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We investigate the Meissner currents of interacting bosons subjected to a staggered artificial gauge field in
a three-leg ribbon geometry, realized by spin-tensor–momentum coupled spin-1 atoms in a one-dimensional
optical lattice. By calculating the current distributions using the state-of-the-art density-matrix renormalization-
group method, we find a rich phase diagram containing interesting Meissner and vortex phases, where the
currents are mirror symmetric with respect to the middle leg (i.e., they flow in the same direction on the
two boundary legs, opposite to that on the middle leg), leading to spin-tensor-type Meissner currents, which
is very different from previously observed chiral edge currents under uniform gauge field. The currents are
uniform along each leg in the Meissner phase and form vortex-antivortex pairs in the vortex phase. Moreover,
the system also supports a polarized phase that spontaneously breaks the mirror symmetry, whose ground
states are degenerate with currents either being uniform or forming vortex-antivortex pairs. We also discuss the
experimental schemes for probing these phases. Our work provides useful guidance for ongoing experimental
research on synthetic flux ribbons and paves the way for exploring novel many-body phenomena therein.
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I. INTRODUCTION

Charged particles in a magnetic field showcase a remark-
able variety of macroscopic quantum phenomena, including
quantized Hall resistance in topological insulators [1,2] and
the Meissner effect in superconductors [3,4]. Recent ex-
perimental advances in realizing synthetic gauge fields in
ultracold atomic systems provide a powerful tool for exploring
these novel phenomena in a fully controllable, clean environ-
ment [5–12]. Chiral Meissner (topological edge) currents have
been observed experimentally with an atomic Bose (Fermi)
gas in both ladder [13,14] and three-leg ribbon geometries
[15,16], where the two-dimensional (2D) lattice consists of
the sites of a one-dimensional (1D) optical lattice in the long
direction and internal atomic spin states forming a synthetic
lattice in the short direction. Such synthetic dimensions enable
the investigation of higher-dimensional physics beyond the
physical dimensions of the systems and bring new oppor-
tunities to explore novel quantum phenomena [17–19]. The
experimentally observed chiral currents result from a uniform
gauge field that is equivalent to ordinary spin-orbit cou-
pling (i.e., spin-vector–momentum coupling) with the form
qFz, where q is the quasimomentum along the optical lattice
direction and F = {Fx, Fy, Fz} are the spin vectors [20]. Con-
sequently, the corresponding Meissner currents also exhibit
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spin-vector properties; that is, atoms with opposite spins prop-
agate along opposite directions [14–16,21].

For higher-spin (�1) systems (e.g., the synthetic three-leg
ribbon), it is well known that not only spin vectors but also
spin tensors exist [22,23]. Spin-tensor–momentum coupling
(STMC) in the form qF 2

z was proposed and experimentally
realized recently [24,25], which could significantly modify
the band structures (e.g., dark-state band, triply degenerate
points) and lead to interesting many-body physics (e.g., mag-
netic stripe phase) in the presence of interactions [25–29].
It was also shown that STMC in a 1D Mott bosonic lattice
can support interesting spin-tensor magnetism orders [30]. So
far, studies on Meissner effects have focused on the afore-
mentioned spin-vector types with uniform synthetic gauge
fields. Therefore, a natural and important step is to explore the
Meissner effects of interacting atoms in optical lattices with
STMC.

In this paper, we investigate the ground-state Meissner
currents of spin-tensor–momentum coupled spin-1 bosons
in a 1D optical lattice using state-of-the-art density-matrix
renormalization-group (DMRG) numerical methods [31,32].
The system corresponds to a synthetic three-leg ribbon with
a staggered gauge field, where the magnetic domain wall is
given by the middle leg. We are interested in the Meissner
effects and distinguish different phases by examining the cur-
rent and momentum distributions. In the noninteraction limit,
there are two phases depending on the minima of the lowest
single-particle band. The Meissner (M) phase with a single
band minimum occurs when the interleg couplings are strong,
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where the Meissner current is uniform along each leg, with
its amplitude determined by the gauge field strength. As the
interleg coupling decreases across some critical value, the sys-
tem undergoes a transition to the vortex (V) phase with double
band minima, where atoms can occupy both minima and
their interference can lead to vortex structures of the currents,
forming vortex-antivortex pairs. For both the M and V phases,
the current distributions are always mirror symmetric with
respect to the middle leg; they have a rank-2 spin-tensor form
which is very different from the spin-vector Meissner current.
In particular, here, the current flows in the same direction on
the two boundary legs, opposite to the current direction on the
middle leg. Meanwhile, the rank-0 scalar charge current and
rank-1 spin-vector current are both zero.

In the presence of interaction, the phase diagram is altered
significantly. In the weak-interaction region, ferromagnetic
spin-spin interaction can dominate over density-density inter-
action and stabilize the V phase with equal populations on
the two band minima. In the strong-interaction region, the
wave packet becomes broadened in the momentum space, and
the two wave packets at the two band minima merge into
one, and thus, the system favors the M phase even when the
lowest band has two minima. Interestingly, for intermediate-
interaction strength, the spin-spin interaction can induce a
new polarized (P) phase that spontaneously breaks the mirror
symmetry with respect to the middle leg, although the STMC
(i.e., synthetic gauge field) preserves such symmetry. In the P
phase, atoms start to occupy the dark middle band induced by
the STMC, and the ground states are degenerate, with currents
either being uniform or forming vortex-antivortex pairs. The
P phase resulting from the presence of the dark middle band
is unique for STMC systems and is absent for spin-vector-
coupled systems. The Meissner currents in all phases persist
regardless of whether the system belongs to a superfluid or
Mott insulator.

II. MODEL AND HAMILTONIAN

We consider an experimental setup based on a Bose-
Einstein condensate in a 1D optical lattice with STMC, as
shown in Fig. 1(a). A pair of counterpropagating lasers with
wavelength λL (green arrows) is used to realize the 1D optical
lattices Vlat (y) = −V0 cos2(kLy) along the y direction, with
wave number kL = 2π/λL. Three Raman lasers, R1 (yellow),
R2 (blue), and R3 (red), with wavelength λ� and an incident
angle η with respect to lattice direction, induce two Raman
transitions between spin states |0〉 and |↑(↓)〉 accompanied by
the momentum transfer 2kR [24], where kR = 2π cos(η)/λ�,
as shown in Fig. 1(b). The tight-binding Hamiltonian reads

H = − t
∑

〈 j, j′〉,σ
b̂†

jσ b̂ j′σ + �√
2

∑
j

(eiφ j b̂†
j0b̂ j+ + H.c.)

+
∑

j

U0

2
n̂ j (n̂ j − 1) + U2

2

(
S2

j − 2n̂ j
) + δS2

j,z, (1)

where b̂†
jσ (b̂ jσ ) is the Bose creation (annihilation) opera-

tor with spin basis σ = {↑, 0,↓} and b̂ j± = (b̂ j↑ ± b̂ j↓)/
√

2.
The particle number operator is n̂ j = ∑

σ n̂ jσ , with n̂ jσ =
b̂†

jσ b̂ jσ . t is the tunneling amplitude between neighboring

FIG. 1. (a) Schematics of the system setup. The ultracold atoms
are trapped in a 1D optical lattice, which is generated by a pair
of counterpropagating lasers with wavelength λL (green arrows).
Three Raman lasers (yellow, blue, and red arrows) with wavelength
λ� and angle η with respect to the y direction induce two Raman
transitions. (b) Raman transitions between spin states |0〉 and |↑(↓)〉
with detuning δ. (c) The effective three-leg ribbon with a staggered
gauge field along the synthetic dimension.

lattice sites, and � is the Raman coupling strength. The flux
φ = 2π cos(η)λL/λ� = 2 cos(η)kRa can be tuned by tuning
the angle η. δ is the detuning for both the |↑〉 and |↓〉
states. For simplicity, we set δ = 0 in the following. U0 and
U2 are the density-density and spin-spin on-site interactions,
which are related to the scattering lengths a0,2 (correspond-
ing to the channels with total spin 0 and 2, respectively)
as U0 = 4π h̄2(a0 + 2a2)/3M and U2 = 4π h̄2(a2 − a0)/3M,
where M is the mass of the atom [33,34]. The spin-dependent
interaction is antiferromagnetic for 23Na for U2/U0 > 0 and
ferromagnetic for 87Rb for U2/U0 < 0. S j = ∑

σ σ́ b̂†
jσ Fσ σ́ b̂ jσ́

is the total spin at site j, where Fσ σ́ represent the matrix
elements of the spin-vector operator. We also set t as the
energy unit.

III. PHASE DIAGRAM

A. Band structures

We first discuss the single-particle band structure of the
system. Effectively, the system corresponds to a three-leg rib-
bon with a staggered gauge field, as shown in Fig. 1(c). After
a unitary transformation the Hamiltonian without interaction
can be written as

H0 = −teiφγσ

∑
〈 j, j′〉,σ

ĉ†
jσ ĉ j′σ + �√

2

∑
j

(ĉ†
j0ĉ j+ + H.c.), (2)

where (ĉ j↑, ĉ j0, ĉ j↓)T = U (b̂ j↑, b̂ j0, b̂ j↓)T , with U = exp
(iφ jF 2

z ), and γ↑ = 1, γ0 = 0, and γ↓ = 1. Then, we Fourier
transform the Hamiltonian and obtain

H0 =
∑

q

Ĉ†
q

[
−2t cos

(
qa + φF 2

z

) + �√
2

Fx

]
Ĉq, (3)

where Ĉq = (ĉq↑, ĉq0, ĉq↓)T is the corresponding operator in
quasimomentum q space, a = π/kL is the lattice constant, and
F 2

z is the rank-2 spin tensor. We see that the flux φ now rep-
resents the strength of the STMC. The system exhibits three
bands after we diagonalize the Hamiltonian (3), as shown in
Fig. 2(a). The top and bottom bright-state bands exhibit the
same behavior as a spin-orbit-coupled spin-1/2 system with
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FIG. 2. (a) Single-particle band structure of the Hamiltonian (3)
for different values of �/t with flux φ/π = 0.5 and �c/t = 2. The
system exhibits three bands, including the upper band (blue line), the
lowest band (red line), and the middle band (black dashed line). Blue
(red) lines with different markers correspond to the upper (lowest)
band with different �; the squares, dots, triangles, and stars mark
the bands with �/t = 0, 1, 2, 3, respectively. The middle band is
the dark band with spin state |−〉 and is unaffected by �. The spin
components |0〉 and |+〉 are indicated around the corresponding band
minima. The lowest band has a single minimum for � > �c and
two symmetric band minima for � < �c. (b) The noninteracting
phase diagram in the �-φ plane, with vortex (V) and Meissner (M)
quantum phases. The color bar denotes the current J‖

↑ , and the solid
line is the critical line given by �c. The profiles of the current J‖

σ

as a function of � and φ, respectively, with (c) φ/π = 1/2 and
(d) �/t = 2.0. The filling factor is ρ = 1.0 in (b)–(d). We set t as
the energy unit.

spin states |0〉 and |+〉 = (|↑〉 + |↓〉)/
√

2 [see the colored
lines in Fig. 2(a)]. The middle band Eq = −2t cos(q + φ)
is a dark-state band which always has the spin state |−〉 =
(|↑〉 − |↓〉)/

√
2 and is independent of � [see the black dashed

line in Fig. 2(a)] since it is decoupled from the Raman lasers.
However, the dark-state band plays an important role in both
ground-state and Meissner current distributions in the pres-
ence of interactions.

B. Order parameters

Before we calculate the phase diagram of the system, in
the following, we first introduce some order parameters that
we will use to distinguish different phases.

Currents. Since we are interested in the Meissner effects,
the most important property here is the current along the legs
and the rungs of the ribbon. Local averaged currents along the
leg direction can be defined as [13,14,35,36]

J‖
j,σ = it〈b̂†

j+1σ b̂ jσ − H.c.〉, J‖
σ = 1

L

∑
j

J‖
j,σ . (4)

Similarly, we can define the rung currents along the synthetic
direction [14,36],

J⊥
j,0s = i�〈eiφ j b̂†

j0b̂ js − H.c.〉, (5)

with s = {↑,↓}. We then introduce the current orders

I⊥
0s = 1

L

∑
j

|J⊥
j,0s|, I‖

z = 1

L

∑
j

|J‖
j,↑ − J‖

j,↓|. (6)

The rungs current order I⊥
0s distinguishes the M phase (with

vanishing I⊥
0s) from the V phase (with finite I⊥

0s). The leg
current order I‖

z characterizes the current polarization asso-
ciated with the mirror symmetry with respect to the middle
leg (a nonvanishing I‖

z represents the breaking of the mirror
symmetry). Different phases can be identified by different
current distributions and orders.

Spin moments. Experimentally, the spin moments of the
atoms can be measured by spin-selective imaging of the den-
sity distributions

n j,σ = 〈b̂†
jσ b̂ jσ 〉. (7)

The density distributions can be measured either in the basis
σ = {↑, 0,↓} or in the basis σ = {0,±}. We can define the
spin-moment orders as

nσ = 1

L

∑
j

n j,σ , (8)

which gives the population properties of the bands and can
be used to characterize the phase transition. We note that n−
corresponds to the occupation of the dark middle band.

Entropy. The many-body interacting phase diagram can be
further confirmed by the entanglement entropy. Sharp features
emerge at the critical points in the von Neumann entropy,
defined as [37–43]

SvN = −TrA[ρ̂A ln ρ̂A], (9)

where ρ̂A = TrB|ψ〉〈ψ | is the reduced density matrix and |ψ〉
is the ground-state wave function, with A and B corresponding
to the left and right halves of the 1D chain.

Low-energy-level spacing. The energy-level spacing with
respect to the ground-state energy, defined as

�i = Ei − E0, (10)

may also be used to signal the phase transition. Here, E0 is the
lowest eigenenergy, and Ei is the ith-order eigenenergy with
fixed particle numbers.

C. Noninteracting phase diagram

In the noninteracting limit, the phase diagram is deter-
mined by the single-particle band structures. The lowest band
presents a single minimum in the M phase, � > �c, and two
symmetric minima in the V phase, � < �c, where �c is the
critical coupling strength, as shown in Fig. 2(a). According to
the number of minima, we can plot the single-particle phase
diagram in the �-φ plane, as shown in Fig. 2(b), which is
similar to the phase diagram of a spin-1/2 spin-orbit-coupled
system [14]. However, the currents have a rank-2 spin-tensor
form that is very different from the spin-vector Meissner
current [14,16]. In particular, here, the current flows in the
same direction on the boundary legs, opposite to the current
direction on the middle leg. We calculate the ground-state
currents of Hamiltonian (1); the averaged currents along each
leg are shown in Figs. 2(c) and 2(d). It is easy to check
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FIG. 3. The schematic of the density distributions nj,σ and cur-
rents J‖

j,σ and J⊥
j,0s in different phases. The points denote the density

profile of the three components with point size indicating the number
of atoms. The current direction and strength are denoted by the
arrows. (a) The M phase with �/t = 2.5 and φ/π = 1/2. (b1)–(b3)
The V phase with �/t = 0.2 and φ/π = 1/4. (b1) Left minimum
ground state [blue dot in Fig. 2(a)]. (b2) Right minimum ground state
[red dot in Fig. 2(a)]. (b3) Equal superposition of the two minima.

that the rank-0 scalar charge current J‖ ≡ ∑
σ J‖

σ and rank-1
spin-vector current J‖

z ≡ ∑
σ σJ‖

σ are both zero, while the
rank-2 spin-tensor current J‖

zz ≡ ∑
σ σ 2J‖

σ = 2J‖
↑ is finite. As

we increase � for a fixed φ, J‖
zz increases and has a saturated

value above the critical point; as shown in Fig. 2(c), the system
undergoes a transition from the V to M phase. For increasing
flux φ with �/t = 2.0, J‖

zz increases first and then decreases,
reaching its maxima at the phase transition point from the M
to V phase, as shown in Fig. 2(d).

In order to clearly show the local current properties of the
V and M phases, we plot schematics of density distributions
n j,σ and currents J‖

j,σ and J⊥
j,0s in Fig. 3. The current is mirror

symmetric with respect to the middle leg, analogous to the
combination of the spin-1/2 (two-leg ladder) vector current
and its mirror reflection. In the M phase, both the currents
and the densities are uniform, as shown in Fig. 3(a). In the V
phase, the system exhibits two energy minima in the lowest
band. Atoms may populate on either minimum with the same
tensor current, as shown in Figs. 3(b1) and 3(b2), or in a
linear combination of the two minima with a current vortex,
as shown in Fig. 3(b3).

D. Interacting phase diagram

The interplay between the single-particle band structure
and the interaction is fundamental to many areas of modern
physics. The ability to engineer competing interactions be-
tween atoms through lattice depth or Feshbach resonances
[44] makes cold atomic systems an ideal platform to generate
a rich variety of many-body phenomena [45–51]. Here, we
perform state-of-the-art DMRG calculations to calculate the
many-body ground states of the system under open boundary
conditions. In our numerical simulations, we set the cutoff of
the single-site atom number as ncutoff = 4. The effect of such
a cutoff can be neglected for strong interactions, while in the
weak-interaction region, the phases and phase boundaries may
be slightly affected by the cutoff. We find that ncutoff = 4 is
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FIG. 4. (a) The current order parameters I‖
z and I⊥

0s versus interac-
tion strength U0. (b) Spin-moment orders n±,0 versus U0. (c) Entropy
SvN and (d) excited energy gap �i as a function of interaction strength
U0. In all plots, we have �/t = 0.2, φ/π = 1/4, U2 = −0.2U0,
ρ = 1.0, and L = 64.

enough to determine the phase boundaries (see Appendix A).
We set lattice size up to L = 64, for which we retain 300
truncated states per DMRG block and perform 20 sweeps with
a maximum truncation error of ∼10−7.

We consider the repulsive density-density interaction with
U0 > 0 and ferromagnetic spin-spin interaction with U2 < 0
like for 87Rb and 7Li atoms. In Fig. 4, we plot the order param-
eters as a function of the interacting strength U0/t , with fixed
�/t = 0.2 and φ/π = 1/4, from which three phases (i.e., V,
P, and M) and their critical boundaries can be identified. For
weak interactions, the system stays in the V phase with a large
rung current I⊥

0s; for strong interactions, the system favors the
M phase with nearly vanishing I⊥

0s . We note that finite-size
effects would induce a tiny average rung current I⊥

0s in the M
phase since the leg currents must form a closed loop at the
boundary through the rungs. In both the V and M phases, we
have I‖

z = 0 due to the mirror symmetry, although J‖
σ �= 0. For

intermediate interaction strength, the P phase emerges with
I‖
z �= 0, as shown in Fig. 4(a), and the mirror symmetry is

spontaneously broken. The P phase may also support vortex
currents, leading to a large rung current order I⊥

0s . Different
phases have different spin occupations; therefore, the spin-
moment orders also exhibit sharp transitions at the phase
boundary, as shown in Fig. 4(b).

Besides the currents and spin moments, the von Neumann
entropy SvN and the low-energy-level spacing �i can also
signal the transitions. When the entanglement entropy SvN,
an analytic function of correlations, is not analytic at some
point (SvN or its derivatives show discontinuity) [43], it must
correspond to a quantum phase transition (as long as the def-
inition of the entanglement entropy is analytic at that point).
Although strict nonanalyticity is expected in the thermody-
namic limit, we find that sharp features in the entropy emerge
at the critical phase transition points with a finite-size sys-
tem, as demonstrated in Fig. 4(c), confirming the positions
of the phase transitions. The degeneracy of the ground state
can be seen from low-energy-level spacing, which signals the
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FIG. 5. (a)–(d) Schematics of the density distributions nj,σ and
currents J‖

j,σ and J⊥
j,0s of the fourfold-degenerate ground state in the

P phase, respectively. In all plots, we have �/t = 0.2, φ/π = 1/4,
U0/t = 4.0, U2 = −0.2U0, ρ = 1.0, and L = 64 (only the central 17
sites are shown in the plot).

spontaneous symmetry breaking across the phase transition.
As demonstrated in Fig. 4(d), �i vanish for i < 4 in the P
phase due to ground-state degeneracy. The interaction can
drive the system from the V phase (in the weak-interaction
regime) to the M phase (in the strong-interaction regime),
although the lowest single-particle band has two minima.
Different from the noninteracting V phase, in which the
ground state is an arbitrary linear combination of the two
band minima, here, the interacting V phase is stabilized by
ferromagnetic spin-spin interaction, leading to an equal su-
perposition of the two band minima. On the one hand, the
interference between two band minima would induce density
modulation and increase density-density interaction energy.
On the other hand, the superposition also generates spin orders
which lower the ferromagnetic spin-spin interaction energy,
and the system favors the V phase since the spin-spin in-
teraction dominates over the density-density interaction. We
note that, for the V phase in the weak-interaction region, the
mean-field analysis predicts that the relative phase between
atoms at two band minima can be either 0 or π [25] and the
ground states should be twofold degenerate and are related to
each other by shifting the vortex by half a period along the leg
direction. However, such degeneracy is lifted by the finite-size
and finite-ncutoff effects. In the strong-interaction regime, the
atom distribution in momentum space is broadened, and the
two wave packets at the two band minima merge into one
centered at q = 0; therefore, the system favors the M phase
even when the lowest band has two minima. The current dis-
tributions of the interacting M and V phases are very similar to
that for the noninteracting case shown in Figs. 3(a) and 3(b3).

Interestingly, a novel P phase emerges at intermediate
interaction strength. The typical current and density distri-
butions are shown in Fig. 5 for flux φ/π = 1/4. In this P
phase, the mirror symmetry with respect to the middle leg
is spontaneously broken, and atoms start to occupy the dark
middle band with n− �= 0. In addition to the mirror symmetry,
the Z2 exchange symmetry |0〉↔|+〉 is also broken, leading
to a fourfold degeneracy of the ground states. The symmetry
breaking can be seen from the spin moments in Fig. 4(b) with
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FIG. 6. The phase diagrams in the planes (a) �-U0 with φ/π =
1/4 and (b) �-φ with U0/t = 2. The red dashed line in (a) is the
phase transition point between the superfluid (left side) and Mott-
insulator (right side) phases; order parameters along the black dashed
horizontal line in (a) are shown in Fig. 4. The black dashed line in
(b) is the single-particle phase boundary. (c) The finite-size scaling
of the critical points U c

0 /t of the phase transitions, with �/t = 0.2
and φ/π = 1/4. In (a)–(c), U2 = −0.2U0. (d) The current order
parameters I‖

z and I⊥
0s versus interaction strength U2, with �/t = 0.2,

φ/π = 1/4, U0/t = 2.0, and L = 64. In all plots, we have ρ = 1.0.

n0 �= n+ and also the density distributions in Fig. 5, which in-
dicate that n j↑ �= n j↓. Notice that the M and V phases preserve
the mirror symmetry and Z2 exchange symmetry with n0 = n+
and n↑ = n↓. The P phase can be a combined population of the
middle band with either a left minimum [Figs. 5(a) and 5(b)]
or a right minimum [Figs. 5(c) and 5(d)] of the lowest band,
and for either combination, the polarization S j,z = n j,↑ − n j,↓
is nonvanishing and can be either positive or negative (related
to the mirror symmetry), which is determined by the relative
phase between atoms on the two bands. For the two ground
states with a dominate population on the left minimum of
the lowest band, vortex-antivortex pairs are formed along the
leg direction, leading to modulations of spin densities and
currents with period 2π/φ. We note that the order parameters
of the P phase in Figs. 4(a)–4(c) are obtained from the vortex
ground state. Moreover, due to the breaking mirror symmetry,
the local spin-vector current

∑
σ σJ‖

j,σ and spin-tensor current∑
σ σ 2J‖

j,σ are both finite in the P phase. This dark middle
band has a spin state orthogonal to the lowest band, so the
superposition of the two bands will induce only spin orders
without generating density modulation. Note that both the P
and V phases have a lower spin-spin interaction energy and
the P phase has a higher single-particle energy but a lower
density-density interaction energy compared to the V phase;
therefore, a transition from the V to P phase occurs as we
increase the density-density interaction strength.

In Figs. 6(a) and 6(b), we map the phase diagrams in
the �-U0 plane with φ/π = 1/4 and in the �-φ plane with
U0/t = 2, respectively. We see that the M phase area is en-
larged by interactions. Figure 6(a) clearly shows that the V
and P phases are replaced eventually by the M phase as the
interaction strength increases. The system favors the P phase
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for weak interleg coupling � and small flux φ, where the dark
middle band can be occupied more easily since the energy
gap with the lowest band is small. For very small �, the
mixing between states |0〉 and |+〉 is also weak, so the den-
sity modulation and therefore the density-density interaction
energy in the V phase are weak, and the system favors the V
phase instead of the P phase, which has higher single-particle
energy. Similarly, when the flux is large, density-density in-
teraction energy for the V phase is small compared to the high
single-particle energy in the P phase, and the system favors V
over the P phase, as shown in Fig. 6(b). As � increases across
some critical value, the density-density interaction energy for
the V phase becomes stronger compared to the ferromagnetic
spin-spin interaction energy; atoms will spontaneously popu-
late around one of the two band minima with a single wave
packet centered around q �= 0, and the system enters the M
phase. Further increasing � will drive the wave-packet center
to q = 0. For a small flux, the system may directly enter the M
phase with one wave packet centered at q = 0. In this paper,
we do not distinguish the two different types of M phases
(centered around q = 0 and q �= 0) since they have similar
current distributions.

To obtain the phase diagram, we employed the finite-size
scaling, leading to the critical points of phase transitions
in the thermodynamic limit, which are almost the same as
those of finite-size systems, as shown in Fig. 6(c). The
finite-size effects of the order parameters as well as the
energy-level spacing and gap are discussed in Appendix B.
As we discussed previously, the V and P phases result from
the ferromagnetic spin-spin interaction. For antiferromagnetic
spin-spin interactions U2/U0 > 0, one has only the M phase.
To see this, we plot the current order parameters as a function
of spin-dependent interaction strength U2 in Fig. 6(d), show-
ing that the P phase exists only in the ferromagnetic region.
We want to emphasize that the Meissner currents induced by
the gauge field persist even when the system enters the Mott-
insulator region; the red dashed line in Fig. 6(a) shows the
boundary between the superfluid and Mott-insulator phases,
which is obtained by calculating the chemical potential
gap [52–55].

IV. DISCUSSION AND CONCLUSION

Experimentally, the spin moments can be measured by
population imaging after Stern-Gerlach separation [16,18].
The currents can be observed by site-resolved detection of
the quench dynamics [14]. The current (motion of atoms) can
also be proved by spin-selective time-of-flight imaging of the
lattice momentum distribution [14,15]

nσ (k) =
∑
i, j

eik(i− j)〈b̂†
iσ b̂ jσ 〉. (11)

The current is related to the lattice momentum unbalance, and
we can define the chirality of the atomic motion as

χσ = 1

L

∫ π

0
hσ (k)dk, (12)

which shows behaviors similar to the current J‖
σ [15,21],

where hσ (k) = nσ (k) − nσ (−k) is the asymmetry function.
Moreover, the entanglement entropy can be measured using

quantum interference of many-body twins of ultracold atoms
in optical lattices [42].

In summary, we studied the Meissner effects of in-
teracting bosons in a one-dimensional optical lattice with
spin-tensor–momentum coupling. Using the state-of-the-art
density-matrix renormalization-group numerical method, we
obtained a phase diagram with a rich variety of interest-
ing phases, including the Meissner, vortex, and polarized
phases. The current distributions show spin-tensor proper-
ties and interesting vortex structures that are unique for the
spin-tensor–momentum coupled system with high spin, which
may have possible applications in atomic spintronic devices.
Our work revealed nontrivial phases and transport proper-
ties resulting from the interplay between spin tensors, lattice
physics, and interactions and thus paves the way for explor-
ing novel many-body phenomena of interacting particles in
nonuniform gauge fields.
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APPENDIX A: EFFECTS OF ncutoff

As we discussed in the main text, the cutoff of the
single-site atom number ncutoff modifies the phase and phase
boundary in the weak-interaction region. A larger ncutoff

leads to more accurate results, but the calculation becomes
more computationally expensive. In Fig. 7, we show the
order parameter n− as a function of U0 with different atom-
number cutoffs. We see that the results are nearly the same
in the region where U0/t > 1.5 for ncutoff = 3, 4, 5, while in
the weak-interaction region where U0/t < 1, the results for
ncutoff = 3 deviate significantly from that for ncutoff = 4, 5.
This can be easily understood by noticing that, for weaker
interaction, the probability of high occupation is larger in the
ground state. On the other hand, we find that the results for

0 1 20.0

0.2

0.4

n -

U0/t

ncutoff=3
ncutoff=4
ncutoff=5

FIG. 7. Spin moment order n− as a function of interaction
strength U0/t for several ncutoff, with �/t = 0.2, φ/π = 1/4, U2 =
−0.2U0, ρ = 1.0, and L = 32.
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FIG. 8. (a) The current order parameter I‖
z , (b) the current order

parameter I⊥
0↓, and (c) the spin-moment order n0 versus U0 for L = 32

and 64. (d) The finite-size scaling of I⊥
0↑ for U0/t = 4.0 and 7.0. In all

plots, we have �/t = 0.2, φ/π = 1/4, U2 = −0.2U0, and ρ = 1.0.

ncutoff = 4 and ncutoff = 5 are nearly the same (both give a
phase boundary around U0/t = 1), indicating that ncutoff = 4
is enough to determine the phase boundaries (note that most of
the phase boundaries are located in the region where U0/t � 1
in the phase diagram).

APPENDIX B: FINITE-SIZE EFFECTS

Now we briefly discuss the finite-size effects on the order
parameters. As the system size increases, the order parameters
may be slightly modified (especially near the critical phase
boundaries), and thus, the phase boundaries (determined by
examining the spontaneous symmetry breaking) may shift
slightly as we increase the size. The phase boundaries at the
thermodynamic limit are obtained by finite-size scaling [see
Fig. 6(c)]. In Figs. 8(a)–8(c), we plot the order parameters as
a function of U0 for system sizes L = 32 and L = 64; away
from the phase boundaries, we see that the order parameters
are almost the same for the different sizes. In Fig. 8(d), we
plot the typical finite-size scaling of the order parameters
and find that the thermodynamic value is very close to the
finite-size value with L = 64. We note that the rung current
in the M phase [see the red line in Fig. 8(d)] decreases as
the system size increases; that is, because the leg currents
must form a closed loop at the boundary through the rungs,
such a boundary-rung current leads to an average rung current
scaling as 1/L. Numerically, we find that the average rung
current I⊥

0s does not vanish completely in the M phase (al-
though it is extremely small). For such an interaction-driven
M phase, although atoms occupy a single broadened wave
packet in momentum space, the double-well structure of the
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FIG. 9. (a) Entropy SvN versus U0/t for L = 32 and 64. (b) �i

versus U0/t for L = 32. The finite-size scaling of �i for (c) the V
phase with U0/t = 0.6 and the M phase with 7.0 and (d) the P phase
with U0/t = 3.0 and 5.2. In all plots, we have �/t = 0.2, φ/π =
1/4, U2 = −0.2U0, and ρ = 1.0. The units of �i are t .

lowest band may result in residual interference that leads to
the tiny rung current.

As we discussed in the main text, the von Neumann entropy
SvN and the low-energy-level spacing �i can also signal phase
transitions. For different system sizes, the entropy SvN exhibits
similar curves, with peak positions always matching the phase
boundaries given by the order parameters (currents and spin
moments), as shown in Fig. 9(a) for L = 32 and 64. For the
low-energy-level spacing, we showed the results for L = 64
in the main text; while the results for L = 32 are similar [see
Fig. 9(b)], the fourfold degeneracy is clearly seen in the P
phase. To see how the energy gap scales with the system
size, we plot the finite-size scaling results in Figs. 9(c) and
9(d); note that the energy gap corresponds to �1 (�4) for the
V and M phases (P phase). The small gaps in the P and M
phases change slightly with system size and remain finite (of
the order of ∼10−2t) in the thermodynamic limit, vanishing
at their phase boundary. However, for the V phase, the gap
decreases significantly with increasing system size, reaching
a small value (of the order of 10−3t) in the thermodynamic
limit. We also note that, in the V phase, higher excited-state
energy gaps �i (i > 1) also decrease with increasing system
size; the low-energy levels are nearly equally spaced in the
thermodynamic limit. Since the V phase appears in the weak-
interaction region where the effects of cutoff ncutoff are more
significant, we believe that the tiny gap in the V phase may be
induced by the cutoff, and the V phase is probably a gapless
phase.
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