal Society of Chemistry 2023
separation hyperplane can be constructed to separate the
nonlinear data on the plane which cannot be easily separated.

The original low-dimensional space samples are mapped to
the high-dimensional feature space H, and there is a nonlinear
mapping F: Rd / H. SVM will use dot product hF(xi)$F(xj)i to
construct the classication plane in the high-dimensional space
H, as shown in Fig. 2.

If there is a function K that makes K(xi, xj)= hF(xi)$F(xj)i, the
specic form of F can be ignored and the dot product can be
directly used in the high dimensional space H. Therefore, if the
optimal classication plane can be constructed by the appro-
priate dot product function K(xi, xj), linear classication in the
high-dimensional feature space can be achieved through this
nonlinear transformation, and the computational complexity is
unchanged. The classication decision function can be
expressed as:

f ðxÞ ¼ sign

 XN
i¼1

a*i yiKðx; xiÞ þ b*

!
(5)

where ai is the Lagrange multiplier, if a* is the optimal solution,
the plane is the optimal classication plane, xi is the standard
support vector, b* is the classication threshold, and K is the
dot product kernel function, which usually includes the linear
kernel function, polynomial kernel function and radial basis
function. The corresponding expressions are listed in Table 1,
where g = 1/2s2, s is the radius of the hypersphere, and
d represents the kernel dimension. The linear kernel function
can be selected when the data feature dimension is very high
and the data are linearly separated with multiple samples. If the
sample feature dimension is small and the sample number is
normal, the Gaussian RBF kernel can be used. Compared with
the Gaussian RBF kernel, the polynomial kernel function
requires more parameters and has higher complexity. In addi-
tion, for polynomials with higher order, numerical calculation
becomes difficult.

SVM can classify multi-class data by constructing multi-class
classiers, including all-together, one-against-one and one-
against-all. The rst one can modify the objective function
directly, but it is complicated to consider all the categorical data
when optimizing the formula. However, when the one-against-
one is used for training, the total training and test time is
relatively long in the case of many sample categories. Here, the
one-against-all method is selected to classify the spectral data.
In training, k kinds of samples are constructed into k training
sets. The i-th classier takes the i-th sample as the positive class
(yi = +1), and the rest as the negative class (yi = −1). When
making a decision, input x of a test sample and put it into k
Table 1 Common expression of kernel functions in SVM

Function Expression

Linear kernel function K(xi, xj) = xi
Txj

Polynomial kernel function K(xi, xj) = (gxi
Txj + r)d, g > 0

Gaussian radial basis function
(RBF) kernel

K(xi, xj) = exp(−gkxi − xjk2), g > 0

Anal. Methods, 2023, 15, 297–303 | 299



Fig. 3 One-against-all diagram of the three samples.
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classiers respectively. If only one classier is predicted to be
a positive class, the corresponding category is the nal classi-
cation result. If multiple classiers are predicted to be posi-
tive, the prediction condence of the classier is usually
considered, and the category with the largest condence is
selected as the nal classication result. The one-against-all
diagram of the three samples is shown in Fig. 3.

2.3.3 Evaluation. Precision and recall are used to evaluate
the prediction results of the model, where precision represents
the proportion of the real positive samples among the positive
samples predicted. There are two possibilities for positive
prediction, one is to predict the positive class as the true
Fig. 4 LIBS spectra of five high-purity simple substances: (a) graphite, (b

300 | Anal. Methods, 2023, 15, 297–303
positive (TP) class, and the other is to predict the negative class
as the false positive (FP) class. Recall refers to the proportion of
positive cases in the samples that are correctly predicted as
positive cases. There are two possibilities, one is to predict the
original positive class as positive (TP), and the other is to predict
the original positive class as false negative (FN). The calculation
formulae of precision and recall are:

precision ¼ TP

TPþ FP
(6)

recall ¼ TP

TPþ FN
(7)

The positive class predicted to be positive is dened as TP,
the negative class predicted to be positive is dened as FP, the
positive class predicted to be negative is dened as FN, and the
negative class predicted to be negative is dened as TN.

3 Results and discussion
3.1 Substrate selection

In order to reduce the inuence on the LIBS spectra of bacteria,
a substrate with high purity, few spectral lines and low emission
intensity should be selected. The LIBS spectra of high-purity
graphite, silicon, aluminum, zinc and stannum are shown in
Fig. 4. It can be seen that high-purity graphite best meets the
) silicon, (c) aluminum, (d) zinc and (e) stannum.

This journal is © The Royal Society of Chemistry 2023
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above requirements, so it was selected as the best substrate for
subsequent measurements.19,20
3.2 Spectral preprocessing

In the experiment, 200 groups of LIBS spectra of each bacte-
rium, including E. coli, E. faecalis, B. megaterium, B. t, P. aeru-
ginosa and B. subtilis, were collected for investigation. In the
bacterial spectra, the Na I 588.995 nm line has the most stable
intensity and better SNR compared with other elemental spec-
tral lines. Therefore, the SNR threshold of the Na I 588.995 nm
line was set to 4.29 dB for screening, and 550 groups of effective
spectra were obtained, as shown in Table 2. Here, 430 groups of
Table 2 Number of training and prediction sets for the six bacteria

Bacteria
Original
spectra

Effective
spectra

Training
sets

Prediction
sets

E. coli 200 80 60 20
E. faecalis 200 73 60 13
B. megaterium 200 107 90 17
B. t 200 90 70 20
P. aeruginosa 200 92 70 22
B. subtilis 200 108 80 28
Total 1200 550 430 120

Fig. 5 Preprocessing of the six bacterial spectra with PCA: (a) three-
dimensional scores of the first three PCs and (b) scores of each PC.

This journal is © The Royal Society of Chemistry 2023
these spectra were used as training sets, and the remaining 120
groups were used as prediction sets.

First, all the data were normalized, and then the dimensions
of the training set data were reduced using PCA. For the training
set, the rst three principal components, PC1, PC2 and PC3,
respectively, accounted for 70.98%, 13.13% and 2.22% of the
total variance, with a cumulative variance of 86.33%. Fig. 5a
shows the three-dimensional score plots of the rst three PCs of
all the bacteria. Fig. 5b shows the score of each PC, from which
Fig. 6 LIBS spectra of the six bacteria, (b) normalized line intensities of
Mg, Ca and Na, and (c) LIBS spectra of E. coli.

Anal. Methods, 2023, 15, 297–303 | 301



Fig. 7 (a) Identification results of the six bacteria and (b) the precision and recall.
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it can be seen that the spectra of the six bacteria are clustered
together. This is because the spectra of these bacteria are very
similar, so they cannot be simply classied according to the rst
three PCs. Aer normalization and PCA preprocessing, the data
dimension was reduced from 15 412 to 197, and the data were
limited to the range of [0, 1], which greatly reduced the
complexity of subsequent data processing.

Fig. 6 shows the LIBS spectra of the six bacteria and the
normalized intensities of Mg, Ca and Na. It can be seen from
Fig. 6a that the elemental emission lines in the LIBS spectra of
the six bacteria are basically the same, with the main difference
being the line intensity. Fig. 6b shows the normalized Mg II

279.5530 nm, Ca II 393.3661 nm and Na I 588.9950 nm lines in
the spectra of the six bacteria, where the error bar represents the
uctuation of line intensity. For the six bacteria, the line intensity
of Mg is roughly the same, while those of Ca and Na are slightly
different. For example, in the spectrum of E. coli shown in Fig. 6c,
in addition to the Mg II, Na I, Fe I, H I, O I and N I lines, the Ca I

and Ca II lines are themost abundant. By comparing the bacterial
spectrum with the substrate spectrum, it is worth mentioning
that the spectral lines of H, O and N are mainly contributed by
air, while those of Ca, Na, Mg, Fe, etc.mainly come from the cell
wall of the bacteria. According to the Gram-staining method in
microbiology and bacteriology, the bacterial species are classi-
ed into two groups, namely Gram-positive bacteria and Gram-
negative bacteria. E. coli and P. aeruginosa belong to the latter,
and the outer surface of the cell walls contains lipopolysaccha-
ride (LPS). The core oligosaccharide structure in LPS is negatively
charged as a whole, so it exists in the core oligosaccharide by
combining with divalent ions such as calcium and magnesium.
The cell wall of Gram-positive bacteria such as B. subtilis, E.
faecalis, B. t and B. megaterium contains teichoic acid with a large
number of negative charges on the molecule, which can
concentratemagnesium around the cell to improve the activity of
some synthetases on the cell membrane.21 Compared with
Fig. 4a, although there are Ca and Na lines in the spectrum of the
graphite substrate, their intensity is much lower than that in the
bacteria, so they can still be used as characteristic lines for
bacterial identication. Unfortunately, due to the high similarity
of these spectra, PCA, an unsupervised learning method, is still
unable to completely identify these bacteria.
302 | Anal. Methods, 2023, 15, 297–303
3.3 Bacterial identication

The process of using the SVM learningmethod to classify the six
bacteria is as follows. First, the SVM classier was built based
on MATLAB, and the optimal kernel function and parameters
were automatically found by the tcecoc function in the libsvm
toolbox, and the data were trained and predicted accordingly.
Then, the prediction results of the model were evaluated by
using the calculated precision and recall. In this work, the linear
kernel function was selected, the box-constraint was 0.071, and
the training method was one-against-all. Here 430 spectra were
used for training, and the remaining 120 spectra were used for
prediction. Fig. 7a shows the prediction results of the six
bacteria, from which it can be seen intuitively that there are
errors in the identication of some bacteria. The prediction
precision and recall of each bacterium are shown in Fig. 7b,
where the precision is 77.27%, 92.86%, 84.21%, 94.12%,
81.82% and 76.92%, and the recall is 85%, 100%, 94.12%, 80%,
81.82% and 75% respectively. The smaller the box-constraint,
the higher the fault tolerance rate of data during training, the
more the number of support vectors, and the stronger the
generalization ability. The experimental results show that the
correct number for classifying 120 groups of spectra of the six
bacteria is 101, which corresponds to an identication rate of
84.17%.

4 Conclusions

In view of the time-consuming sample preparation required for
traditional bacterial identication, such as thawing, rejuvena-
tion, liquid culture, centrifugation and lyophilization, a new
method for rapid bacterial identication using LIBS is proposed
in this paper. By selecting high-purity graphite as a bacterial
substrate, using spectral dimension reduction to preprocess
and one-against-all linear kernel function SVM to model, the
feasibility of rapid and direct identication of bacterial strains
without sample preparation was veried. The experimental
results show that the precision of E. coli, E. faecalis, B. mega-
terium, B. t, P. aeruginosa and B. subtilis is 77.27%, 92.86%,
84.21%, 94.12%, 81.82% and 76.92% respectively, their recall is
85%, 100%, 94.12%, 80%, 81.82% and 75% respectively, and
the identication rate is 84.17%. It shows that this method can
This journal is © The Royal Society of Chemistry 2023
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preliminarily identify several low activity bacteria, but the
identication rate is still limited due to the uctuation of the
LIBS spectra. The identication rate is still limited, which will
be further improved by stabilizing the laser pulse energy and
increasing the uorescence collection efficiency.
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