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Rapid and stable analysis of coal quality for fine management of coal is essential for the clean and efficient
utilization of coal in thermal power plants. In this work, a software-controlled coal analyzer with laser-
induced breakdown spectroscopy (LIBS) coupled with X-ray fluorescence spectroscopy (XRF) was
developed, which includes an LIBS analysis module, XRF analysis module, sample feeding module,
control module and operating software. The instrument not only plays to the strengths of LIBS in multi-
element analysis, but also inherits the advantages of XRF in high stability analysis, so that it can be used
in power plants for rapid and continuous quality analysis of coal tablets. Based on chemometric
regression methods using principal component analysis (PCA) and partial least squares regression (PLS),
as well as the spectra of hundreds of coal samples, quantitative prediction models were established, and
the industrial test and performance evaluation of the instrument were completed in the Shanxi
Yangguang Power Plant in China. The experimental results showed that the R? of the prediction models
for calorific value, ash, volatiles and sulfur were 0.973, 0.986, 0.977 and 0.979, respectively, the RMSEs
were 0.26 MJ kg™, 0.68%, 0.33% and 0.13%, respectively, the RMSEPs were 0.62 MJ kg™, 1.46%, 0.23%
and 0.19%, respectively, and the average SDs were 0.11 MJ kg™, 0.49%, 0.15% and 0.09%, respectively.
The models showed good accuracy and stability, and the repeatability of the measurements of coal
quality all met the requirements of national standards, and thus, could meet the needs of power plants.
This work provides a new idea for the increasingly mature application of LIBS in coal analysis in various
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1 Introduction

Coal occupies a very important position in China's energy
structure, which is determined by its resource endowment of
“coal-rich, oil-poor and gas-poor”. The data from China's
National Bureau of Statistics* shows that the national raw coal
production in 2021 is 4.13 billion tons, which was up 5.7% year-
on-year. With a total energy consumption which was 5.2%
higher than that of the previous year, of which, coal consump-
tion was 2.934 billion tons of standard coal, coal consumption
accounted for 56% of the total energy consumption. Meanwhile,
China's power generation in 2021 was 8534.25 billion kW h, up
9.7% year-on-year. Thermal power generation was 580580.87
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billion kWh, up 8.9% year-on-year, with thermal power
accounting for 68% of the total power generation. This shows
that for some time in the future, and even longer term, coal will
still play a fundamental role in ensuring China's energy secu-
rity. However, with the implementation of China's energy
conservation and emission reduction, low-carbon environ-
mental protection, energy transformation policy, improving the
clean and efficient use of coal has become a top priority. The
clean and efficient utilization of coal mainly depends on the
coal blending and combustion optimization of the thermal
power plants. In China, due to the large number of coal types
and variations in coal quality, it is easy to have a mismatch
between the actual coal used in thermal power plants and the
design coal used in its boilers, thus reducing the combustion
efficiency of the boilers.

The key to achieving optimal control of coal blending and
combustion in the thermal power plant is to realize the rapid
analysis of coal quality, but at present, the power plants still
generally use the traditional manual assay method.>* Although
these traditional chemical analysis methods are mature, accu-
rate and stable, and the instruments and reagents have been
widely used, their analytical processes are complicated and
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time-consuming. Therefore, it is not possible to analyze the
quality of coal entering the plant per vehicle and analyze online
the coal entering the furnace, as well as to improve the indus-
trial production process. Although the newly developed robotic
assay system has replaced manual labor with robots, the test
method used has not changed, which is also time-consuming,
bulky and expensive. The commercial neutron activation
online analysis method has a problem of radioactive contami-
nation. Therefore, the development of a low-cost rapid coal
quality analyzer is a major demand from the thermal power
plants.

Laser-induced breakdown spectroscopy (LIBS) is one of the
most promising techniques for coal analysis due to its advan-
tages of real-time, online, rapid, safe and simultaneous detec-
tion of multiple elements.> The composition of the sample is
determined by analyzing the radiation spectrum of the plasma
generated by the high-energy pulse laser. In recent years, there
are many reports on coal quality analysis by LIBS. Yao et al.®
combined cluster analysis, artificial neural networks (ANNs),
and genetic algorithms (GA) to analyze the LIBS spectra of
pulverized coal, and the mean standard deviation (SD) of the
calorific value was 0.86 MJ kg~ ". Lu et al.” also used the spectral
analysis method of ANNs combined with GA to conduct LIBS
analysis on the calorific value of coal, with an SD of 0.38 MJ
kg™ . Li et al.® further reduced the SD of the coal calorific value
to 0.22 MJ kg ™' by selecting variables through partial least
squares (PLS) regression. The LIBS developed by Body and
Chadwick® can simultaneously determine the elemental
contents of Al, C, Ca, Fe, H, K, Mg, Na, and Si, in coal with
a measurement repeatability of £10%. Wang et al.’® analyzed
the deviation of the spectra using the mutual interference
between the elements, and the mechanism of matrix effect, and
the relative standard deviations (RSDs) of calibration and
prediction were 5.79% and 8.10%, respectively. Li et al."* opti-
mized the experimental parameters, and the minimum RSDs of
Al, C, Ca, Fe, H, K, Mg, Na, and Si, in coal reached 4.66%, 4.10%,
3.14%, 3.73%, 4.45%, 4.21%, 4.91%, 2.34%, and 4.35%,
respectively. Feng et al.**> proposed a PLS model with multivar-
iate dominant factors to analyze the amount of C in coal, and
the root mean square error (RMSE) of the prediction was 2.92%.
We have designed a fully software-controlled LIBS system,™ and
the RSD for measuring C in coal was 1.49%. Hou et al™
measured the caking index (G) and the maximum thickness of
the plastic layer (Y) of coal using LIBS based on the PLS model of
multi-variant dominant factors, where the RMSEs of the
prediction of the G and Y values were relatively improved by
17.9% and 34.7%, respectively. Nevertheless, is still difficult to
meet the requirements of national standards for the measure-
ment repeatability of LIBS for the coal calorific value, ash
content and other indicators.”™ This is due to the Rayleigh-
Taylor instability of LIBS, the inherent energy fluctuation of the
pulsed laser, the poor representativeness caused by the small
focus point, and the instability of plasma due to external
disturbances, which limit the measurement repeatability of
LIBS.”? How to break through the bottleneck of the
measurement repeatability of the coal quality, becomes the key
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to determining whether LIBS can be successfully applied to the
coal industry.

The X-ray fluorescence spectrometry (XRF) has shown good
repeatability in coal quality analysis. The SD of ash in coal is
only 1.7-2.5%,>>** and the measurement repeatability of the ash
forming elements such as Al, Ca, Fe, K, Mg, Na, Si and Ti is far
superior to that required by the national standards.”® The
principle of XRF is that when a single atom of an element is
excited by external energy, it will emit a secondary X-ray fluo-
rescence with characteristic energy (energy-dispersive XRF, ED-
XRF) or wavelength (wavelength-dispersive XRF, WD-XRF), and
the element can be quantitative analyzed according to the
fluorescence intensity.> The XRF has a low fluorescence yield,
and a sensitivity for elements with low atomic numbers,* and
the corresponding detection limit is generally 50 ug g%, but it is
5 pg g~ ' for elements with high atomic numbers. In this way,
ED-XRF is only suitable for determining inorganic ash forming
elements with atomic numbers larger than 11, but it cannot
determine organic elements such as C and H in coal, so it
cannot determine the calorific value and volatile matter of coal.

In summary, LIBS has low measurement repeatability but
can analyze all the key elements in coal, whereas XRF can only
analyze the ash forming elements but has excellent stability.
The combination of the two methods can not only measure
organic elements in coal, but also measure the inorganic
elements with high stability, thus forming a new coal quality
analysis method with high measurement repeatability. We have
previously used a chemometric regression algorithm combining
principal component analysis (PCA) and PLS in experiments to
verify the feasibility of this method,**** and the measurement
repeatability of the coal calorific value has met the requirements
of national standard. It is worth mentioning that PCA is an
unsupervised learning method that can not only adjust the
combination of multivariate data information to extract fewer
integrated variable features to explain most of the information
obtained from the original data, but can also reduce the
dimensionality of the high-dimensional data space by using the
principle of minimal loss of data information. However, the
dependent variable is not involved in guiding the construction
of the principal components in the process of dimensionality
reduction by PCA, therefore, PCA cannot guarantee that the
directions of the predictor variables can be well explained,
whereas the dependent variable can be predicted
satisfactorily.>=** The PLS is a supervised approach that incor-
porates the ideas of PCA, typical correlation analysis, and
multiple linear regression. It not only enables the feature vari-
ables obtained after extraction to satisfactorily summarize the
information of the original variables, but it also has a strong
explanatory capability for the dependent variable. The PLS
method obtains the mutually orthogonal eigenvectors of the
independent and dependent variables by projecting the high
dimensional data space of the independent and dependent
variables into the corresponding low-dimensional space, and
then establishes a univariate linear regression relationship
between the eigenvectors of the independent and dependent
variables. Not only can it overcome the covariance problem, it
emphasizes the explanatory and predictive effects of the
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independent variables on the dependent variable when select-
ing the eigenvectors, removes the influence of unhelpful noise
on the regression, and ensures that the model contains the
minimum number of variables.**-**

In this research discussed herein, we further developed an
LIBS-XRF analyzer that combines PCA and PLS regression
methods for coal quality measurement, and carried out indus-
trial testing in a power plant to verify its performance.

2 Experimental
2.1 Experimental setup

Fig. 1 shows the image, 3D mechanical model, and schematic
diagram of the LIBS-XRF analyzer, which is composed of an
LIBS module, an XRF module, a sample delivery module,
a control module and the operating software. The LIBS and XRF
modules are encapsulated in an aluminum shell, which is
mounted inside the box, with rubber pads between the
aluminum shell and the inner wall of the box to give anti-
vibration protection. All the modules are described in detail
in the next sections.

(1) The LIBS module. The 3D model and schematic diagram
of the module are shown in Fig. 2, which mainly includes a laser
(M-NANO), beam expander (BE), half-wave plate (1/2), polari-
zation beam splitter (PBS), energy meter (EM), focusing lens
(FL), concave mirror (CO), coupling lens (L), optical fiber,
spectrometer (AvaSpec-ULS4096CL-EVO, Avantes, The Nether-
lands) and dust removal fan. The emitted laser beam with
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Fig.1 (a) Image, (b) 3D mechanical model and (c) schematic diagram
of the LIBS-XRF analyzer for coal quality measurement.
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Fig. 2 (a) 3D mechanical model and (b) schematic diagram of the LIBS
module.

a wavelength of 1064 nm, energy of 60 m]J, pulse width of 8 ns,
and repetition frequency of 6 Hz was divided into two beams
after passing through the 2x BE, half-wave plate, and PBS. The
reflected laser beam was received by the EM, and the trans-
mitted laser beam was focused on the surface of the coal sample
by the FL, with a focal length 100 mm, to form a plasma. The
radiated fluorescence was collected by a UV-enhanced concave
mirror with a focal length of 50 mm, coupled to the optical fiber
by a quartz plano-convex lens with a focal length of 30 mm, and
then introduced into the spectrometer. Here, the beam
expander not only prevented the high-power laser from
damaging the optical components, but also reduced the diver-
gence angle and diffraction effect of the laser to ensure good
alignment. The A/2 plate and PBS were used to adjust the energy
ratio of the transmitted and reflected laser beams. The wave-
length ranges of the dual-channel spectrometer were 195-
321 nm and 496-732 nm, and the corresponding spectrum
resolution was 0.15 nm, and the minimum integration time was
1.05 ms. The dust removal fan was used to suck away the
pulverized coal generated during the measurement.

(2) The XRF module. The structure of the ED-XRF module is
shown in Fig. 3, and is composed of an X-ray tube (VF-50], Varex
Imaging, USA), silicon drift detector (SDD, DV H20, Ketek,
Germany), vacuum chamber, beryllium window (BW), colli-
mator (CM), high-voltage power supply (MNX 50W), digital
pulse processor (DPP), vacuum pump (VP, SVF-E1, Scroll Labs,
USA) and vacuum gauge (VG, APG-500). The X-ray tube and SDD
were placed on both sides of the chamber at an angle of 45°. The
X-ray tube was connected to the high-voltage power supply, and
the SDD was connected to the DPP, and the sample was located
2 mm below the BW. During the measurement, the primary X-
ray emitted irradiated the sample surface after passing
through the CM and BW, and the X-ray fluorescence generated
was detected by the SDD and transmitted to the computer after
being processed by the DPP. In order to prevent the detection
window from being polluted by dust, the module uses a top
illuminated structure. The tube voltage and current of the high-
voltage power supply were 10 kV and 0.25 mA, respectively, and
the peak time of the SDD was 4.8 ps. The vacuum of the
chamber was maintained at 100 Pa, and its bottom plate was
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Fig. 3 (a) 3D mechanical model, and (b) schematic diagram of the XRF module. DPP: digital pulse processor, BW: beryllium window, CM:

collimator, VG: vacuum gauge, VP: vacuum pump.

made of brass to avoid interference with the coal quality
measurement.

(3) Sample delivery module. This module was located below
the LIBS and XRF modules, and its 3D mechanical model is
shown in Fig. 4. From bottom to top are the X-axis translation
table, Z-axis translation table, rotation table and sample cell.
The X-axis translation table is a double-track sliding table with
a length of 400 mm, which was used to control the horizontal
movement of the sample. The Z-axis translation table is a shear
type lifting structure to precisely control the distance between
the sample surface and the BW. The rotary table is driven by
aworm gear and was used to control the rotation of the sample.
The 3D mechanical model of the sample cell is shown in Fig. 5,

Fig. 4 The 3D mechanical model of the sample delivery module.

Fig. 5 The 3D mechanical model of the sample cell.

1424 | J Anal. At Spectrom., 2023, 38, 1421-1430

which is used to hold the coal tablet. The slots on both sides of
the cell are convenient for taking samples.

(4) Control module. The module is used to control the timing
of the whole instrument and spectral analysis, including the
computer, programmable logic controller (PLC, 224XP), relays,
drivers, photoelectric switches, and so on. Here, the PLC is used
for timing control, and the relays are used to control the
switching on and off of each component, the drivers are used to
drive the tables, and the photoelectric switches are used for
positioning.

(5) Operating software. The software used was LabVIEW
(National Instruments, USA), and the user interface is shown in
Fig. 7. The left side is used to set the control parameters, and the
right side displays the spectra and analysis results.

2.2 Workflow

The operating process of the developed analyzer is as follows.
First, the start measurement button was clicked, and the

Fig.6 The spiral path of laser ablation on the surface of the coal tablet.

This journal is © The Royal Society of Chemistry 2023
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Fig. 7 The user interface of the LabVIEW operating software.

sample cell first descends to the specified height, then moves
to the bottom of the XRF module and rotates at 1 r/min. The
amount of vacuum of the chamber is maintained after it is
reduced to 100 Pa. At this time, the X-ray tube and the SDD
start working, and the XRF measurement is completed 1 min
later. After that, the sample cell continues to move to the
bottom of the LIBS analysis module, then the dust fan starts,
and the LIBS measurement starts and then ends 1 min later.
Finally, the sample pool quickly returned to the initial posi-
tion, and the software interface displayed the quantitative
results. In the LIBS measurement, by setting a reasonable
speed for the rotary table and the X-axis translation table, the
laser ablation points on the sample surface show a spiral path
(Fig. 6), and this increases the distance between the points,
ensuring that the laser ablation point is new at the time of
measurement.
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Fig. 8 The analysis process for the spectral data.
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2.3 Samples

In this experiment, 334 air dried coal samples with an average
particle size of 200 pm, and the corresponding standard data
were provided by the Shanxi Yangguang power plant. These
pulverized coal samples were all pressed into tablets with
a diameter of 40 mm and a thickness of 6 mm under a pressure
of 30 MPa (Fig. 6). A total of 318 samples were used as a training
set for modeling, and the remaining 16 samples were used as
avalidation set. Each sample in the validation set was tested five
times to evaluate the measurement repeatability.

2.4 Spectral analysis

The whole analysis process of spectral data is shown in Fig. 8,
and mainly includes spectral pretreatment, modeling and
model evaluation. The details are as follows:

(1) Spectral pretreatment. For the LIBS spectra, the
pretreatment methods (Fig. 9) include removing saturated
spectra, removing low signal-to-noise ratio (SNR) spectra, aver-
aging and normalization. Here, saturated spectrum refers to
a spectrum whose spectral line intensity exceeds the range of
the spectrometer. The removal of low signal-to-noise ratio (SNR)
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= 20000 g
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Fig. 9 Typical LIBS spectrum of coal.
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Fig. 10 Typical XRF spectrum of coal.

spectra is done by first calculating the SNR of the element-
specific spectral lines in each remaining spectrum, then sorting
the spectra by SNR size, and finally rejecting 10% of the low SNR
spectra. Normalization is done by subtracting the minimum
value in the average spectrum and then dividing it by the
maximum value in the processed spectrum.

For the XRF spectra (Fig. 10), the pretreatment methods
include Savitzky-Golay (SG) smoothing, interception and
normalization. Here, the SG smoothing uses five-point, third-
order smoothing. Interception is used to remove the invalid
spectral segments and to leave the effective spectra. The
normalization method is consistent with LIBS for the elimina-
tion of the magnitude difference between the LIBS and XRF
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Fig. 12 The PCA of the LIBS spectrum.

data. Based on the results of previous spectral line selection,**
the C, H, Na lines in the LIBS spectrum and the Al, Ca, Fe, K, Mg,
Mn, S, Si, Ti, lines in the XRF spectrum were directly selected for
the following modeling.

(2) Modeling. Combining the spectra after pretreatment and
the standard data of the coal samples, the principal compo-
nents were selected by PCA, and then the prediction model of
coal quality was established using PLS. Considering that the
coal quality is closely related to the content of each element in
the coal, and that the LIBS spectrum had interference from the
“matrix effect” and the “self-absorption effect”,>® multiple
spectral lines were selected as the initial input variables for the
modeling. Firstly, the principal components of the input
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Fig. 11 The RMSECV vs. latent variables plot for each PLS model.
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Fig. 13 The PCA of the XRF spectrum.

variables were extracted to eliminate redundant variables and
reduce the array dimension, and then the regression model was
established using the standard data of the coal samples and the
extracted principal components. For the calorific value, it was
not only positively correlated with C, H and S, but also nega-
tively correlated with ash content, so the Al, C, Ca, Fe, H, K, Mg,
Mn, Na, S, Si, and Ti, lines were selected as the initial input
variables of the prediction model of calorific value. The ash
content was mainly related to the inorganic elements in coal, so
the Al, Ca, Fe, K, Mg, Mn, Na, Si, and Ti, lines were selected as
the initial input variables. For volatile matter, in addition to
organic elements, the C, H and S lines, the spectral lines of
some other elements with a high correlation were selected as

@
S
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Table 1 Performance evaluation of the coal quality prediction model
using data obtained from the PLS

Coal quality R RMSE RMSEP SD  GB®
Calorific value (MJ kg™")  0.973  0.26 0.62 0.11  0.12
Ash content (%) 0.986  0.68 1.46 0.49  0.50
Volatile matter (%) 0.977  0.33 0.23 0.15  0.30
Sulfur content (%) 0.979  0.13 0.19 0.09 0.10

“ GB: National Standard of the People's Republic of China.

input vectors. For the sulfur content, the spectral lines of S and
other interfering elements were taken as the initial input vari-
ables. Due to the different elemental spectra selected for the
four coal quality indicators, the numbers of principal compo-
nents were also different. To reduce the influence of the
secondary components, the final numbers of principal compo-
nents selected at a 95% confidence interval by PCA were 12, 11,
9 and 9. The 10-fold cross-validation and 15-fold Monte Carlo
cross-validation were used to obtain the optimal parameters
when building the PLS model, to avoid overfitting as much as
possible, and to test the performance of the model on unfa-
miliar data sets. After recalculation and further optimization,
the number of latent variables selected for each PLS model was
finally determined to be 8, 8, 7, and 8, which were chosen by the
root mean square error of cross-validation (RMSECV) parame-
ters and the latent variable relationship diagram (Fig. 11) of
each PLS model.

It should be noted that due to the large number of collected
samples and the combination of LIBS spectra and XRF spectra,
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Fig. 14 Calibration results of the coal quality of samples in the training set obtained using the LIBS-XRF analyzer.
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Fig. 15 Comparison between the predicted results of (a) calorific value,
samples and the standard data.

the amount of data used for mathematical modeling became
very large. If the PLS method was used directly for modeling, the
calculation process would be time-consuming and require
a high computer performance. Moreover, the processing of data
from the combined spectra itself was tedious. In this study, the
modeling was based on PCA using the PLS method. There were
two main purposes of using PCA, one was to eliminate the
redundant variables in the original spectra and perform data
dimensionality reduction, and the other was to select the vari-
ables that contributed more to each component by their load-
ings. After screening the spectra based on the PCA loadings, the
PLS was used for mathematical modeling, which did not
directly use the principal components of the PCA as input
variables for PLS. Fig. 12 and 13 show the number of each
principal component and their cumulative contribution to the
respective spectra after PCA analysis of LIBS and XRF spectra,
respectively.

(3) Model evaluation. The regression model was used to
predict the calorific value, ash content, volatile matter and
sulfur content of coal. Its accuracy was evaluated by the linear
correlation coefficients (R*) and RMSE, whereas its repeatability
was evaluated by SD.

3 Results and discussion

The calibration results of the analysis of the coal quality of the
coal samples in the training set are shown in Fig. 14. It can be

1428 | J Anal. At. Spectrom., 2023, 38, 1421-1430
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(b) ash content, (c) volatile matter and (d) sulfur content of 16 new coal

seen that the model shows good correlation between the pre-
dicted values and the standard data, and all the values of R*
were greater than 0.97. Table 1 lists the R and RMSE values of
the model for samples in the training set, the Root Mean Square
Error of Prediction (RMSEP) and SD of the prediction in the
validation set, and the SD specified in the national standards. It
was seen that the LIBS-XRF analyzer had a good measurement
accuracy and stability for coal quality, and the repeatability
meets the national standard requirements.

To verify the actual performance of the analyzer, this
instrument was field tested in the laboratory of the Shanxi
Yangguang Power Plant for three months. A comparison
between the prediction results of the coal quality of 16 new coal
samples and the standard data is shown in Fig. 15. It can be
seen that the average SDs of calorific value, ash content, volatile
matter and sulfur content of this instrument were 0.11 MJ kg™,
0.49%, 0.15% and 0.09%, respectively, which meet the actual
requirements of power plants.

4 Conclusions

In this work, we developed an LIBS-XRF coal quality analyzer
based on the highly stable XRF assisted LIBS analysis method,
which consists of an LIBS module, an XRF module, a sample
delivery module, a control module and operating software. The
analysis algorithm includes spectral pretreatment, PCA and PLS
modeling. The instrument was applied in the Shanxi

This journal is © The Royal Society of Chemistry 2023
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Yangguang Power Plant for industrial testing and performance
evaluation, and the prediction models used for coal quality
analysis were established by using the spectra of hundreds of
coal samples. The test results showed that the RMSEPs of the
calorific value, ash content, volatile matter and sulfur content of
coal were 0.62 MJ kg™, 1.46%, 0.23% and 0.19%, respectively,
and the average SDs were 0.11 MJ kg™, 0.49%, 0.15% and
0.09%, respectively. The measurement repeatability meets the
requirements of national standards. Next, the online analysis
system will be further developed in combination with the
sampler, crusher, grinder, and so on, to monitor the coal quality
on the conveyor belt in real time.
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