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Collective dynamics of the unbalanced three-level Dicke model
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We study a three-level Dicke model in V configuration under both closed and open conditions. With
independently tunable corotating and counterrotating coupling strength of the interaction Hamiltonian, this
model is a generalization of the standard Dicke model that features multiple distinct parameter regimes. Based
on a mean-field approach and third quantization analysis, it is found that the system exhibits rich quantum
phase behaviors, including distinct superradiant fixed points, multiphase coexistence, and limit-cycle oscillation.
In particular, the cavity dissipation stabilizes a family of inverted spin-coherent steady states whose stability
region can be enlarged or reduced by properly tuning the imbalance between the corotating and counterrotating
interactions. This property provides a conceptually different scenario to prepare the coherent atomic state with
high fidelity.
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I. INTRODUCTION

As the simplest model describing the coherent interaction
between two-level atoms and quantized light field, the Dicke
model is the key to understanding a variety of collective
phenomena in the light-matter composite system [1,2]. The
most notable prediction is the transition from a normal phase
(NP), where the photon mode is empty, to a superradiant phase
(SP) with macroscopically occupied photons and partially
exited atoms [3–6]. The supperradiance phase transition was
observed experimentally in the coherently driven atomic gases
inside an optical cavity [7–9]. A ubiquitous aspect acquired by
this system is the inevitable photon loss, which is responsible
for the dissipative evolution of dynamical variables [10–15].
The interplay between the coherent and dissipative dynamics
in the atom-photon system may induce novel nonequilibrium
steady states, leading to intense research interest of late on the
open Dicke-like models [16–28] .

In principle, the atom-photon interaction can be separated
into two distinct parts: the “corotating” and “counterrotating”
couplings [29,30]. The first contains the terms which conserve
the excitation number whereas the second changes the number
of excitations by 2. It is the competition between the two
coupling terms, together with the contribution from the photon
dissipation, that determine the final dynamics of the system
[31–33]. For the standard open Dicke model, the physics are
frozen to the case where the competition between the two
terms is balanced, while allowing the interaction interpolating
between the “corotating” - and “counterrotating” - dominated
regimes can lead to diverse nonequilibrium phase behav-
iors beyond the balanced one [34–41]. Examples include
multicritical points [36], limit cycles and chaotic dynamics
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[34,35,38,41], and so on. Following a pioneering theoretical
proposal [42], the independent control of the “corotating”
and “counterrotating” interactions was experimentally accom-
plished by employing an unbalanced cavity-assisted Raman
coupling in cold atomic gases [43–45].

Another hotspot in the realm of quantum optics is the
three-level system interacting with light as it is related to
an important class of quantum phenomena, including elec-
tromagnetically induced transparency [46,47], lasing without
inversion [48,49], and quantum beats in resonance fluores-
cence [50,51]. The extension of the two-level Dicke model to
the three-level system naturally brings about new perspectives
on the atom-photon interaction [29,52–61], such as the time
crystalline order [57,58], enantiodetection of chiral molecules
[59], subradiance [52,56], and so on. A recently interesting
finding is the family of dark and nearly dark inverted states
engineered by cavity dissipation [61]. Despite these achieve-
ments, the atom-photon interaction considered in these works
incorporates either the corotating terms only [52,56,59] or
equal corotating and counterrotating couplings [57,58,61].
Encouraged by the success of the unbalanced two-level Dicke
model, we expect that the interplay between the corotating and
counterrotating coupling terms may bring new physics beyond
the two-level case in the context of three-level atomic struc-
ture, especially considering the enlarged atomic symmetry.

In this work, we study the system of V-type three-level
atoms interacting with a single-mode cavity field. The cavity
photons mediating the two atomic transitions are different by
a phase rotation of π/2. The model supports independently
controlled corotating and counterrotating terms, allowing
the light-matter interaction interpolating between different
regimes. Adopting a mean-field approach and fluctuation
analysis, we provide a systematic analysis of the quantum
phase behavior of the system. It is found that the unbalanced
light-matter coupling enriches both the closed and open phase
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diagrams. The main contributions of this work are summa-
rized as follows.

(i) For the closed system, we find two types of super-
radiance phase transitions characterized by the symmetry
breaking of different Z2 operations. The two superradiant
phases are separated by a U(1) symmetry line in the phase
diagram. Furthermore, an excited normal phase, coexisting
with the superradiant phase, is revealed.

(ii) The dissipative nature carried by the photon leak-
age imposes a generic instability on the normal phase for
equal corotating and counterrotating couplings. Away from
the equal coupling case, some new steady-state behaviors,
including the stabilized normal phase and a persistent oscil-
latory limit cycle phase, can emerge.

(iii) The family of inverted spin-coherent steady states,
which are stabilized by the cavity dissipation, is enlarged
(reduced) when approaching the counterrotating (corotating)
interaction side. Based on this property, we propose a cavity-
assisted atomic-state preparation scenario with high fidelity.

This work is organized as follows. In Sec. II, we de-
scribe the proposed model and present the Hamiltonian. In
Sec. III, we map out the phase diagrams for the closed sys-
tem. In Sec. IV, we show the steady-state phase diagrams
for the driven-dissipative system. We discuss the dissipation-
stabilized inverted steady states and show the related scenario
to prepare a coherent atomic state in Sec. V and summarize in
Sec. VI.

II. MODEL

We consider N identical V-type three-level atoms interact-
ing with a single-mode cavity field. Each atom consists of
one lowest level |0〉 and two degenerate levels |1〉 and |2〉
[see Fig. 1(a)]. The transitions |0〉 ←→ |1〉 and |0〉 ←→ |2〉
are mediated by cavity fields with a phase difference of π/2,
allowing potentially different corotating and counterrotating
interactions. Such a scenario can be effectively engineered
in atomic gases with long-lived hyperfine states. These states
are then coupled by pump lasers and cavity field, which form
typically unbalanced, Raman transitions (see Appendix A for
descriptions of the proposed experimental configuration). The
Hamiltonian describing this system reads

Ĥ = h̄ωâ†â + h̄ω0(�̂1,1 + �̂2,2)

+
[

h̄λ1√
N

�̂1,0(sin(ϕ)â + cos(ϕ)â†)

+ ih̄λ2√
N

�̂2,0(sin(ϕ)â − cos(ϕ)â†) + H.c.

]
, (1)

where â is the annihilation operator of the cavity photon,
�̂i, j = ∑N

k=1 |i〉k〈 j|k (i, j = 0, 1, 2) represent the collective
spin operators, ω is the cavity frequency, ω0 denotes the
transition frequency between level |0〉 and the two degenerate
levels |1〉 and |2〉, and λμ (μ = 1, 2) are the corresponding
collective coupling strengths. Note that the parameter ϕ is
introduced to control the relative weight between the coro-
tating and counterrotating terms. Observing the symmetry of
the Hamiltonian under the transformations ϕ �→ ϕ + π and
a �→ −a, we can restrict the value range of ϕ to [0, π ] without

FIG. 1. (a) Schematic illustration of the considered setup. An
ensemble of V-type three-level atoms are strongly coupled to a
single-mode cavity field with dissipation rate κ . The cavity photons
mediating the two atomic transitions are different by a phase rotation
of π/2 . (b)–(d) Phase diagrams of the nondissipative model showing
NP (blue), SP1 (green), and SP2 (orange). The phase coexistence re-
gions of e-NP and SP are represented by different colors with hatched
patterns. The phase diagrams are plotted in the (b), (c) λ1 − λ2

plane and (d) ϕ − λr plane with (b) ϕ = π/4, (c) ϕ = 7π/16, and
(d) λ2/λ1 = 0.41. Four distinct phases in (b) are indicated by their
respective cavity-field distributions as a function of the real and
imaginary parts of the cavity mode Re〈â〉 and Im〈â〉. (e) Real (solid)
and imaginary (dashed) parts of the excitation energies ±ωi on top
of the NP along the red dotted cut line in (c). The particle-like
(hole-like) fluctuations are denoted by blue, cyan, and green (ma-
genta, red, and yellow) lines, i.e., ds2 > 0 (ds2 < 0). The excitation
spectra in the NP and e-NP are purely real whereas some of their
imaginary parts acquire a finite value in the SP (gray region). Note
that, crossing from the NP to the e-NP, the soft-mode excitations
±ω1 swap their sign of norms, indicating a particle-to-hole inversion.
In these figures, λr ≡ √

λ2
1 + λ2

2 and ω = 4ω0 = 2ω̃ with reference
frequency ω̃ ≡ √

ωω0.

loss of generality. It follows that the corotating (counterrotat-
ing) interaction overwhelms the counterrotating (corotating)
interaction for ϕ ∈ (π/4, 3π/4) (ϕ ∈ [0, π/4) ∪ (3π/4, π ]).
The pseudospin operators �i, j can be mapped onto the Gell-
Mann matrices and thus span the SU(3) symmetry space of
Lie algebra [62]. This is in contrast to the pseudospin opera-
tors for the two-level Dicke model, which constitute the SU(2)
commutation relation. This difference between the two atomic
symmetries may lead to drastically different equations of
motion and hence fundamentally influence the steady states
[57,58,61].
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Hamiltonian (1) extends the standard two-level Dicke
model to multiple distinct parameter regimes. For example,
in the case of ϕ = π/4, the transitions between the atomic
lowest level and the two excited levels are respectively cou-
pled by two orthogonal quadratures of the cavity field whose
nonequilibrium features were considered in Refs. [24,61].
While for λμ = 0 (μ = 1, 2), the Hamiltonian (1) reduces
to the interpolating Dicke-Tavis-Cummings model [34–41],
which recovers the standard Dicke (Tavis-Cummings) model
by further setting ϕ = π/4 (ϕ = π/2).

In general, the Hamiltonian (1) possesses a double
Z2 ⊗ Z2 symmetry, which is composed of two other
transformations (â, �̂10, �̂20) T1−→ (−â†,−�̂01, �̂02) and

(â, �̂10, �̂20) T2−→ (â†, �̂01,−�̂02). This discrete symmetry

can be enlarged to a U(1) symmetry in two specific cases:
(i) ϕ = nπ/2 (n ∈ Z) and (ii) λ1 = λ2. Depending on the
parity of n, either the corotating or the counterrotating term
vanishes for case (i), leading to the U(1) symmetry found in
the Tavis-Cummings (TC) model [29,63]. The U(1) symmetry
in case (ii) is characterized by a nontrivial transformation
Ĥ = Û †(ϑ )ĤÛ (ϑ ) with Û (ϑ ) = exp(iϑĜ) and Ĝ = â†â +
i(�̂21 − �̂12) satisfying [Ĥ, Ĝ] = 0. Notice that the con-
served quantity Ĝ was also pointed out in Refs. [24,61] for
the balanced coupling case. We here show that the constraint
on ϕ(= π/4) can be completely relaxed, yielding a contin-
uous family of models, each labeled by ϕ that respect the
same U(1) symmetry. In the spirit of Landau’s theory, the
aforementioned symmetries of the Hamiltonian signals po-
tential equilibrium or nonequilibrium phase transitions. In
the following two sections, we provide a thorough analysis
of the emergent quantum phases for both the nondissipa-
tive and dissipative models. For each model we first show
the results of the balanced coupling case with ϕ = π/4
and then explore the effects of deviation from this balanced
point.

III. PHASE DIAGRAM FOR THE CLOSED SYSTEM

The static properties of a closed system are involved in its
mean-field energy (ME) functional, which can be formally
obtained by using a SU(3) generalization of the Holstein-
Primakoff transformation (see Appendix B for details). A
fluctuation analysis around the extrema of the ME determines
the stability of various phases: the phase is physical and stable
only if its fluctuation excitations acquire a completely real
spectrum.

It is found that the NP, where the cavity mode is empty
and the atoms populate the lowest level |0〉, is enclosed by the
curve (Appendix C)

(2|B| + L)2 − ω2ω2
0 = 0, (2)

with L = λ2
1 + λ2

2 and B = cos(ϕ) sin(ϕ)(λ2
1 − λ2

2). For pa-
rameters obeying (2|B| + L)2 > ω2ω2

0, the system enters
the SP by undergoing a second-order phase transition. In
this phase, the cavity mode is macroscopically populated

as |〈a〉| =
√

[(2|B| + L)2 − ω2ω2
0]/4(2|B| + L)ω2 and the

atoms are partially excited to their higher-energy levels |1〉
or |2〉. In the SP, the sign of B further distinguishes two
distinct phases: for B > 0 (B < 0), the cavity mode acquires

a real (imaginary) macroscopic excitation with Re〈â〉 �=
0 and Im〈â〉 = 0 (Re〈â〉 = 0 and Im〈â〉 �= 0) and the T1

(T2) symmetry is spontaneously broken. We term the SP
with B > 0 superradiant phase 1 (SP1) and that with B <

0 superradiant phase 2 (SP2). The critical curve B = 0,
along which the Hamlitonian respects a U(1) symmetry,
determines a first-order phase boundary between the SP1
and SP2.

A typical parameters’ choice is the balanced driving case
with ϕ = π/4. In this case, the counterrotating and corotating
interactions feature on an equal footing. The closed phase
diagram is outlined in Fig. 1(b). For λ1, λ2 � λc ≡ √

ωω0/2,
the system is located in the NP. Tuning one of the coupling
strength above the critical value λc, namely max(λ1, λ2) >

λc, the system enters the SP. The U(1)-symmetry line λ1 =
λ2 > λc splits the SP into two subphases: the SP1 with λ1 >

λ2 and the SP2 with λ2 > λ1.
Allowing the coupling strength of the counterrotating and

corotating terms to be unbalanced, say ϕ �= π/4, results
in richer phenomena. The phase diagram of ϕ = 7π/16 is
representatively plotted in Fig. 1(c). Different from the bal-
anced case [Fig. 1(b)], deep inside the SP, a considerably
large region where NP is also stable, emerges. We remark
that this NP is essentially a stable exited state since it cor-
responds to a local maximum of the ME landscape (see
Appendix C for a detailed description). Following the nomen-
clature used in Ref. [39], we hereafter dub the NP, which
coexists with the SP, the exited-Normal phase (e-NP). To
see the impacts of the unbalanced corotating and counter-
rotating interactions more clearly, we plot in Fig. 1(d) the
phase diagram as a function of ϕ and the coupling strength

λr ≡
√

λ2
1 + λ2

2 with λ2/λ1 = 0.41. It is to be seen that, as
the system deviates away from the balanced point ϕ = π/4,
the regions of the phase coexistence of SP and e-NP become
pronounced.

Apart from the ME landscape, the NP and e-NP are dy-
namically distinct by the nature of excitations: at positive
(negative) eigenfrequencies, the soft-mode excitations of both
NP and SP are particle-like (hole-like), whereas those of e-NP
are hole-like (particle-like) [39,40]. This can be confirmed
by investigating the sympletic norm ds2

v j
≡ v†

j Izv j , defined
at each normal-mode eigenfrequency, where v j with j =
1, . . . , 2N are the eigenvectors of the Hopfeld-Bogoliubov
matrix DH (see Appendix C) and Iz = 1N ⊗ (−1N ) is a 2N ×
2N diagonal matrix with +1 (−1) entries on the first (second)
N elements. The nature of the excitations is intimately related
to the sign of ds2

v j
. That is, the soft mode is a particle-like

(hole-like) excitation at positive eigenfrequencies for ds2
v j

> 0

(ds2
v j

< 0) and is a hole-like (particle-like) excitation at neg-

ative eigenfrequencies for ds2
v j

< 0 (ds2
v j

> 0). Figure 1(e)
depicts the excitation spectra and the sign of their sympletic
norms on top of the NP along a representative trajectory in
parameter space [cf. Fig 1(c)]. As the coupling strength in-
creases, the system traverses NP, SP, coexistence of e-NP and
SP, and eventually ends in SP. While, as expected, the entire
spectra are purely real in the NP and e-NP, the soft-mode
pair ±ω1 swap their sign of sympletic norms, indicating a
particle-to-hole inversion.
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IV. STEADY STATE IN THE PRESENCE
OF CAVITY DISSIPATION

The above picture fundamentally changes if the dissipative
nature is explicitly considered. To provide an understanding
of the open phase diagram, we start from the master equa-
tion of the form ∂t ρ̂ = L̂ρ̂, where the Liouvillian acts as
L̂ρ̂ = −i/h̄[Ĥ, ρ̂] + κ (2âρ̂â† − â†âρ̂ − ρ̂â†â) with κ being
the photon loss rate. The steady-state properties of the open
system are captured by a stability analysis of the Liouvil-
lian’s fixed points, which can be effectively achieved under
the framework of third quantization [64,65]. This approach
produces a set of rapidities {ζi} whose role resembles that of
the excitation spectrum of closed systems: the real and imagi-
nary parts of ζi characterize the lifetime and frequency of the
corresponding fluctuation mode, respectively. The steady state
is stable when the real parts of all the rapidities are nonneg-
ative, i.e., Reζi � 0. The calculations of {ζi} are detailed in
Appendix D. In principle, the stable attractors of the open
system can either lie in the low-energy sectors with most of
the atoms populating the lowest-energy level |0〉 or the high-
energy sectors where the atomic population are completely
inverted to the exited states |1〉 and |2〉. The superradiant
features can only be highlighted in the low-energy sectors,
which is the focus of this section. We leave the discussion of
relevant physics in the high-energy sectors to Sec. V.

A generic impact of the cavity dissipation imposed on the
system is the elimination of the U(1)-symmetry-broken phase
[17–19,24,36,61] along the critical curve B = 0. The SP,
which features both populated real and imaginary quadratures
of the cavity mode in the open case (i.e., Re〈â〉Im〈â〉 �= 0),
is stable inside multiple disconnected phase regions separated
by B = 0. As shown in Fig. 2(c), the open phase diagram of
ϕ = π/4 is sharply different from its closed counterpart [cf.
Fig. 1(b)] in the following aspects: (i) the NP is generically
destabilized in the entire parameter space, except for the two-
level limit λμ = 0 (μ = 1, 2); (ii) the SP along a κ-dependent
sliver around the U(1) symmetry line λ1 = λ2 vanishes; and
(iii) the continuous phase boundary enclosing the superradiant
region with λ1λ2 �= 0 becomes first order [24].

The phase diagram exhibits distinctly different features in
the corotating- and counterrotating-dominated regimes. We
first pay attention to the corotating side with ϕ ∈ (π/4, π/2]
[66]. For a corotating coupling strength slightly larger than the
counterrotating one, two small islands of SP, split by the U(1)
line λ1 = λ2, emerge inside the κ-dependent sliver [Fig. 2(b)].
As ϕ increases further, the area of the two SP islands enlarges
and even percolates to a parameter space with extremely small
coupling strength λμ (μ = 1, 2) and the κ-dependent sliver
which prevents the superradiance transition is eventually de-
stroyed [Fig. 2(a)].

The physics in the counterrotating-dominated side with
ϕ ∈ [0, π/4) is richer. The first finding is the appearance of
steady-state solutions converging to limit cycles instead of
fixed points, as denoted in Figs. 2(d) to 2(f). The limit cycles
dictate an oscillatory supperradiant phase (OS) in which the
order parameters exhibit persistent oscillation around some
nonzero values. Figure 3(a) shows the dynamical evolutions
of the order parameters in three different parameter regimes.
While the steady state belonging to SP is time independent

FIG. 2. Steady-state phase diagrams of the dissipative model
showing NP (blue), SP (yellow), OS (gray), and coexistence of NP
and SP (hatched yellow and blue) with ω = 4ω0 = 2ω̃ and κ = 0.1ω̃.
Note that, except for the two limits λ1λ2 = 0 and ϕ = (n + 1)π/2
(n ∈ Z), the inverted states are stable throughout the entire param-
eter space. They are either the exclusive steady states (white) or
coexistent with other phases (indicated by colors other than white).
(a)–(e) Evolution of the phase diagram in (λ1, λ2) plane as one varies
ϕ from the corotating side ϕ/π = 0.49 to the counterrotating side
ϕ/π = 0.18. (f) λr versus ϕ for fixed λ2/λ1 = 0.41.

[middle panel of Fig. 3(a)], the stable oscillatory character
of dynamical variables in the OS is clearly identified after a
sufficiently long integration time [bottom panel of Fig. 3(a)].
We remark that the regimes of persistent oscillations also exist
in the open SU(2) Dicke model with unbalanced coupling
[38,43]. It is also found that the NP, which is generically
destabilized in the balanced coupling case, stably coexists
with the SP in a pie-chart-shaped region in the λ1-λ2 plane
[Figs. 2(d) and 2(e)]. In this multiphase coexistence region,
the SP solution looks a bit counterintuitive as it decreases
to zero as the coupling strength increases [see Fig. 3(b) for
illustration]. This is in sharp contrast to the standard Dicke
model [2], where the monotonically increasing behavior of
the order parameters is observed. The critical value of the
coupling strength, at which the order parameters of the SP
vanish, defines a second-order phase boundary. We emphasize
that, except for the continuous phase boundary appearing here
and those for the two-level limit λμ = 0 (μ = 1, 2), all the
other steady-state phase transitions with κ �= 0 are of first
order. In the λ1-λ2 plane, the area of the NP-SP coexisting
phase reduces as the system approaches the counterrotating-
dominated side until it vanishes at a critical value ϕc. The
existence of such criticality becomes immediately clearer if
we plot the phase diagram as a function of ϕ and λr for fixed
λ1/λ2 [Fig. 2(f)]. Another interesting aspect demonstrated by
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FIG. 3. (a) Dynamical evolutions of the cavity-field amplitude
and atomic populations for the corresponding parameter locations
indicated by the symbols of circle, diamond, and star in Fig. 2(f).
In this simulation, the initial state is chosen as the normal state
(〈�̂0,0〉 = N , 〈�̂0, j〉 = 〈�̂ j, j〉 = 0 for j ∈ {1, 2}) with a small cavity
field 〈â〉/√N = 0.01 (see Appendix E for the equations of motion).
(b) The stable steady-state solutions of the atomic field 〈�̂0,1〉 as a
function of λr for fixed ϕ = 0.18π and λ2/λ1 = 0.2, i.e., along the
red dotted cut line in Fig. 2(e).

this figure is that, while the NP remains stable with ϕ = π/2,
an infinitely small counterrotating fraction may destabilize
it and drive the fixed points to a family of inverted states
in the high-energy sectors [represented by the white regions
in Fig. 2]. The counterrotating terms represent a process ex-
plicitly breaking the energy conservation, which is commonly
believed to be of less significance for weak-enough coupling
strength [67]. Our results here show that these terms, although
vanishingly small, deserve special attention when the atomic
symmetry is enlarged. An in-depth investigation of this sub-
ject is out of the scope of this paper and will be the subject of
future work.

V. DISSIPATION STABILIZED INVERTED STATE

Up to now, the quantum states we discussed are restricted
to the low-energy sectors where the atomic lowest level |0〉
is macroscopically populated. There is, however, a different
class of states with unoccupied |0〉. These inverted states,
having a much higher energy than those of the NP and SP,
are characterized by two parameters

N1 = 〈�̂11〉 and θ = arg〈�̂12〉, (3)

which respectively denote the occupation of level |1〉 and the
relative phase between levels |1〉 and |2〉. The collective states
determined by parameters (3) are essentially a spin-coherent
state in the inverted-state subspace. Of particular importance
in the class of inverted spin-coherent states is the dark state
defined as [68,69]

|D〉 =
N∏

j=1

|d〉 j, (4)

where |d〉 = i sin(ν)|1〉 + cos(ν)|2〉 and tan(ν) = λ2/λ1.
Note that, with this definition, the state |D〉 is uniquely de-
fined by the parameter ν. The dark state (4) is completely
decoupled from the radiation field and therefore becomes a

FIG. 4. (a) Stability boundaries of the inverted state in the θ − N1

parameters space for λ1 = λ2 and different �. Solutions inside the
regions enclosed are stable. Note that here the parameter θ is shifted
by π/2 for clarity. (b) Evolution of the area A as a function of ϕ for
λ2/λ1 = √

3 and κ = 0.1ω̃. (c), (d) Fidelities given by Eq. (7) for
κ = ω̃ as a function of (c) ϕ with ν = π/8 and (d) ν with varying
ϕ. The density matrix ρs is obtained by integrating the mean-field
equations of motion until a steady state can be identified. The other
parameters are ω = 4ω0 = 2ω̃.

stable eigenstate of the Hamiltonian (1). The lack of adiabatic
passage makes the inverted states less important in the closed
system. They, nevertheless, become crucial under the open
environment due to their accessibility provided by the cavity
dissipation [34,35,39,40].

It should be noticed that, while all the inverted spin-
coherent states turn out to be fixed points of the Liouvillian
L̂, only a subset of them are stable. By analyzing the related
rapidities, it is found that the stable fixed points fall into a
region enclosed by a stability boundary in the θ -N1 plane

2η1η2 sin(θ )

η2
1 + η2

2

=
(
κ2 + ω2 + ω2

0

)
cos(2ϕ) − 2ω0ω

κ2 + ω2 + ω2
0 − 2ω0ω cos(2ϕ)

≡ �,

(5)
where η1 = λ1N1/

√
N and η2 = λ2

√
1 − N1/N and the role

of the parameter ϕ is encapsulated in the scaled variable �.
Setting ϕ = π/4, we reproduce the result of the balanced case
obtained in Ref. [61] in which the value of � is restricted in
between 0 and 1 by definition. Allowing the parameter ϕ to
be tunable, however, a feasible range of the scaled variable
� is extended to [−1, 1]. As is detailed in the following, the
enlargement of the value range of � provides new possibilities
to engineer the atomic steady state.

With the stability boundary defined in Eq. (5), the area
of the enclosed region is derived as A = Nπ [1 − �(λ2

1 +
λ2

2)/
√

�2(λ2
1 − λ2

2)2 + 4λ2
1λ

2
2] [61]. We plot the the stability

boundary Eq. (5) for several representative parameters in
Fig. 4(a). The trend that A increases with the decrease of
� is obvious. More importantly, tuning the model from the
corotating side to the counterrotating side by varying ϕ, �
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goes from 1 to −1, and the area of the stable region increases
from 0 to 2πN , as is illustrated in Fig. 4(b).

The two end points, ϕ = 0 and ϕ = π/2, deserve special
attention since the values of A in these two cases are best
understandable through a purely physical argument. The mul-
tistability for a more general value ϕ ∈ (0, π/2) interpolate
between the two limiting cases. Let us focus on ϕ = π/2 first.
In this case, the Hamiltonian (1) is simplified to a three-level
TC-like model

Ĥ = ĤTC + ω0�̂d,d , (6)

where ĤTC = h̄ωâ†â + ω0�̂r,r + h̄λr (�̂r,0a + �̂0,ra†) is the
TC Hamiltonian with |r〉 = cos(ν)|1〉 + i sin(ν)|2〉 being a
single-particle bright state. Since the open TC model sta-
blizes only the NP [36], the dark state |D〉 becomes the only
stable inverted state, manifesting a single point in the θ -N1

parameters space (i.e., A = 0). We then turn to the other limit
ϕ = 0, where the light-matter interaction is purely governed
by the counterrotating terms. In this regime, the variation of
the excitation number for both spin and bosonic parts is 1,
whereas that for the light-matter polariton mode is 2. It is
straightforward to show that this scheme prohibits the direct
transition between the atomic inverted states with the vacuum
photon mode and any other states in the Hilbert space. Hence,
atoms in the inverted-state subspace are all decoupled from
the radiation field, meaning that the stable region occupies the
entire θ -N1 parameter space.

The preparation of a spin-coherent state with the required
population projection on the levels |1〉 and |2〉 is always
one of the central aims in atomic physics. The fact that our
model hosts a single stable inverted state |D〉 in the TC limit
ϕ = π/2, for which the population projection is tuned by the
system parameter ν, suggests a potential scenario to achieve
this goal. However, in this case, a general initial state will
not evolve to the state |D〉 due to its darkness, but instead
dissipates to the lowest level |0〉 [30]. Fortunately, as is il-
lustrated in Sec. IV, even an infinitely small counterrotating
coupling can destabilize the level |0〉 and drive the fixed
points to a multistable region of inverted states, which are
bounded by a closed curve in the θ -N1 plane. Observing the
region of multistability shrinks to the representative point
of |D〉 as the counterrotating coupling strength decreases to
0, a natural anticipation is, from a general initial state, the
steady state can approach the dark state |D〉 in a similar
fashion. To verify this, we can look at the fidelity of the steady
state [70,71]

F = Tr(ρ̂sρ̂d ), (7)

where ρ̂d and ρ̂s denote the density operators of the dark
state |D〉, which can be the target state in demand and the
steady state of the master equation ∂t ρ̂ = L̂ρ̂, respectively.
The fidelity Eq. (7) quantifies the similarity between ρ̂s and
ρ̂d , and it turns out to be 1 if ρ̂s = ρ̂d , otherwise 0 � F < 1.
Figure 4(c) depicts the fidelity F as a function of ϕ for fixed
λ1, λ2, and κ . As expected, in the corotating-dominated
regime, the fidelity increases and finally approaches identity
as ϕ gets close to π/2. Note that F touches zero in an in-
termediate region due to the stabilization of the NP by the
counterrotating interaction [cf. Fig. 2(f)]. To demonstrate the
feasibility of preparing a steady state with arbitrary population

projection on the levels |1〉 and |2〉, we plot F as a function
of ν for varying ϕ in Fig. 4(d). It can be seen clearly that,
tuning ϕ to the corotating-dominated side, F gets close to
some constant for all values of ν ∈ (0, π/2), despite small
fluctuations. More importantly, the closer to the corotating
side, the higher the fidelity is.

Before ending this section, we make two remarks. First,
the above predictions for the fidelity depend crucially on the
SU(3) atomic symmetry. The vanishing of either the coupling
strength λ1 or λ2 reduces the atomic symmetry to SU(2) and
thus essentially changes the system dynamics. This explains
the two exceptions occurring for ν = 0 and π/2 in Fig. 4(d),
where F drops to zero. Second, while the proposed approach
of state preparation can make the population projections on
levels |1〉 and |2〉 controllable, it leaves the relative phase
between them fixed. The engineering of an inverted steady
state with arbitrary relative phase can be achieved by encoding
a tunable phase-difference rotation between the cavity pho-
tons which mediate the two atomic transitions |0〉 ←→ |1〉
and |0〉 ←→ |2〉. An in-depth investigation of this scenario,
albeit at the cost of added complexity, merits a separate
work.

VI. CONCLUSION

We investigated a system of V-type three-level atoms inter-
acting with a single-mode cavity field, with the main focus
being on the consequences of the competition between the
corotating and counterrotating interaction. Using a mean-field
approach and third quantization analysis, we mapped out the
phase diagram of the system for both closed and open con-
ditions. Rich quantum phase behaviors, including multiphase
coexistence and limit-cycle oscillation, were revealed. Of par-
ticular interest are the inverted spin-coherent steady states
stabilized by the cavity dissipation. By analyzing the roles of
the corotating and counterrotating terms in the inverted-state
stabilization, we proposed a high-fidelity state preparation
scenario.
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APPENDIX A: EFFECTIVE HAMILTONIAN AND
PROPOSED EXPERIMENTAL IMPLEMENTATION

In this Appendix, we propose an experimental implemen-
tation of our model based on distinct cavity-assisted Raman
transitions of cold atoms [42]. As shown in Fig. 5(a), an
ensemble of 87Rb atoms is trapped within an optical cav-
ity by an intracavity optical lattice [43,44]. The atoms are
driven transverse to the cavity by two pairs of lasers. Each
pair of lasers is composed of two counterpropagating single
beams with different circular polarization. A guided magnetic
field B is applied along the direction of the laser propagation
(z direction) to fix a quantized axis and split the Zeeman
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FIG. 5. (a) The proposed experimental setup and (b) possible atomic excitation scheme based on the D2 line of 87Rb atom.

sublevels of the atomic ensemble, which confirms the dis-
tinct Raman channels. The cavity field is linearly polarized
along the y axis, which is perpendicular to the magnetic field.
The three hyperfine sublevels of 5S1/2, |F = 2, mF = +2〉,
|F = 1, mF = 0〉, and |F = 2, mF = −2〉 can play the roles
of atomic levels |1〉, |0〉, and |2〉, respectively. The two pairs
of counterpropagating lasers, with Rabi frequencies (phases)
�s1,2 and �r1,2 (θs1,2 and θr1,2 ), provide optical couplings be-
tween 5S1/2 and 5P3/2 and thus form four distinct Raman
transitions, as shown in Fig. 5(b). The detunnings of driving
lasers from the excited states, �s1,2 and �r1,2 , are assumed
large enough so that we can adiabatically eliminate the 5P3/2

levels, yielding an effective Hamiltonian

Ĥ = ωAâ†â +
N∑

j=1

(ω00|0〉 j〈0| j + ω10|1〉 j〈1| j + ω20|2〉 j〈2| j )

+ â†â
N∑

j=1

[
gr (r j )

( |1〉 j〈1| j

�r1

+ |2〉 j〈2| j

�r2

)

+ gs(r j )|0〉 j〈0| j

(
1

�s1

+ 1

�s2

)]

+
2∑

τ=1

N∑
j=1

[
�sτ

gs(r j )

2�sτ

â|τ 〉 j〈0| je
−i(ksτ r j+θsτ )

+ �rτ
gr (r j )

2�rτ

â|0〉 j〈τ | je
−i(krτ r j+θrτ ) + H.c.

]
, (A1)

where the definitions

|1〉 ≡ |F = 2, mF = +2〉, (A2)

|0〉 ≡ |F = 1, mF = 0〉, (A3)

and

|2〉 ≡ |F = 2, mF = −2〉 (A4)

are made. In the Hamiltonian (A1), gs(r j ) [gr (r j )] is the
single-photon coupling strength at position r j mediating the
transitions |0〉 ←→ |F ′ = 1, mF ′ = +1〉 and |0〉 ←→ |F ′ =
1, mF ′ = −1〉 (|2〉 ←→ |F ′ = 1, mF ′ = −1〉, and |1〉 ←→
|F ′ = 1, mF ′ = +1〉) and the model paremeters ωA, ω00, ω10,

and ω20 are given by

ωA = ωc − ωr1 + ωs1

2
, (A5)

ω00 = �2
r1
/4�r1 + �2

r2
/4�r2 , (A6)

ω10 = ωG1 + �2
s1
/4�s1 − ωr1 − ωs1

2
, (A7)

ω20 = ωG2 + �2
s2
/4�s2 − ωr2 − ωs2

2
, (A8)

where ωr1,2 and ωs1,2 are the frequencies of the driving lasers,
ωG1 (ωG2 ) characterizes the energy of the atomic level |1〉
(|2〉), and ωc denotes the cavity frequency. We further as-
sume the atoms are trapped to antinodes of the cavity field
so that the single-photon coupling strengths can be approx-
imately constant and written in a position-independent form
gr/s(r j ) = gr/s. For cold atoms with temperature close to zero,
the motional effect can be neglected, meaning that the atom
positions can be treated as classical variables [14,44]. Bearing
these assumptions in mind, and applying the unitary transfor-
mation

Uk =
N∏

j=1

exp

[
i

(
kr j + θr1 + θr2 − θs1 − θs2

2

)

× (|1〉 j〈1| j + |2〉 j〈2| j ) − i
θr1 + θs1

2
â†â

]
, (A9)

the Hamiltonian (A1) becomes

H = ωAâ†â + ω00�̂0,0 + ω10�̂1,1 + ω20�̂2,2

+ a†a

[
�̂1,1

gr

�r1

+ �̂2,2
gr

�r2

+ �̂0,0

(
gs

�s1

+ gs

�s2

)]

+
[
�s1 gs

2�s1

â�̂1,0 + �r1 gr

2�r1

â�̂0,1 + �s2 gs

2�s2

â�̂2,0eiθ̃

+ �r2 gr

2�r2

â�̂0,2eiθ̃ + H.c.

]
, (A10)

where θ̃ = (θr1 + θs1 − θr2 − θs2 )/2 and the relation kr ≈
−ks = k is used.

When the parameters are chosen as gr/�r1 = gr/�r2 =
gs/�s1 + gs/�s2 and θ̃ = π/2, the Hamiltonian (A10)
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reduces to

H = h̄ωâ†â + h̄ω10�̂1,1 + h̄ω20�̂2,2

+
[

h̄λ1,s√
N

â�̂1,0 + h̄λ1,r√
N

â�̂0,1 + i
h̄λ2,s√

N
â�̂2,0

+ i
h̄λ2,r√

N
â�̂0,2 + H.c.

]
, (A11)

where

ω = ωA + 3Ngr

�r1

, (A12)

λτ,s =
√

N�sτ
gs

2�sτ

(τ = 1, 2), (A13)

and

λτ,r =
√

N�rτ
gr

2�rτ

(τ = 1, 2). (A14)

By requiring ω10 = ω20 = ω0 and reparametrizing the collec-
tive coupling strength as

λτ,s = sin(ϕ)λτ λτ,r = cos(ϕ)λτ , (τ = 1, 2), (A15)

Eq. (A11) reduces to Hamiltonian (1) in the main text.
Based on the energy levels and their transitions of 87Rb

atoms [72], together with the current experimental condi-
tions [43,44], the atom-photon coupling strength can reach
gr/2π = 0.25 MHz and gs/2π = 0.14 MHz, respectively.
The number of trapped atoms, typically N ∼ 106 [44], ap-
pears to be practical. The atomic detunnings �s1,2 and
�r1,2 can range from 1 to 100 GHz, and the parameters
(|�r1,2 |, |�s1,2 |, κ) are on the order of a few megahertz. There-
fore, the condition for the adiabatic elimination of the atomic
levels, (|�s1,2 |, |�r1,2 |) � (|�r1,2 |, |�s1,2 |, gr, gs), is well sat-
isfied. With these parameter settings, the collective coupling
strength λ1 and λ2 can be tuned from zero to the order of
megahertz, making the superradiant condition λ1(λ2) � λc

achievable.

APPENDIX B: HOLSTEIN-PRIMAKOFF
TRANSFORMATION AND THE FLUCTUATION

HAMILTONIAN

In this Appendix, we derive the effective Hamiltonians
describing fluctuations around various quantum states. These
fluctuation Hamiltonians are necessary in analyzing the stabil-
ity of considered states and can be formally obtained using a
generalized Holstein-Primakoff transformation [73,74]. For a
system with three atomic levels, the Holstein-Primakoff trans-
formation is implemented by rewriting the atomic operators
�̂i, j as

�̂m,m = N −
∑
j �=m

b̂†
j b̂ j , �̂sk = b̂†

s b̂k (s, k �= m),

(B1)

�̂s,m = b̂†
s

√
N −

∑
j �=m

b̂†
j b̂ j,

where b̂†
j and b̂ j are bosonic creation and annihilation op-

erators, respectively. In Eq. (B1), the subscript m labels a
reference state around which the fluctuations are considered.

We choose |m〉 = |0〉 for the normal and superradiant states
and |m〉 = |1〉 for the inverted state. Employing the transfor-
mations Eq. (B1) and choosing appropriate reference states,
the Hamiltonian (1) can be rewritten as

Ĥ = h̄ωâ†â + h̄ω0(b̂†
1b̂1 + b̂†

2b̂2)

+
[

h̄λ1√
N

b̂†
1

√
N − b̂†

1b̂1 − b̂†
2b̂2[sin(ϕ)â + cos(ϕ)â†]

+ ih̄λ2√
N

b̂†
2

√
N−b̂†

1b̂1−b̂†
2b̂2[sin(ϕ)â− cos(ϕ)â†]+H.c.

]
,

(B2)

for NP and SP and

H = h̄ωâ†â + h̄ω0N − h̄ω0b̂†
0b̂0

+
[

h̄λ1√
N

√
N − b̂†

0b̂0 − b̂†
2b̂2b̂0[sin(ϕ)â + cos(ϕ)â†]

+ ih̄λ2√
N

b̂†
2b̂0[sin(ϕ)â − cos(ϕ)â†] + H.c.

]
, (B3)

for the inverted state. To facilitate the following stability anal-
ysis, the bosonic operators are assumed to be composed of
their expectation value and a fluctuation operator, i.e.,

NP/SP: â =
√

Nα + ĉ, b̂1,2 =
√

Nβ1,2 + d̂1,2, (B4)

Inverted state: â = ĉ, b̂0 = d̂0, b̂2 = d̂2 + √
N − N1eiθ ,

(B5)

where α, β1,2, and
√

N − N1eiθ are expectation values to be
determined by the mean-field approach. Note that, by defini-
tion, the expectation values 〈a〉 and 〈b0〉 for the inverted state
are zero. Substituting Eqs. (B4) and (B5) into the Hamiltoni-
ans (B2) and (B3), respectively, and doing the expansion in
1/N , we formally obtain

Ĥ = Nh0 +
√

Nĥ1 + ĥ2 + · · · , (B6)

where the first term on the right-hand side of Eq. (B6) denotes
the ME,

E=Nh0=Nh̄ω|α|2 − Nh̄(rα∗ + r∗α)
√

k − Nkh̄ω0 + Nh̄ω0,

(B7)

with r = (iβ∗
2 λ2 − β∗

1 λ1) cos(ϕ) + (iβ2λ2 − β1λ1) sin(ϕ) and
k = 1 − |β1|2 − |β2|2. The third term h2, which scales as O(1)
in terms of N , contains only quadratic terms of the bosonic
operators and thus governs the quantum fluctuations.

In general, a quadratic Hamiltonian ĥ2 of n bosonic modes
can be expressed as

ĥ2 = a†Ha + aKa + a†K∗a†, (B8)

where a = (â1, â2, . . . , ân)T is the basis of the n-dimensional
Hilbert space and the n × n matrices H and K satisfy H† =
H and K = KT. Under the basis of a = (ĉ, d̂1, d̂2)T and a =
(ĉ, d̂0)T, the 3 × 3 matrices HN/S and KN/S for the NP and SP
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and the 2 × 2 matrices HI and KI for the inverted state can be respectively obtained as

HN/S =

⎛
⎜⎝

h̄ω G2,ϕ + J1,ϕ iG1,ϕ − iJ2,ϕ

G∗
2,ϕ + J∗

1,ϕ −D1 − B1 + h̄ω0 Yh

−iG∗
1,ϕ + iJ∗

2,ϕ Y ∗
h −iD2 + iB2 + h̄ω0

⎞
⎟⎠, (B9)

KN/S =

⎛
⎜⎝

0 −G∗
2, π

2 −ϕ
+ J∗

1, π
2 −ϕ

−iG∗
1, π

2 −ϕ
− iJ∗

2, π
2 −ϕ

−G∗
2, π

2 −ϕ
+ J∗

1, π
2 −ϕ

S1 + X1 Yk

−iG∗
1, π

2 −ϕ
− iJ∗

2, π
2 −ϕ

Yk iS1 − iX2

⎞
⎟⎠, (B10)

HI =
(

h̄ω −h̄ cos(ϕ)(iη2e−iθ − η1)
h̄ cos(ϕ)(iη2eiθ + η1) −h̄ω0

)
, (B11)

and

KI =
(

0 1
2 h̄ sin(ϕ)(−iη2eiθ + η1)

1
2 h̄ sin(ϕ)(−iη2eiθ + η1) 0

)
, (B12)

where

J1,ϕ = [ − β∗2
1 cos(ϕ) − sin(ϕ)|β1|2 + 2 sin(ϕ)k

]
λ1h̄/(2

√
k),

J2,ϕ = [ − β∗2
2 cos(ϕ) − sin(ϕ)|β2|2 + 2 sin(ϕ)k

]
λ2h̄/(2

√
k),

G1,ϕ = [i cos(ϕ)β∗
2 β∗

1 + i sin(ϕ)β∗
2 β1]λ1h̄/(2

√
k),

G2,ϕ = [i cos(ϕ)β∗
2 β∗

1 + i sin(ϕ)β∗
1 β2]λ2h̄/(2

√
k),

D1 = [(−2iβ∗
2 α∗kλ2 − iβ∗

2 |β1|2α∗λ2 + |β1|2β1αλ1 + 4αβ1kλ1) cos(ϕ) + (−2iα∗β2λ2k + 4αβ∗
1 λ1k) sin(ϕ)]/(4k3/2),

D2 = [(−2iβ∗
1 α∗kλ1 − iβ∗

1 |β2|2α∗λ1 + |β2|2β2αλ2 + 4αβ2kλ2) cos(ϕ) + (−2iα∗β1λ1k + 4αβ∗
2 λ2k) sin(ϕ)]/(4k3/2),

B1 = [(2iβ∗
2 αkλ2 − i|β1|2β2α

∗λ2 + |β1|2β1αλ1 + i|β1|2β2αλ2 + |β1|2β1α
∗λ1) sin(ϕ)

+ (i|β1|2β2αλ2 + 2iβ2αkλ2 + |β1|2β∗
1 α∗λ1) cos(ϕ)]/(4k3/2),

B2 = [(2iβ∗
1 αkλ1 − i|β2|2β1α

∗λ1 + |β2|2β2αλ2 + i|β2|2β1αλ1 + |β2|2β2α
∗λ2) sin(ϕ)

+ (i|β2|2β1αλ1 + 2iβ1αkλ1 + |β2|2β∗
2 α∗λ2) cos(ϕ)]/(4k3/2),

S1 = h̄β1
[
(iα∗β1β2λ2 − α∗β2

1λ1 − |β1|2αλ1 − 4αkλ1) sin(ϕ) + (iα∗β∗
2 β1λ2 − αβ2

1λ1) cos(ϕ)
]/

(8k3/2),

S2 = h̄β2[(iα∗β2β1λ1 − α∗β2
2λ2 − |β2|2αλ2 − 4αkλ2) sin(ϕ) + (iα∗β∗

1 β2λ1 − αβ2
2λ2) cos(ϕ)]/(8k3/2),

X1 = −h̄β1[(iβ2β1αλ2 + α∗|β1|2λ1 + 4α∗kλ1) cos(ϕ) + iβ∗
2 β1αλ2]/(8k3/2),

X2 = −h̄β2[(iβ1β2αλ1 + α∗|β2|2λ2 + 4α∗kλ2) cos(ϕ) + iβ∗
1 β2αλ1]/(8k3/2),

η1 =
√

N1/Nλ1, and η2 = λ2

√
1 − N1/N .

APPENDIX C: EIGENSTATES AND THE EXCITATION SPECTRA IN THE CLOSED SYSTEM

In the closed system, the solutions of the expectation values α and β1,2 are determined by the extrema of the ME (B7). We
aim to obtain the expression of the ME in terms of α and α∗, from which the energy landscape can be shown clearly. To this end,
the equilibrium condition ∂E/∂Z = 0 (Z = β1,2, β

∗
1,2) should be applied, yielding four equations

[−λ1 cos(ϕ)α∗ − λ1 sin(ϕ)α]
√

k − (rα∗ + r∗α)β1

2
√

k
− β1ω0 = 0, (C1)

[−λ1 cos(ϕ)α∗ − λ1 sin(ϕ)α]
√

k − (rα∗ + r∗α)β1

2
√

k
− β1ω0 = 0, (C2)

[iλ2 cos(ϕ)α∗ − iλ2 sin(ϕ)α]
√

k − (rα∗ + r∗α)β2

2
√

k
− β2ω0 = 0, (C3)

[iλ2 sin(ϕ)α∗ − iλ2 cos(ϕ)α]
√

k − (rα∗ + r∗α)β∗
2

2
√

k
− β∗

2 ω0 = 0. (C4)
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After some algebraic manipulations on Eqs. (C1) to (C4),
we have

rα∗ + r∗α = 2ω0

√
k(k − 1)

1 − 2k
(C5)

and[
cos(ϕ) sin(ϕ)

(
λ2

1 − λ2
2

)
(α2 + α∗2) + (

λ2
1 + λ2

2

)|α|2]k
=

(
rα∗ + r∗α

2
√

k
+ ω0

)
(1 − k). (C6)

Eliminating the variables r and k in Eq. (B7) by using
Eqs. (C5) and (C6), the ME can be expressed in terms of α

and α∗ as

E =
Nh̄ω0

√
q + ω2

0(ω0 − 2ω|α|2) − qNh̄ω0

2ω0

√
q + ω2

0

, (C7)

where q = 4B(α∗2 + α2) + 4L|α|2, with B = cos(ϕ)
sin(ϕ)(λ2

1 − λ2
2) and L = λ2

1 + λ2
2.

Depending on the values of B and L, the ME is minimized
by one trivial solution [NP in case (i)] and three different
nontrivial solutions [SP in cases (ii)–(iv)],

(i) α = 0 for (2|B| + L)2 < ω2ω2
0, (ii) α = ±√

[(2B + L)2 − ω2ω2
0]/4(2B + L)ω2 for (2|B| + L)2�ω2ω2

0

and B > 0, (iii) α = ±
√

[(2B − L)2 − ω2ω2
0]/4(2B − L)ω2

for (2|B| + L)2 � ω2ω2
0 and B < 0, and (iv) α = |α|eiφ with

|α| =
√

L(L2 − ω2ω2
0 )/(2Lω), for L2 � ω2ω2

0 and B = 0.
The imaginary (real) part of α is zero for case (ii) [(iii)]

and the sign prefactor of α indicates the Z2 symmetry of the
Hamiltonian. Note that case (iv) represents a class of continu-
ous solutions characterized by the phase φ, which signals the
breaking of the U(1) symmetry. This is consistent with the fact
that the ME in Eq. (C7) is free of any phase rotation of α for
B = 0.

With the solutions of α, the other two order parameters
β1 and β2 can be straightforwardly derived by employing
Eqs. (C1) to (C6). The complete expressions of β1,2 are,
however, extremely lengthy and we thus do not list them here.

The mean-field solutions are stable only if their associ-
ated excitation energies are real. For systems with n bosonic
modes, the excitation spectra are obtained by diagonalizing
the Hopfield-Bogoliubov matrix [6]

DH =
(

H K
−K† −HT

)
, (C8)

where H and K are the n × n matrix defined in the Ap-
pendix B. For the NP and SP considered in the present system,
the diagonalization of the Hopfield-Bogoliubov matrix (C8)
produces six eigenfrequencies, which are paired with opposite

FIG. 6. The mean-field energy landscapes for the corresponding
parameter locations indicated by the symbols of (a) triangle, (b) star,
(c) diamond, and (d) circle in Fig. 1(c).

signs ±ωi (i = 1, 2, 3). The solutions of α and β1,2, together
with their associated eigenfrequencies, determine the entire
closed phase diagram.

Figure 6 plots the ME landscapes for four representative
points in the λ1-λ2 parameter space indicated by the symbols
of triangle, star, diamond, and circle in Fig. 1(c). It should
be noticed that, unlike the NP and SP which minimize E , the
e-NP [Fig. 6(b)] corresponds to a local maximum of the ME.

APPENDIX D: STEADY STATES AND THE STABILITY
ANALYSIS IN THE OPEN SYSTEM

In this Appendix, we detail the derivation of the steady-
state solutions of the master equation ∂t ρ̂ = L̂ρ̂ = 0, with
which the HP Hamiltonian in the open system is obtained.
We remark that, in the open system, the HP Hamiltonians for
the NP and inverted state are the same as those of the closed
system, whereas they have a different form for the SP.

1. Superradiant steady state

Utilizing a mean-field decoupling by equating the cavity
field operator â with its expectation value 〈â〉, the Hamiltonian
(1) can be written as

H = h̄ω0(�̂1,1 + �̂2,2) + M1�̂1,0 + M2�̂2,0

+ M∗
1 �̂0,1 + M∗

2 �̂0,2, (D1)

where

M1 = h̄λ1

N (κ2 + ω2)
{[ω〈�̂0,1〉 + iκ〈�̂0,1〉 + 2 sin(ϕ) cos(ϕ)ω〈�̂1,0〉 − 2i cos2(ϕ)κ〈�̂0,1〉]λ1

+[κ〈�̂0,2〉 − iω〈�̂0,2〉 + 2 sin(ϕ) cos(ϕ)κ〈�̂2,0〉 + 2i cos2(ϕ)ω〈�̂0,2〉]λ2}, (D2)

M2 = ih̄λ2

N (κ2 + ω2)
{[−2ω〈�̂0,1〉 cos2(ϕ) + 2i sin(ϕ) cos(ϕ)κ〈�̂1,0〉 + (ω + iκ )〈�̂0,1〉]λ1

+[−2κ〈�̂0,2〉 cos2(ϕ) − 2iω sin(ϕ) cos(ϕ)〈�̂2,0〉 − (iω − κ )〈�̂0,2〉]λ2}. (D3)
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Note that in writing Eq. (D1), the steady state of the cavity field

〈â〉 = 1

(ω + iκ )
√

N
{[cos(ϕ)〈�̂1,0〉 + sin(ϕ)〈�̂0,1〉]λ1 − [i cos(ϕ)〈�̂2,0〉 + i sin(ϕ)〈�̂0,2〉]λ2} (D4)

is used. The Hamiltonian (D1) produces the equations of motion for the atomic operators �̂i, j (i, j = 0, 1, 2), which are solved
under the constraint of the SU(3) atomic symmetry [57,61], i.e.,

2∑
μ=0

〈�̂μ,μ〉 = N, (D5)

2∑
μ=0

〈�̂μ,μ〉2 +
∑
{μ,ν}

(3|〈�̂μ,ν〉|2 − 〈�̂μ,μ〉〈�̂ν,ν〉) = N2, (D6)

and
9

2

∑
{μ,ν,ρ}

|〈�̂μ,ν〉|2(〈�̂μ,μ〉 + 〈�̂ν,ν〉 − 2〈�̂ρ,ρ〉) − 1

2

∏
{μ,ν,ρ}

(〈�̂μ,μ〉 + 〈�̂ν,ν〉 − 2〈�̂ρ,ρ〉) + 27|〈�̂0,1〉〈�̂1,2〉〈�̂2,0〉| = N3, (D7)

where the summation
∑

{μ,ν} runs over the pairs {μ, ν} = {0, 1}, {1, 2}, {2, 0}, while the summation
∑

{μ,ν,ρ} and the product∏
{μ,ν,ρ} run over the triplets {μ, ν, ρ} = {0, 1, 2}, {1, 2, 0}, {2, 0, 1}. The solutions read

〈�̂0,1〉 = NM1√
4|M1|2 + 4|M2|2 + h̄2ω2

0

, (D8)

〈�̂0,2〉 = NM2√
4|M1|2 + 4|M2|2 + h̄2ω2

0

, (D9)

〈�̂0,0〉 = N

2
− Nh̄ω0

2
√

4|M1|2 + 4|M2|2 + h̄2ω2
0

, (D10)

〈�̂1,1〉 = N |M1|2
2(|M1|2 + |M2|2)

⎛
⎜⎝ h̄ω0√

4|M1|2 + 4|M2|2 + h̄2ω2
0

+ 1

⎞
⎟⎠, (D11)

〈�̂2,2〉 = N |M2|2
2(|M1|2 + |M2|2)

⎛
⎜⎝ h̄ω0√

4|M1|2 + 4|M2|2 + h̄2ω2
0

+ 1

⎞
⎟⎠, (D12)

〈�̂1,2〉 = NM∗
1 M2

2(|M1|2 + |M2|2)

⎛
⎜⎝ h̄ω0√

4|M1|2 + 4|M2|2 + h̄2ω2
0

+ 1

⎞
⎟⎠, (D13)

and 〈�̂1,0〉 = 〈�̂0,1〉∗, 〈�̂2,0〉 = 〈�̂0,2〉∗ and 〈�̂2,1〉 = 〈�̂1,2〉∗. Eliminating the variables 〈�̂0,1〉, 〈�̂0,2〉, 〈�̂1,0〉, and 〈�̂2,0〉 in
Eqs. (D2) and (D3) by making use of Eqs. (D8) and (D9), we have

M1

h̄λ1
= −M1λ1(2i cos2(ϕ)κ − iκ − ω) + M2λ2[2i cos2(ϕ)ω − iω + κ] + 2M∗

1 λ1 cos(ϕ) sin(ϕ)ω + 2M∗
2 λ2 cos(ϕ) sin(ϕ)κ√

4|M1|2 + 4|M2|2 + h̄2ω2
0(κ2 + ω2)

,

(D14)

M2

h̄λ2
= −M2λ2(2i cos2(ϕ)κ − iκ − ω) − M1λ1[2i cos2(ϕ)ω − iω + κ] − 2M∗

1 λ1 cos(ϕ) sin(ϕ)κ + 2M∗
2 λ2 cos(ϕ) sin(ϕ)ω√

4|M1|2 + 4|M2|2 + h̄2ω2
0(κ2 + ω2)

.

(D15)

033711-11



JINGTAO FAN AND SUOTANG JIA PHYSICAL REVIEW A 107, 033711 (2023)

By solving Eqs. (D14) and (D15) and their complex conju-
gated versions, M1,2 can be normally determined. While the
expressions of M1,2 are too lengthy to be listed here, they
are related to the order parameters β1,2 through the simple
algebraic relations

β1 =
√

2M1√
h̄ω0 +

√
4|M1|2 + 4|M2|2 + h̄2ω2

0

, (D16)

β2 =
√

2M2√
h̄ω0 +

√
4|M1|2 + 4|M2|2 + h̄2ω2

0

. (D17)

With the obtained β1,2 and taking into consideration the fluc-
tuation Hamiltonian (B8), the matrices H and K are uniquely
fixed.

2. Third quantization and the stability analysis

The third quantization approach exactly solves the Lind-
blad master equation for an arbitrary quadratic system of n
bosons or fermions with linear bath operators [64,65] and is
hence suitable for the stability analysis around the obtained
nonequilibrium steady states. We here skip the details of this
method in quantizing the density operator and focus on the
most relevant steps in analyzing the system stability.

Under the framework of the third quantization, the dynam-
ical property of the steady states is captured by the shape
matrix of the Liouvillian

χ = 1

2

(
iH∗ − N∗ + M −2K − L + LT

2iK∗ − L∗ + L† −iH − N + M∗

)
, (D18)

where H and K are defined in Appendix B and the other three
matrices are given by

M = l1 ⊗ l∗
1, N = l2 ⊗ l∗

2, L = l1 ⊗ l∗
2. (D19)

The matrices l1,2 in Eq. (D19) are defined through the linear
Lindblad bath operators in the form of

L = l1a + l2a†. (D20)

Given that the bath operator for our model is L = √
κ ĉ, we

have the operator basis a = (ĉ, d̂1, d̂2)T and the corresponding
matrices l1 = (

√
κ, 0, 0)T and l2 = (0, 0, 0)T for the SP and

NP, leading to

MN/S = diag(κ, 0, 0), N N/S = LN/S = 03×3, (D21)

whereas for the inverted state, we have a = (ĉ, d̂0)T, l1 =
(
√

κ, 0)T and l2 = (0, 0)T, resulting in

MI = diag(κ, 0), NI = LI = 02×2. (D22)

The eigenvalues of the shape matrix χ , dubbed rapidities
and represented by ζi, are negatively related to the eigenval-
ues of the Liouvillian and thus play the role of excitation
energies in the closed system. It follows that the real part of
ζi determines the stability of the corresponding steady state
and the imaginary part represents the oscillation frequency of
the fluctuations. The steady state is stable if and only if the
real part of all the rapidities are nonnegative, i.e., min(Reζi)
� 0. For the parameters region where both NP and SP are
unstable, we should further integrate the equations of motion

FIG. 7. The real (red solid) and imaginary (blue dashed) parts
of the rapidities ζi on top of the (a) superradiant and (b) normal
phases. As the coupling strength λr increases, the system traverses
the regions of multiphase coexistence of NP + SP (white), SP (dark
gray), OS (light gray), and SP (dark gray). The parameters are chosen
as ϕ = 0.22π , λ2/λ1 = 0.41, ω = 4ω0 = 2ω̃, and κ = 0.1ω̃.

starting from arbitrary initial conditions to identify possible
limit-cycle attractors. In Fig. 7, we plot the rapidities on top
of the NP and SP for some representative parameters.

APPENDIX E: MEAN-FIELD EQUATIONS OF MOTION

According to the master equation ∂t ρ̂ = L̂ρ̂, we can ob-
tain the equation of motion for the expectation of a general
operator Ô,

d

dt
〈Ô〉 = − i

h̄
〈[Ô, Ĥ ]〉 − κ{〈[Ô, â†]â〉 − 〈â†[Ô, â]〉}. (E1)
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For our model, the operator Ô is chosen as the pseudospin operators �̂i, j and cavity field operator â. Applying the mean-field
decoupling 〈�̂i, j â〉 ≈ 〈�̂i, j〉〈â〉, we can derive the closed set of equations of motion

d

dt
〈â〉 = (ih̄ω − κ )〈â〉 − ih̄λ1[cos(ϕ)〈�̂1,0〉 + sin(ϕ)〈�̂0,1〉] − ih̄λ2[cos(ϕ)〈�̂2,0〉 + sin(ϕ)〈�̂0,2〉]√

N
,

d

dt
〈â†〉 = (−ih̄ω − κ )〈â〉 + ih̄λ1[cos(ϕ)〈�̂0,1〉 + sin(ϕ)〈�̂1,0〉] − ih̄λ2[cos(ϕ)〈�̂0,2〉 + sin(ϕ)〈�̂2,0〉]√

N
,

d

dt
〈�̂0,0〉 = −ih̄λ1{−〈�̂0,1〉[sin(ϕ)〈â〉 + cos(ϕ)〈â†〉] + 〈�̂1,0〉[sin(ϕ)〈â†〉 + cos(ϕ)〈â〉]}√

N

+ h̄λ2{−〈�̂2,0〉[sin(ϕ)〈â〉 − cos(ϕ)〈â†〉] + 〈�̂0,2〉[− sin(ϕ)〈â†〉 + cos(ϕ)〈â〉]}√
N

,

d

dt
〈�̂1,1〉 = −ih̄λ1{〈�̂1,0〉[sin(ϕ)〈â〉 + cos(ϕ)〈â†〉] − 〈�̂0,1〉[sin(ϕ)〈â†〉 + cos(ϕ)〈â〉]}√

N
,

d

dt
〈�̂2,2〉 = h̄λ2{〈�̂2,0〉[sin(ϕ)〈â〉 − cos(ϕ)〈â†〉] − 〈�̂0,2〉[− sin(ϕ)〈â†〉 + cos(ϕ)〈â〉]}√

N
,

d

dt
〈�̂1,2〉 = ih̄λ1〈�̂0,2〉[sin(ϕ)〈â†〉 + cos(ϕ)〈â〉] + h̄λ2〈�̂1,0〉[sin(ϕ)〈â〉 − cos(ϕ)〈â†〉]√

N
,

d

dt
〈�̂0,1〉 = −ih̄ω0〈�̂0,1〉 − ih̄λ1(〈�̂0,0〉 − 〈�̂1,1〉)[sin(ϕ)〈â〉 + cos(ϕ)〈â†〉]√

N
− h̄λ2〈�̂2,1〉[sin(ϕ)〈â〉 − cos(ϕ)〈â†〉]√

N
,

d

dt
〈�̂0,2〉 = −ih̄ω0〈�̂0,2〉 + h̄λ2(〈�̂0,0〉 − 〈�̂2,2〉)[sin(ϕ)〈â〉 − cos(ϕ)〈â†〉]√

N
+ ih̄λ1〈�̂1,2〉[sin(ϕ)〈â〉 + cos(ϕ)〈â†〉]√

N
,

d

dt
〈�̂2,1〉 = −ih̄λ1〈�̂2,0〉[sin(ϕ)〈â〉 + cos(ϕ)〈â†〉] + h̄λ2〈�̂0,1〉[sin(ϕ)〈â†〉 − cos(ϕ)〈â〉]√

N
,

d

dt
〈�̂1,0〉 = ih̄ω0〈�̂1,0〉 + ih̄λ1(〈�̂0,0〉 − 〈�̂1,1〉)[sin(ϕ)〈â†〉 + cos(ϕ)〈â〉]√

N
− h̄λ2〈�̂1,2〉[sin(ϕ)〈â†〉 − cos(ϕ)〈â〉]√

N
,

d

dt
〈�̂2,0〉 = −ih̄ω0〈�̂2,0〉 + h̄λ2(〈�̂0,0〉 − 〈�̂2,2〉)[sin(ϕ)〈â†〉 − cos(ϕ)〈â〉]√

N
+ ih̄λ1�̂2,1[sin(ϕ)〈â†〉 + cos(ϕ)〈â〉]√

N
.
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