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Recent experimental advances in creating dissipative couplings provide a new route for engineering
exotic lattice systems and exploring topological dissipation. Using the spatial lattice of atomic spin
waves in a vacuum vapor cell, where purely dissipative couplings arise from diffusion of atoms, we
experimentally realize a dissipative version of the Su-Schrieffer-Heeger (SSH) model. We construct the
dissipation spectrum of the topological or trivial lattices via electromagnetically induced-transparency
spectroscopy. The topological dissipation spectrum is found to exhibit edge modes within a dissipative gap.
We validate chiral symmetry of the dissipative SSH couplings and also probe topological features of the
generalized dissipative SSH model. This work paves the way for realizing non-Hermitian topological
quantum optics via dissipative couplings.
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Introduction.—Topological phases of quantum matter
host fascinating phenomena, such as edge modes that are
immune to imperfections [1–4], with potential applications
in quantum computation and other technologies [5–7].
The robust nature of these phenomena in wide classes of
lattice systems is linked to the presence of energy gaps and
topologically nontrivial energy bands in the bulk; this
protects edge modes, at energies within the bulk energy
gap, from symmetry-preserving local perturbations.
Recently, dissipative couplings have been realized

in various settings, such as atoms [8], heat transfer systems
[9], circuits [10], optomechanical systems [11], waveguides
[12], resonators [13], and laser arrays [14], etc. These
advances opened up novel possibilities for designing
topological structures [15–22]. Lattice systems with purely
dissipative couplings exhibit distinct spectral features from
the coherently coupled networks in a Hamiltonian context
and may enable topological dissipation; i.e., topological
properties are associated with the gapped damping bands
(or bands of dissipation rates) in the bulk and dissipative
edge modes within the dissipative gap, decoupled from the
bulk. These intriguing phenomena, however, remain largely
unexplored experimentally, with only a recent implemen-
tation using synthetic dimensions of photonic resonator
with time-multiplexed pulses [23].
Atomic vapor systems offer a unique platform for

exploring topological dissipation. Such systems involve
a non-Markovian reservoir, where rapid transport of atomic
coherence via atomic diffusions [24] naturally leads
to dissipative coupling between long-lived atomic spin
waves created by electromagnetically induced transparency

(EIT) [25] in spatially separated optical channels. This can
mediate quantum optical spatial correlations as recently
observed [26,27]. Realizing topological dissipation therein
may promise topology-enabled quantum correlations and
non-Hermitian topological quantum optics, complementary
to topological quantum optics based on conservative
couplings [28–30].
Here we experimentally realize the dissipative version of

the paradigmatic Su-Schrieffer-Heeger (SSH) model, based
on a spatial lattice of atomic spin waves in a vacuum vapor
cell. Utility of the vacuum cell (i.e., no wall coatings [31])
allows us to realize the nearest-neighbor dissipative cou-
plings, hard to achieve in the wall-coated cell in previous
experiments [8] due to the all-to-all couplings therein. We
control the coupling rates via the spacing between optical
beams, thus inducing topological or trivial dissipation. By
constructing the dissipation spectra via EIT spectroscopy,
we show the topological dissipation spectrum exhibits edge
modes at zero dissipation rates (relative to the background
loss) within a bulk dissipative gap. We also create a ring
pattern simulating a dissipative SSH model with periodic
boundaries and spectroscopically validate its chiral sym-
metry. Finally, we observe the weakly dissipative edge
modes featured in the dissipative version of the generalized
SSH model [32]. Our experiments agree well with the
theoretical analysis.
Dissipatively coupled SSH array by flying atoms.—Our

experiments utilize an enriched 87Rb vacuum vapor cell
[Fig. 1(a)] with no buffer gas or wall coating of cylindrical
shape with a diameter of 2.5 cm and length 5 cm, and
housed within a three-layer magnetic shield to screen out
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ambient magnetic fields. The cell temperature is set to
40 °C to maintain a relatively small optical depth. The
output of a diode laser, tuned to the Rb D1 transition
5S1=2F ¼ 2 → 5P1=2F0 ¼ 1, passes through a polarization-
maintaining optical fiber and is then divided into several
spatially separated beams, forming optical channels in
the cell. Each channel is composed of a right-circularly
polarized strong control field (Rabi frequency Ωc) and a
left-circularly polarized weak probe (Ωp) forming a stan-
dard Λ-type EIT configuration with ground states j1i,j2i
and excited state j3i, which creates a local atomic spin
wave (i.e., ground-state coherence ρ12). A uniform mag-
netic field is applied to induce Zeeman shifts to the energy
levels for the adjustment of two-photon detuning δB.
Spin waves in different optical channels are dissipatively
coupled through atomic motion. The coupling rate is
controlled through the channel separation d with a 1=d
scaling (see Supplemental Material [33]), while the laser
beam diameter is set to 1.5 mm for all the beams. When
channels are aligned in a straight line, the direct atom-flight
path (for the ground-state coherence) between the beyond-
nearest-neighbor channels is largely “blocked” via optical
pumping of the channel(s) in between, and we effectively
realize nearest-neighbor couplings. Thus, by patterning 2N
channels with alternating spacings d1 and d2, we synthesize
a dissipative form of the SSH model, with lattice site j

represented by the ground-state coherence ρðjÞ12 in channel
j (j ¼ 1;…; 2N).
According to the standard density matrix formalism [33],

our system can be described by the equation of motion
∂tρ12 ¼ −i½ðδB − iγÞI þH�ρ12 þ Pin. Here, the vector

ρ12 ≡ ½ρð1Þ12 ;…; ρð2NÞ
12 �T denotes the ground-state coherence

distribution across the channels, I is a unity matrix, γ is
the dephasing rate dominated by the transit broadening

common to all channels, and the vector Pin ≡
½Pð1Þ

in ;…; Pð2NÞ
in �T denotes the pumping sources of the

coherence by the input light fields, where PðjÞin ¼
−ΩðjÞ

c
�ΩðjÞ

p =γ23 with γ23 as the optical coherence decay
rate. The non-Hermitian SSH Hamiltonian H reads

H ¼ iveiδBd1=ν
X

m

ðja;mihb;mj þ jb;miha;mjÞ

þ iweiδBd2=ν
X

m

ðjb;miha;mþ 1j þ ja;mþ 1ihb;mjÞ;

ð1Þ

where ja;mi (jb;mi) denotes ρðjÞ12 in odd j ¼ 2m − 1 (even
j ¼ 2m) numbered channels in unit cell m ¼ 1;…; N. The
intra- and intercell dissipative coupling rates v and w satisfy
v=w ∝ d2=d1. A relative phase δBðd2 − d1Þ=ν between the
intra- and intercell couplings accumulates during the
atomic flow (at velocity ν) between neighboring beams
and is the same in either direction.

The non-Hermitian Hamiltonian H reduces to H0 when
δB ¼ 0, realizing a purely dissipative version of the
paradigmatic SSH model. It has chiral symmetry and
inversion symmetry, and thus exhibits the topological
dissipation spectrum for v < w [Fig. 1(b)], which features
edge modes at zero dissipation rates in a bulk dissipative
gap, absent for trivial dissipation where v > w.

(a)

(b)

FIG. 1. Schematics and principle of atomic vapor cell experi-
ment simulating SSHmodel with dissipative couplings. (a) Setup.
Top: several optical channels with designed spacings in the vapor
cell create ground-state coherences (spin waves) by EIT process
in each channel. Spin waves in neighboring channels couple to
one another naturally through atomic motion, hence in a
dissipative manner, with the coupling rate scaling as 1=d. An
array of spin waves with alternating spacings d1 and d2
synthesizes the dissipative SSH model. The output probe inten-
sities are measured to extract properties of the model. Bottom left:
coupling mechanism. Bottom right: characterization of dissipa-
tive coupling rate using a two-channel setting; the dissipative
coupling rate is measured from the difference of EIT spectra
(inset) with and without interchannel couplings (see Supplemen-
tal Material [33]). The dashed lines in the inset are the fitting (to
guide the eye) of the experimental data shown as dots in the inset.
(b) Schematic of the topological and trivial dissipation spectra
expected from distinct patterns. The topological dissipation
spectrum exhibits dissipative edge modes at isolated dissipation
rates within a bulk dissipative gap, in contrast to the trivial
spectrum. HWP, half wave plate; QWP, quarter wave plate; PBS,
polarization beam splitter.
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EIT spectroscopy of topological dissipation spectrum.—
We first implement a minimal version of the topological
dissipative SSH model with N ¼ 2 unit cells in a geometry
with open ends, using a chain of four laser beams with
spacings d1 ¼ 6 and d2 ¼ 3 mm [cf. Fig. 1(a)]. The
dissipative coupling rates are measured as v ≈ 2π × 5
and w ≈ 2π × 11 kHz [33], with v=w ≈ d2=d1 ¼ 1=2 as
expected. The background dephasing rate is measured as
γ ≈ 2π × 143 kHz, which is barely affected by the inter-
channel couplings because v; w ≪ γ.
We probe the non-Hermitian Hamiltonian H via meas-

uring the probe field’s transmissions by sweeping δB. Both
the frequency and power of the laser are stabilized, and the
laser polarization is carefully controlled. For an input Pin,
the output probe intensities are determined by the real part
of the ground-state coherences,

ρ12 ¼ −i½ðδB − iγÞI þH�−1Pin: ð2Þ

Thus, information of H is encoded in the difference of ρ12
from ρ012 ¼ −iðδB − iγÞ−1Pin in the uncoupled case (i.e.,
only the probe in the detected channel is on while all
control fields are kept on). As the couplings are small and
δB dependent, this difference is only significant in a narrow
spectral window jδBj≲ v, w around the EIT center and,
therefore, reflects essentially the purely dissipative case
described by H0 (i.e., when δB ¼ 0).
We detect the dissipation spectrum of H0 via eigen-EIT

spectroscopy. Let us label the eigendissipation rates of H0

by γσ (σ ¼ 1;…; 4), which are defined by H0ψσ ¼ iγσψσ,
where ψσ denotes the corresponding eigenstates. To mea-
sure γσ , we harness the flexible control over the input
light to design an eigenstate-form input Pin ∝ ψσ, which
results in spin waves and hence an eigen-EIT supermode
according to ρ12;σ ∝ ψσ=ð−iγ þ iγσÞ. Here, an eigenstate-
form input is directly mapped to the spatial distribution
of the output probe laser power in each channel. After
some algebra, we obtain the relation between the eigen-
dissipation rates and the coupled and uncoupled ρ12 in all
the channels (j ¼ 1;…4),

ρðjÞ12;σ − ρ0;ðjÞ12;σ

ρ0;ðjÞ12;σ

������
δB¼0

¼ 1

1 − γσ=γ
− 1; ð3Þ

where ρ012;σ ∝ ψσ=ð−iγÞ. Equation (3) is our central prin-
ciple to accurately extract the dissipation spectrum.
Experimentally, we probe the four eigen-EIT superm-

odes in the lattice with d1=d2 ≈ 2 using four input vector
states Pin denoted as ½−7;−3; 3; 7�T , ½7;−3;−3; 7�T ,
½3; 7; 7; 3�T , and ½−3; 7;−7; 3�T , respectively. These inputs
resemble the theoretically predicted eigenstates of H0 with
v=w ¼ 1=2: the former (latter) two mimic the edge (bulk)
states. Here, numbers “�7” and “�3” represent the relative

(approximate) values of Ω�
cΩp in each channel, “7” (“3”)

corresponds to a probe power of 9.5 μW (1.7 μW), while
all control powers are fixed at 95.5 μW, and the � sign is
determined by the control and probe’s relative phase, which
are all judiciously set by tuning the wave plates in the light
streams (see Supplemental Material [33]). Since any
channel yields the same eigenvalue according to Eq. (3),
we choose to measure the transmission spectra of the two
channels with relatively higher probe power, thus higher
signal-to-noise ratio, to extract an averaged eigenvalue.
Figures 2(a1)–2(d1) show the four measured eigen-EIT
spectra. We observe that the eigen-EIT spectra correspond-
ing to the edge-state inputs nearly overlap with the
uncoupled EIT [Figs. 2(a1)–2(b1)], signaling the “zero”
eigendissipation rates (i.e., γσ ≈ 0). In contrast, the bulk
EIT supermodes in Figs. 2(c1)–2(d1) change significantly
in both the peak intensity and the linewidth compared to
the uncoupled case; an increase (decrease) in the peak
intensity indicates dissipation rates γσ > 0 or γσ < 0
following from Eq. (3). In Figs. 2(a2)–2(d2), we present
theoretical calculations [33] using Eq. (1) with measured v

Experiment
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FIG. 2. Detections of the dissipation rates of edge and bulk
modes in a topological dissipative SSH chain through eigen-EIT
spectroscopy. The chain constitutes four channels in Fig. 1(a)
with spacings d1 ¼ 6 and d2 ¼ 3 mm, leading to dissipative
coupling rates v ≈ 2π × 5 and w ≈ 2π × 11 kHz. Only the center
parts of the spectra manifesting influences from the dissipative
SSH couplings are shown. (a1)–(d1) Measured eigen-EIT spectra
via the probe transmission (normalized to far off resonant 100%
transmission), coupled (all channel probes on) and uncoupled
(only probe in the detected channel on), for the four input states
½−7;−3; 3; 7�T , ½7;−3;−3; 7�T , ½3; 7; 7; 3�T , ½−3; 7;−7; 3�T , re-
spectively. The former (latter) two inputs approximate the two
edge (bulk) states of the dissipative SSH model with dissipative
coupling rates v=w ¼ 1=2. The difference between the coupled
and uncoupled peak intensities provides the eigendissipation
rates according to Eq. (3). Theoretical calculations of the optical
coherences are shown in (a2)–(d2).
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and w values. As shown, the relative trends in the coupled
and uncoupled EIT spectra shown by the calculation are
consistent with that in the experiment data, with the
remaining disagreement in that experimental uncoupled
EIT spectra are pointier than the theoretical ones, because
the theory model gives an idealized Lorentzian line shape
that disregards experimental complications [33].
Finally, we obtain the dissipation rates based on Eq. (3),

using the measured peak intensities in the coupled and
uncoupled cases in Figs. 2(a1)–2(d1). The constructed
dissipation spectrum for v=w ≈ 1=2 is shown in Fig. 3(a).
The key feature is the existence of two nearly zero
dissipation rates deep within the expected dissipative gap
of size 2jv − wj ¼ 2π × 12 kHz; note the small degeneracy
splitting is a natural consequence of the small system size
here. By contrast, the other two dissipation rates are in the
spectral bulk outside the gap.
To compare the spectra in topologically distinct phases,

we swap the channel spacing to realize a configuration with
d1 ¼ 3 and d2 ¼ 6 mm, corresponding to v=w ≈ 2. Using
eigen-EIT spectroscopy, we construct the dissipation spec-
trum [Fig. 3(b)]. All the dissipation rates are now outside
the gap, in contrast to the topological spectrum [Fig. 3(a)].

For both, the dissipation rates distribute nearly symmetri-
cally around zero. The experiment agrees with the calcu-
lations from diagonalizing H0 with v=w ¼ 1=2 and
v=w ¼ 2, respectively. The discrepancy between the
experiment and theory, especially for the largest eigen-
value, is due to the residual returned atomic coherence after
wall collisions and other experiment imperfections (see
Supplemental Material [33]).
Probe chiral symmetry in a ring.—We next probe

potential chiral symmetry of the dissipative SSH model (1).
To this end, we construct a ring configuration with six laser
beams [Fig. 3(c)] to implement the model with N ¼ 3 unit
cells under periodic boundary condition. The chiral sym-
metric operator S of a SSH ring is expressed as S ¼ I ⊗ σz,
where σz is the Pauli matrix. For the ring here, I is a 3 × 3
unity matrix. To experimentally probe chiral symmetry,
we exploit the fact that the S has two eigenvectors
Sϕ� ¼ �ϕ�, with ϕþ ¼ ½1; 0; 1; 0; 1; 0�T and ϕ− ¼
½0; 1; 0; 1; 0; 1�T (states written for real space, unnormal-
ized) corresponding to different chirality (�); if H is chiral
symmetric, i.e., SHS† ¼ −H, its action on, say ϕþ, yields
the eigenstate with opposite chirality, Hϕþ ∝ ϕ−. In this
spirit, we prepare an input Pin ∝ ½1; 0; 1; 0; 1; 0�T and
measure the probe transmission change (due to couplings)
in the six channels as the output. Signature of chiral
symmetry is observed [Fig. 3(c)]: the input in odd-num-
bered channels leads to an output dominantly in even-
numbered channels. We note that, although the presence of
beyond-nearest-neighbor couplings breaks chiral symmetry
in the strict sense, given that these coupling rates are
smaller than v, w (≪ γ) in our experiment, we are still able
to observe residue signature of chiral symmetry in the
transmission.
Generalized dissipative SSH chain with ten channels.—

In a ringlike pattern, direct atomic flight between the next-
nearest neighbor (NNN) channels may lead to nontrivial
NNN coupling and modify the topological properties. To
examine its effect, we wire up ten channels as an open-
end chain with d1 ¼ 6 and d2 ¼ 3 mm [Fig. 4(a)], i.e.,
v=w ≈ 1=2. The effective Hamiltonian including NNN
couplings is

H0 ¼ H þHNNN; ð4Þ

where HNNN¼ it
P

mðja;miha;mþ1jþjb;mihb;mþ1j þ
H:c:Þ captures dissipative NNN couplings with rate t for
δB ≈ 0.H0 represents the dissipative version of the so-called
generalized SSH model [32]. Although H0 violates chiral
symmetry [34], it retains inversion symmetry. Thus, when
v=w ≈ 1=2, H0 is topological for t=w < 1=2, which hosts
two degenerate edge modes with dissipation rates γσ < 0
[33]. Our realized array has t=w ≈ 1=3 [Fig. 4(a)] and
remains in the topological regime, but with a reduced
gap 2t ≈ 2π × 6.67 kHz. Note, H0 and H share the
same eigenstates in the bulk, but the spectrum of H0 is

(a)

(c)

(b)

FIG. 3. Observing features of topological dissipation. (a),(b)
Dissipation spectra for a dissipative SSH chain in (a) topological
and (b) trivial regimes. The dissipation rates γσ , σ ¼ 1;…; 4, are
measured via eigen-EIT spectroscopy. The red dots denote the
experimental data. The blue dots show predicted values from our
theoretical model with (a) v=w ¼ 1=2 and (b) v=w ¼ 2. The
orange region shows the expected dissipative gap. The insets
illustrate the cross sections of (a) topological and (b) trivial
patterns of four coupled optical channels in the vapor cell.
(c) Chiral symmetry. Left: illustrates the cross section of six
channels forming a ring with spacings d1 ¼ 6 and d2 ¼ 3 mm.
Right: the input probes (red) across the channels simulate
½1; 0; 1; 0; 1; 0�T . The “output” probe laser intensities (blue) are
the measured probe output differences between the coupled and
uncoupled cases at δB ¼ 0. In (a)–(c), the error bar is the standard
deviation from about ten repetitive experiments.
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shifted by Δγk ¼ 2t cos k with respect to H in the
momentum space [34].
Experimentally, we measure the dissipation spectrum of

H0 via the eigen-EIT spectroscopy, where the input states
are engineered as the eigenstates of H0 with v∶w∶t ≈
1
2
∶1∶ 1

3
. The experimental data are shown in Fig. 4(a).

Furthermore, we swap the channel spacing to realize H0

with v∶w∶t ¼ 1∶ 1
2
∶ 1
3
in the nontopological regime, and

extract its spectrum as shown in Fig. 4(b). Each eigenvalue
is the averaged value of that measured from the trans-
mission spectrum of the four channels with relatively
higher probe powers. The experimental data are in good
agreement with the calculated eigenvalues of H0. Although
H0 with t=w ≈ 1=3 is close to the phase boundary, com-
parison of Figs. 4(a) and 4(b) (especially the shaded
regions) still allows us to distinguish the nearly degenerate,

surviving edge modes [see Fig. 4(a)] in the topological
regime. Moreover, to extract the spectral shift due to NNN
couplings, we compare the experiment with the theoretical
simulation of the eigen-EIT transmission using Eq. (2) with
H instead of H0. We observed the expected shift, e.g., both
the maximum and minimum dissipation rates of H0,
associated with k ¼ 0, shift upward. The remaining dis-
crepancy between the experiment and theory is mainly
attributed to the couplings beyond the NNN in the open-
ring structure (see caption of Fig. 4).
Conclusions and outlook.—We have realized a lattice of

atomic spin waves with dissipative SSH couplings in a
vapor cell and spectroscopically demonstrated key features
of topological dissipation. Though the coupling strength
remains small compared to the background loss, we expect
to reach a stronger coupling regime by engineering the
geometry of a wall-coated cell, the laser beam profiles, and
their arrangements to prevent all-to-all coupling but still
retain coherence protection by the coating. Other means to
control the coupling could be incorporated, e.g., diffractive
optical coupling [14] and reservoir engineering [27].
Combining with the controllability over atomic spins by
multilevel and nonlinear atom-light interactions in each
channel [35], our platform holds unique promise for
exploring non-Hermitian topology [19,20,22,36–40] in
quantum regimes and designing novel quantum-correlated
light sources for quantum information applications.
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