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Abstract
The manipulation of the orbital angular momentum (OAM) contributes to understand the OAM
multiplexing, is significant in free-space optical communication and information processing. We
theoretically simulate and experimentally demonstrate the regularity of the OAM transfer,
including the angular and radial modes, of Laguerre–Gaussian beam via four-wave mixing
process in 85Rb vapor. The 420 nm coherent blue light output field inherits the phase
characteristic of 780 nm and 776 nm beams with different OAM modes. The output field OAM
modes show the transfer as a typical arithmetic operation of the input field OAM modes with
equal-handed angular indice l, while, the conversion between angular and radial modes occurs
with the opposite angular indice l. Such rules of the OAM transfer and manipulation have
implications on the research of high-capacity information transfer and quantum communication.
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1. Introduction

The orbital angular momentum (OAM) theoretically has an
infinite number of eigenstates and is defined in an infinite-
dimensional Hilbert vector space [1–4], it has been widely
applied in optical communications [5, 6] and remote sensing
[7–9]. The OAM of beams provides a fundamentally new
freedom degree compared conventional Gaussian beams [4].
Laguerre–Gaussian (LG) beams, as one of the typical OAM
beams with two indices including an azimuthal index l
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related to OAM and a radial index p related to the radial
nodes [10, 11]. The manipulation of OAM is significant for
comprehending the interplay between radial and azimuthal
indices, contributing to further increase the system transmis-
sion capacity.

Various nonlinear media provide possible venues for
information transmission based on OAM transfer, such
as crystals, atomic medium and two-dimensional materials
[5, 12, 13]. Within these media, a wide range of nonlinear
processes have been extensively investigated to realize the
OAM transfer, including sum-frequency generation (SFG),
four-wave mixing (FWM), and second-harmonic generation
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(SHG) [14–16]. In particularly, the OAM transfer based on
FWM has attracted tremendous attention because the FWM
process has strict phase matching conditions, which two
(three) frequencies mutually interact to produce two (one) new
frequencies, moreover, it prevents any information loss due
to linear absorption and permits us to work at high optical
depths [17–19].

The atomic medium has emerged as an ideal candidate for
OAM transfer owing to the flexible tunability, better beam
quality, abundant energy levels [13, 20]. Among previous
researches, the transfer about angular index l attracts more
attention. The phase information associated with OAM is
transferred entirely from the pump light to the blue light in
85Rb vapor by FWM process [21]. The OAM transfer from
input optical fields to output optical fields is used to distinguish
the two FWM processes in Rb vapor [22]. The OAM transfer
between fields involved via a FWM process in Rb vapor for
high-efficiency OAM entanglement is quantitatively explored
[23]. Recently, the investigation about Gouy phase matching
facilitates efficient and controlled angular and radial mode
conversion [16]. With only a few studies focusing on radial
index p, and there exists no obvious conservation law that led
to the conversion between the l and p, the appealing conversion
is still required for further deeper and more detailed explora-
tion for the increasement of the bandwidth capacity.

In this work, we theoretically simulate and experimentally
demonstrate the regularity for the OAM transfer via FWM in
85Rb vapor. The 420 nm coherent blue light (CBL) output field
inherits the phase characteristic when either or both of 780 nm
and 776 nm beams with different OAM modes. The OAM
modes of the output field show the transfer as an arithmetic
operation of the input fields OAM modes with equal-handed
angular indice l, while, the esoteric conversion between angu-
lar and radial modes occurs with the opposite angular indice l.
This study about angular index l and radial index p provides an
experimental basis for the high-capacity information transfer,
which has the potential to greatly contribute to the develop-
ment of quantum communication and network.

2. Experiment setup

The relevant energy levels of 85Rb are shown in figure 1(a).
When two photons of 780 nm and 776 nm pump the Rb atoms
from the 5S1/2 state to the 5D5/2 state, a 5233 nm field cor-
responding to the 5D5/2–6P3/2 transition is produced through
ASE process. Then, the 5233 nm optical field combines with
the two pump fields, resulting in the 420 nm CBL generation
corresponding to the 6P3/2–5S1/2 transition by FWM process.
Therefore, the output field inherits the phase information of
the input fields because of phase matching.

The experiment setup is shown in figure 1(b). The 780 nm
and 776 nm beams are provided by the external cavity diode
laser (DL pro, Toptica) and the Ti: sapphire laser system
(SolaTis-SRX-XF, M Squared Lasers), respectively. The fre-
quency references of the 780 nm and 776 nm lasers are

dependent on the saturation absorption spectrum (SAS) and
electromagnetically induced transparency (EIT), respectively.
The beams are shaped as LG modes by the vortex retarder.
Then, the 780 nm and 776 nm LG beams overlap and propag-
ate in the same direction, and are focused on a 5 cm length Rb
vapor cell which is housed in a µ-metal to shield stray mag-
netic field [24]. Its temperature is accurately controlled by a
self-feedback system and maintained at 130 ◦C, correspond-
ing the atomic density of 3.56 × 1013 cm−3. The CBL output
field is separated from the background beam using an interfer-
ence filter (center wavelength 420 nm, 10 nm pass band) and
recorded by a charge-coupled device (CCD) in real time. The
tilting lens is used to detect the topological charge numbers of
the output field.

3. Results and discussions

The mode-overlap integral of all involved complex electric
fields predict the relative probability of generating a particular
pair of 420 nm and 5233 nm FWMmodes as c, following [16],

c=

2πˆ

0
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∞̂

0
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dzu780 u776u
∗
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∗
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where the subscripts denote the input electric fields at
wavelengths of 780 nm and 776 nm and the generated fields at
5233 nm and 420 nm in figure 1(a). We use cylindrical polar
coordinates and assume that the pump fields are focused at the
center of the vapor cell with length L.

Any paraxial beams u (r, z, θ) can be decomposed in the
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√
1+ z2/z2R, and the Gouy

phase describes the phase evolution of a mode propagating

through a focus, ΦG (z) =−(1+ 2p+ |l|)arctan
(

z
zR

)
, with

zR = πw0
2/λ denoting the Rayleigh range for a beam waist

w0. Also, ΦC = k
(
z+ r2

2

(
z+ z2R/z

)−1
)

accounts for wave-

front curvature. The azimuthal integral of equation (1) restricts
the output modes to those for which the OAM is conserved
[16, 21],

l780 + l776 = l5233 + l420. (2)

The relative Gouy phase between input fields modes
Nlp = 1+ 2p+ |l| crucially affects mode conversion. The total
mode order must therefore also be conserved, leading to the
conservation,(
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Figure 1. (a) Relevant energy levels of 85Rb. (b) Scheme of the experimental setup. BS, beam splitter; HWP, half-wave plate; M,
high-reflection mirror; PBS, polarization beam splitter; QWP, quarter-wave plate; CCD, charge-coupled device; L, lens; F, interference
filter; VR, vortex retarder; SAS, saturation absorption spectroscopy.

Here we assume zero order radial modes for the pump
lights, then equation (3) can be expressed as [21],

|l780|+ |l776|= |l420|+ |l5233|+ 2p420 + 2p5233. (4)

The 5233 nm infrared beam is currently absorbed by the
cell, which is unobserved in the experiment. However, the
OAM conservation and Gouy phase matching indicate that it is
mainly generated in the fundamental Gaussian mode. In addi-
tion, if a sapphire cell is used, the mode of the infrared beam
can be directly observed [15, 16, 25].

Figure 2 theoretically simulates the normalized CBL pro-
files with different modes of 780 nm and 776 nm beams.
Both input beams are shaped as LG beams with radial
indices p780 = p776 = 0, meanwhile the angular indices
l776 = 0, ± 1, ± 2 and l780 = 0, 1, 2. Two situations discussed
here including the two beams OAMmodes with equal-handed
angular index l and opposite angular index l. Firstly, a simple
addition of OAM consists with equation (2) occurs when the
two beams with equal-handed angular index l as shown in
figures 2(a1)-(a5), (b1)-(b3) and (c1)-(c3). Secondly, the con-
version between the angular and radial mode indices that con-
sists with equation (4) occurs with opposite angular index l
in figures 2(b4)-(b5) and (c4)-(c5) [23, 26]. With the equal-
handed angular index l of input fields, the phase singularity on
the beam axis results in a zero axial intensity yielding an annu-
lar beam profile. However, when the input fields with opposite
l, the CBL profiles display a central vortex surrounded by a
number of rings equal p420 + 1. The radial index p420 can be

identified from the observed intensity profiles as the number
of nodal rings. It can be intuitively seen that l420 = l780 + l776
owing to OAM conservation both in the two situations.

Figures 3(a1)-(a5) show the CBL intensity profiles with
l780 = 0, 1, 2, 3, 4 and l776 = 0. The powers of the 780 nm
and 776 nm lasers are 35 mW and 17 mW, respectively.
The laser frequency detunings are adjusted to minimize Kerr
lensing, the 780 nm laser is tuned 1.45 GHz blue of the
5S1/2(F = 3)−5P3/2(F = 4) transition, while the 776 nm laser
resonate with the 5P3/2(F = 4)−5D5/2(F = 5) transition [21].
Figure 3(a1) shows the CBL profile with Gaussian distribution
[27]. At the same time, the CBL intensity profiles of l420 ̸= 0 in
figures 3(a2)-(a5) show a ‘donutlike’ structure, with a central
vortex surrounded by a single ring, also the radius increases
with increasement of topological charge l420 [21, 28]. In order
to detect the topological charge numbers l420, the tilted-lens
method is employed and the images are shown in figures 3(b1)-
(b5). As for the tilted-lens method, it relies on the fact that a
monochromatic optical vortex with topological charge l splits
into |l| elementary vortices under astigmatic transformation,
revealing |l| tilted dark stripes in its image near the focus [29].
The results not only display a number of dark fringes equal
to the value of l420, but also exhibit a 45◦ rotation corres-
ponds to the sign of the l420 [17]. The presented results intuit-
ively obey the transfer of an angular index arithmetic operation
l420 = l780 + l776.

A further study of the angular mode indice-l case is invest-
igated here. Figure 4 shows the CBL intensity and tilted-
lens detection images with l776 = 0, −1, −2, −3, −4 and
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Figure 2. The theoretical CBL profiles arising from mixing 776 nm LG0, ±1,±2
0 with 780 nm LG0, 1,2

0 pump modes.

Figure 3. Intensity profiles of CBL (top) and corresponding tilted-lens detection images (bottom) with single-charged vortex beam at
780 nm LG0, 1, 2,3,4

0 and plane wavefront beam at 776 nm LG0
0 modes.

Figure 4. Intensity profiles of CBL (top) and corresponding tilted-lens detection images (bottom) with single-charged vortex beam at
776 nm LG0,−1,−2,−3,−4

0 and plane wavefront beam at 780 nm LG0
0 modes.

l780 = 0 under the same experimental conditions in figure 3.
We observe the ‘donutlike’ structure, which proves the exist-
ence of OAM, meantime, the radius of the ring’s scales

increasing with the angular index l. The tiled-lens images in
figures 4(b1)-(b5) further verify the transfer follows an arith-
metic operation and comply with equation (2). Note that,
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Figure 5. Intensity profiles of CBL (top) and tilted-lens detection images (bottom) arising from mixing 780 nm LG1
0 with 776 nm

LG±1, ±2
0 pump modes.

the dark fringes in figures 3(b1)-(b5) and 4(b1)-(b5) are in
opposite directions, as the titled dark fringes whose orienta-
tion depends on whether the topological charge is positive or
negative.

Figure 5 shows the CBL intensity (top) and correspond-
ing tilted-lens detection images (bottom) when l780 = 1 and
l776 = ± 1, ±2, and the other conditions are the same as
figure 3. Firstly, figures 5(a1)-(a2) show the similar regular-
ity in the cases mentioned above. Secondly, figures 5(a3)-(a4)
show the CBL profiles with a central vortex surrounded by
a number of rings, which means the existence of radial index
when the two beams carry opposite l. Meanwhile, the radius of
the central vortex is also changed with the variation of angular
index l. Figures 5(b3)-(b4) show the tilted-lens images exhibit
orthogonal dark fringes which directly indicate the appearance
of radial index p. Also, the tilted-lens detection images exhibit
orthogonal dark fringes, where the number of fringes in right
and left rotation 45◦ directions correspond to the values of p
and p + |l| [30], respectively. The detection results show that
in addition to the OAM conservation l420 = l780 + l776, there is
also a conversion between the angular and radial modes coin-
ciding with equation (4).

4. Conclusion

In summary, we theoretically simulate and experimentally
demonstrate transverse intensity profiles of the generated CBL
when 780 nm and 776 nm beams carrying equal-handed and
opposite angular indices l via FWM process in 85Rb atoms.
The results prove that the OAM transfer obey an arithmetic
operation of the input fields with equal-handed angular index l.
Also, the conversion between angular and radial modes occurs
when the input fields with opposite angular index l due to
the Gouy phase. Such a complete comprehension about the
radial index p has the possibility to convert efficiently between
radial and azimuthal modes, allowing access to the full state
space for spatial mode encoding, with potential applications in
all-optical communications.
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