PHYSICAL REVIEW B 108, L081110 (2023)

Topological Anderson amorphous insulator

Xiaoyu Cheng

,1:3 Tiantao Qu,” Liantuan Xiao,"? Suotang Jia,"*> Jun Chen,>* " and Lei Zhang

1,3,7

1State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy,
Shanxi University, Taiyuan 030006, China
2State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Theoretical Physics,
Shanxi University, Taiyuan 030006, China
3Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China

® (Received 18 April 2023; revised 13 July 2023; accepted 2 August 2023; published 14 August 2023)

The topological phase in amorphous systems adds a new dimension to the topological states of matter.
Here, we present an interesting phenomenon dubbed the topological Anderson amorphous insulator (TAAI).
Anderson disorder can drive topologically trivial amorphous systems with structural disorders into noncrystalline
topological insulators. The gap closing and reopening, spin Bott index, robust edge states, and quantized
conductance characterize the Anderson disorder-induced nontrivial topology in amorphous systems. More
importantly, phase diagrams are given for the topological phase transition (TPT). It is found that amorphous
structural disorder and Anderson disorder are synergistic to drive the s-p band inversion of the system and hence
the TPT, which is further confirmed by the effective medium theory. Our findings report a disorder-induced
topological phenomenon in noncrystalline systems and shed light on the physical understanding of the interplay
between the coexistence of two types of disorder effects and topology.
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Introduction. As one of the intriguing phenomena in the
interplay between topology and disorders of topological sys-
tems, the topological Anderson insulator (TAI) attracts much
research attention [1-24]. Typically, the topological system
becomes a trivial insulator, and all states become localized
when the disorder strength is sufficiently large due to the
Anderson localization. However, TAI refers to the Anderson
disorder-induced topological phase transition initially from
the trivial phase. It is proposed in various systems, such as
the HgTe/CdTe quantum well [1-4], the Su-Schrieffer-Heeger
(SSH) chain [25], etc. Until now, TAI phenomena have been
experimentally confirmed in one-dimensional cold atomic
wires [14] and two-dimensional (2D) photonic waveguide
array systems [15].

As is well known, another disorder mechanism different
from Anderson disorder is the amorphous structural disorder.
In nature, many materials exist in the amorphous phase, for
instance, glasses, polymers, and gels. Amorphous structural
disorder means that there is no regularly arranged lattice struc-
ture in the material but a disordered arrangement similar to
glass, which usually reduces and destroys the periodicity and
symmetry of the system and even eliminates the energy band
topology of electrons [26-29]. Recently, the concept of amor-
phous topological insulators has been theoretically proposed
in condensed matter systems, photonic crystals, etc. [30-44],
and experimentally realized [45,46]. More interestingly, the
amorphous structural disorder-induced topological transition
is predicted [41].
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Physically, Anderson disorder and structural disorder are
two different disorder mechanisms that have different effects
on the electronic properties of materials. The amorphous
structural disorder is rooted in the renormalization of the spec-
tral gap in association with single-particle energy levels, while
Anderson disorder is originally a many-body effect. Naturally,
the following questions arise: Can Anderson disorder-induced
topological states exist in a topologically trivial amorphous
system? When Anderson disorder and amorphous structural
disorder coexist, are the two mechanisms competing or syner-
gizing with each other with the interplay of topology?

In this Letter, we report an Anderson disorder-induced
topological phase transition (TPT) starting from a trivial
amorphous system with tight-binding simulations, dubbed
the topological Anderson amorphous insulator (TAAI). This
exciting phenomenon is confirmed by investigating the gap
closing and reopening process accompanied by an abrupt
change in the topological invariant spin Bott index B,. Further-
more, we calculate the real space distribution of eigenstates
in amorphous systems and quantized conductance to verify
the existence of robust edge states in amorphous systems
with Anderson disorder. Topological phase diagrams indicate
a large parameter space for TAAI realization, showing the
synergistic mechanism of two types of disorders. Our study
provides a more comprehensive understanding of how two
disorder mechanisms cooperate to give rise to the TAAI phase.

Model Hamiltonian. Since the amorphization process is
rather complicated, many theoretical models are constructed
to simulate an amorphous lattice [27,47-52]. Here, the
thermal fluctuations of atoms corresponding to a typical
melting-quenching process are adopted to construct the de-
sired amorphous system [41,53]. It is assumed that a random
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FIG. 1. (a) Schematic diagram of an amorphous system with 900 atoms and their corresponding bondings (¢ = 0.15). (b), (c) Disorder-
averaged bulk energy gap (E,) and spin Bott index (B,) as functions of Anderson disorder strength W for five realizations of the amorphous
system, respectively. The parameters are €, = 1.8 eV, €, = —6.5¢eV, V;;,, = —0.256¢eV, V,,, = 0.576¢eV, V,,, = 1.152eV,V,,, =0.032¢V,
and A = 0.8 eV. Each data point on the figure is averaged over 100 disorder configurations.

displacement r is assigned to each site of an original 2D tri-
angular lattice and the atomic displacements follow a normal
distribution N(u, o) in random directions shown in Fig. 1(a).
Physically, atoms are approximately kept in their equilibrium
positions by harmonic forces [54]. For simplicity, we take
w =0, and the standard deviation o denotes the strength of
the system’s amorphous structural disorder.

We start from an atomic-based tight-binding model Hamil-
tonian for the quasilattice of an amorphous system [41,55,56],

H=Y cuchciat I tap(rycheis
i (ice, jB) (1)

; E i N | )
+ir (cip}_ozc,pl cipxazc,py),
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where ¢/ = (CLT, c |) represents the creation operators at
site i with « denoting three orbitals (s, p,, py) in each site.
The first term describes the on-site energy of the « orbital.
In addition, static Anderson disorder is added to ¢, with a
uniform distribution in the interval [—W /2, W/2] where W
characterizes the strength of the Anderson disorder. The sec-
ond term is the hopping integral term ¢, g(r;;), which is given
by

@(R — t j)

2
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It depends on the orbital type (« and B), the intersite vector r;;,
and SK[-] represents Slater-Koster parametrization for three
orbitals [57], Vyps (§ = o or ) are the bond parameters, f;;
is the unit direction vector, and ®(R — r;;) is the step function
with a cutoff parameter R = 1.9a. The distance dependence
of the bonding parameters is assumed to be approximately
captured by the Harrison relation [58] and r;; is set to a con-
stant 2rg with ry = 0.2. Note that hoppings for |r;;| > R are
neglected in the numerical simulation, and the unit of lattice
constant a = 1 is chosen for simplicity. Here, the topological
transition relies on the band inversion between s and p states,
and the 2/3 filling of electron states is chosen in the following.
The third term in Eq. (1) is the spin-orbital interaction, and A
denotes its strength.

Finite systems. Figure 1(a) illustrates an example of a
2D amorphous system with 900 atoms, which is randomly
selected from the distribution with o = 0.15. Once the amor-

phous structure is fixed, i.e., a specific realization, we can
study the Anderson disorder effect on it. Here, the periodic
boundary condition (PBC) is used and five realizations are
randomly selected. The disorder-averaged bulk energy gap
(E,) as a function of the Anderson disorder strength W is
presented in Fig. 1(b). Error bars show fluctuations under
different disorder configurations in the same realization. It
is found that, as the disorder strength increases up to around
1.5 eV, the energy gap first drops to nearly zero and then starts
to increase. This energy gap closing and reopening indicates
the occurrence of TPT. To verify whether or not it is TPT,
we further calculate the topological invariant in real space,
the spin Bott index By, which can characterize the quantum
spin Hall (QSH) effect phase in finite systems [56,59]. As
shown in Fig. 1(c), the disorder-averaged spin Bott index (B;)
is 0 before the energy gap closes. As the disorder strength
W increases, the (B;) jumps sharply from O to 1 when pass-
ing through the energy gap closing phase transition point in
Fig. 1(b). The (B;) remains at 1 over a wide range of disorder
strengths W € [2, 6] eV without any fluctuations. This con-
firms that Anderson disorder indeed induces the TPT from a
trivial amorphous system, which is named as TAAI. Note that
the same physics happens in all realizations, indicating that
the discovered TAAI phenomenon is robust and independent
of realizations. The system’s energy gap eventually closes
when the disorder strength is strong enough, which enters the
Anderson localization regime.

To show the topological edge states induced by Anderson
disorder in the amorphous system more clearly, we calculate
the energy eigenvalue versus the state index of a clean amor-
phous system (W = 0eV) with a PBC and an open boundary
condition (OBC). As shown in Fig. 2(a), the system has an
energy gap of 0.07 eV. The energy gap increases when the
system is under OBC, indicating that the amorphous system
is an insulator. Figure 2(c) shows the wave-function distri-
bution of the p orbital corresponding to the eigenstate when
the energy £ = —0.55eV under the OBC. It is seen that the
wave function is mainly distributed in the center of the system.
When the Anderson disorder with strength W = 4 eV is intro-
duced to the same structural realization, the energy eigenvalue
versus the state index under the PBC and OBC are presented
in Fig. 2(b). Due to the presence of Anderson disorder, the
energy gap is 0.23 eV now under the PBC. Interestingly, when
the system is in OBC, a series of eigenstates show up in
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FIG. 2. (a) Energy eigenvalues E vs the state index for an amor-
phous system with 900 atoms (o = 0.15, W = 0eV) under PBC and
OBC. (b) Energy eigenvalues of the same amorphous realization
in (a) within the presence of a specific Anderson disorder config-
uration (W = 4eV). (¢), (d) The wave-function distribution (p and
s orbitals) in real space corresponding to the eigenstates indicated
by the black arrows in (a) E = —0.55eV of the clean system and
(b) E = —0.43eV with disorders, respectively. The size and color
of the spots represent the amplitude and phase of the wave function,
respectively. The parameters are identical to those in Fig. 1.

the energy gap compared to the gap increasing in the clean
case. This also partially reflects that the system undergoes
a transition from a trivial insulating phase to a topological
insulator phase. Likewise, the wave-function distribution of
the s orbital corresponding to energy £ = —0.43 eV is shown
in Fig. 2(d). In contrast to Fig. 2(c), these eigenstates in the
energy gap are mainly distributed on the system’s boundary,
i.e., edge states. This further verifies the topological properties
of TAAI system with (By) = 1. Note that the spin S, symmetry
is preserved since we consider a nonmagnetic Anderson disor-
der with time-reversal symmetry. We also present the s-p band
inversion process of Anderson disorder-induced TAAI via the
wave functions of three orbitals (see Supplemental Material
[60]).

Open systems. Since the topological edge states can lead to
the quantized conductance as a signature, we further study the
transport properties of edge states of TAAIL By connecting
two semi-infinite leads, the conductance of the amorphous
system with or without Anderson disorder can be obtained
based on the nonequilibrium Green’s function method [7,61—
66]. Figure 3(a) shows the conductance G in a clean amor-
phous system versus the electron energy. It can be seen that
when the electron energy locates in the energy gap [the shaded
region corresponds to the energy gap in Fig. 2(a)], the con-
ductance G is quite small, indicating that the system is a
normal insulator. Correspondingly, Fig. 3(c) presents the local
density of scattering states (LDOSS) injected from the left
lead of energy marked by a blue star in Fig. 3(a). The LDOSS
distributes around the left lead and no transport channel is
nearly formed in the amorphous system. In contrast, when An-
derson disorder is added, compared to Fig. 3(a), a quantized
platform with conductance G = 2¢*/h appears in the energy
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FIG. 3. Quantum transport calculations in an amorphous system
contacted with two leads. (a) Conductance G vs electron energy in
a clean system (W = 0eV). (b) Conductance G vs electron energy
with Anderson disorder strength W = 4 eV. (c), (d) The local density
of scattering states (LDOSS) injected from the left lead in real space
when the electron energy £ = —0.4eV marked by the blue star in
(a) and (b), respectively. Light gray denotes the left and right metal-
lic leads. (e) The disorder-averaged conductance (G) vs Anderson
disorder strength W. (f) Phase diagram of (G) vs the electron energy
E and Anderson disorder strength W. Colors represent the magnitude
of averaged conductance. Each data point on the figure is averaged
over 100 disorder configurations.

gap region [the shaded region corresponds to the energy gap in
Fig. 2(b)]. At the same time, the LDOSS is mainly distributed
on the upper and lower boundaries of the system shown in
Fig. 3(d). In fact, two transport channels carry spin-up and
spin-down components, respectively, which give rise to the
quantized conductance. When the electron energy is fixed as
E = —0.4eV, we calculate the Anderson disorder-averaged
conductance (G) versus the W. From Fig. 3(e), we can see that
the quantized conductance plateau can be induced in a wide
range of disorder strengths W € [3, 5] eV, accompanying zero
fluctuation. Figure 3(f) presents the phase diagram of the (G)
in the parameter space of electron energy and Anderson disor-
der strength. The quantized conductance denoted with a green
color occupies a large area of the parameter space. These
quantized signatures provide an excellent operating room for
detecting the TAAI phase.

Phase diagrams. Above, TAAI is proved to exist with a
specific structural disorder strength o = 0.15. In the follow-
ing, we will show that TAAI resides in a wide range of o
instead of an accidental case. The averaged spin Bott index
(By) is calculated by averaging over ten realizations of amor-
phous structures with 20 Anderson disorder configurations
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FIG. 4. (a) Phase diagram of the averaged spin Bott index (B;)
in the parameter space of the amorphous structural disorder strength
o and the Anderson disorder strength W with A = 0.8 eV. (b) Phase
diagram of the (By) in the parameter space of the SOC strength A and
W with o = 0.15. Red dashed dotted lines in (a), (b) are the averaged
energy gap closing points (E,) = 0 obtained by the effective medium
theory. Every data point on the figure is averaged over ten realizations
of amorphous structures with 20 Anderson disorder configurations in
each.

in each. By computing the phase diagram of the (B,) in the
parameter space of the o and the W, we can find a continuous
yellow area corresponds to a quantized (B;) = 1 as shown in
Fig. 4(a). Note that the yellow region can be separated into two
regions by the horizontal dashed line in the figure. The TAAI
phase can be formed when o is smaller than o, = 0.155,
which confirms its robustness. It is easy to find that when
o is small, a large W is required to induce the topological
states. When o increases, only a small W is required. These
two disorder mechanisms synergize to drive the system to the
TAAI phase from the trivial phase. Furthermore, it can be
found that the (By) is already 1 in the clean limit when the
o is larger than the critical value o,. The structural disorder
already induces the nontrivial topological insulator phase in
region II even when the Anderson disorder is absent. As the
Anderson disorder strength increases, the system first persists

in the topological insulator phase and finally becomes a nor-
mal insulator due to the Anderson localization. This indicates
that the amorphous system is in a topological insulator phase
denoting region II in Fig. 4(a).

Since the SOC strength A is critically important for real-
izing the QSH states, the phase diagram of the (B,) in the
parameter space of the A and the W is also calculated with o =
0.15 and presented in Fig. 4(b). It is found that there exists a
wide range for the parameter A € [0.25,0.9]eV. When W is
rather small, the system is in the trivial phase. As W increases,
the system can pass through the phase boundary and suddenly
change from the trivial phase to the TAAIL. When X is large
enough, the system is already in the topologically nontrivial
phase even when there is no Anderson disorder involved. It
is worth mentioning that the TAAI can be realized around
the phase boundary with a smaller Anderson disorder strength
required, for instance, A = 0.88eV, W = 0.95¢eV, which is a
more accessible parameter in the experiment.

To further confirm the emergence of TAAI, we calculate
the averaged energy gap closing points (E,) = 0 with the
effective medium theory (EMT). The amorphous structural
disorder and Anderson disorder are treated as an effective self-
energy to renormalize the system’s energies, which induce
the band inversion. The results are shown as the red dashed
dotted line in Figs. 4(a) and 4(b). It can be seen that the phase
boundary of TPT in the o-W and A-W planes can be well cap-
tured by EMT, which further confirms the existence of TAAL
The EMT can explain the synergistic effect of structural and
Anderson disorders during the TPT. Detailed information on
EMT is presented in the Supplemental Material [60].

Conclusion. We report an interesting Anderson disorder-
induced TPT phenomenon, i.e., a trivial amorphous insulator
to a TAAIL This TPT is confirmed by the gap-closing and
gap-reopening process accompanied by a sudden jump of the
averaged spin Bott index. Furthermore, to verify its existence,
Anderson disorder-induced topological edge states and the
disorder-averaged quantized conductance (G) are presented.
The topological phase diagrams confirm the robustness of
TAAI and provide valuable information in the parameters’
selections to realize TAAI. Moreover, it is found that the effec-
tive medium theory can capture the TPT. Since the topological
amorphous systems have been experimentally demonstrated
in the photonic crystal [45] and topological circuit systems
[39], we expect the TAAI phenomenon to be also realized on
these platforms.
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