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d application of a rapid coal
calorific value analyzer based on NIRS-XRF

Rui Gao,†ab Shuqing Wang,†c Jiaxuan Li,ab Zhihui Tian,ab Yan Zhang,d Lei Zhang, *ab

Zefu Ye,e Zhujun Zhu,e Wangbao Yin*ab and Suotang Jiaab

Accurately and timely determining the calorific value of coal is essential for optimizing the washing and

processing procedures in coal preparation plants and achieving maximum economic benefits. In this

study, a rapid coal calorific value analyzer was developed by combining near-infrared spectroscopy

(NIRS) and X-ray fluorescence spectroscopy (XRF), and industrial testing and performance evaluation

were conducted at a coal preparation plant. This article focuses on the structure, operational process,

analysis model, and industrial testing of a rapid NIRS-XRF coal calorific value analyzer. This analyzer

consists of six parts: NIRS module, XRF module, sample delivery module, control module, hydrogen

production module, and operation software. We proposed a holistic-segmented model quantitative

analysis algorithm based on partial least squares regression (PLSR). The analyzer was used to measure

the calorific values of four types of product coals, namely, clean coal, middling coal, slime and gangue,

from the daily production of the Duanshi coal preparation plant, and compared with the assay results.

The test results showed that the root mean square error of prediction (RMSEP), the average absolute

error (AAE) and the average relative error (ARE) of the prediction of the coal calorific value by using the

holistic-segmented model decreased from 0.65 MJ kg−1, 0.55 MJ kg−1 and 4.71% of the traditional

holistic model to an average of 0.33 MJ kg−1, 0.28 MJ kg−1 and 2.71%, respectively, a decrease of nearly

double. The average standard deviation (SD) also decreased from 0.29 MJ kg−1 to 0.09 MJ kg−1, which

met the Chinese national standard requirement of less than 0.12 MJ kg−1. Our proposed model

significantly improved the accuracy and repeatability of the measurements. Furthermore, the

measurement results of this analyzer showed good consistency with traditional chemical analysis results,

indicating its potential for widespread application in industries such as coal mining, washing, power

generation, and coking, among others. Therefore, the rapid NIRS-XRF coal calorific value analyzer

provides a new intelligent means for the clean and efficient utilization of coal.
1 Introduction

The caloric value1 is a crucial index that reects various
characteristics of coal. Not only does it determine the degree of
coalication but it also serves as an important basis for coal
classication and scientic and reasonable pricing.2 In coal
preparation plants, the measurement of the coal caloric value
is a key task of coal quality analysis. Based on the obtained
caloric value data, guidance and suggestions can be provided
for processes such as coal washing and processing, precise coal
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blending, and sales judgment. To effectively guide the produc-
tion work of coal preparation plants, fully utilize coal resources,
and improve the economic benets, it is essential to ensure the
accuracy and speed of the measurement of the coal caloric
value.

At present, Chinese coal preparation plants generally use the
chemical analysis method specied in Chinese national stan-
dards – the oxygen bomb combustion method3,4 to measure the
coal caloric value. This method requires putting a unit mass of
coal sample into the bomb of the calorimeter, burning it in
excess high-pressure oxygen and inert gas (usually nitrogen),
and calculating the caloric value by measuring the tempera-
ture rise of water. Unfortunately, this method is relatively
cumbersome, requiring numerous steps and taking a long time
from sampling to obtaining measurement results. As a result,
coal quality data lags behind the real-time production guidance
requirements of coal preparation plants, such as intelligent
control of coal-heavy medium sorting and precise coal
blending, which causes the process adjustment to lag behind
This journal is © The Royal Society of Chemistry 2023
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and seriously restricts the assessment of contract coal in coal
preparation plants. With the reform of intelligent construction
in coal preparation plants and the continuous improvement of
automation levels in coal blending and other technologies,
there is an urgent need for efficient and accurate coal quality
rapid analysis andmeasurement technology in order to produce
high-standard product coal with good coal quality.

Currently, there is online coal quality measurement equip-
ment based on prompt gamma neutron activation analysis
(PGNAA)5,6 technology produced by Thermosher Company of
the United States and ScanTech Company of Australia. This
technology utilizes the thermal neutron capture reaction
between neutrons and the nuclei of various elements in the coal
sample, causing the excited nuclei to release characteristic g-
rays in the process of deexcitation. Coal quality indicators such
as the caloric value can be obtained by modeling and
analyzing g-ray energy spectrum data. However, this method
involves radioactive hazards, and the equipment and mainte-
nance costs are expensive.7 The coal analyzer8 based on laser-
induced breakdown spectroscopy (LIBS)9–11 uses atomic emis-
sion spectroscopy technology. The principle underlying this
technology is that when a high-energy pulsed laser hits the
sample, the atoms, molecules, and other particles in the
focused region absorb the photons producing initial free elec-
trons. As more laser energy is applied, more free electrons are
created, causing further ionization of the atoms. This results in
a rapid increase in electron density, forming a high-temperature
plasma consisting of atoms, ions, and free electrons. By
analyzing the characteristic spectral lines emitted as the plasma
cools down, information about the types and concentrations of
elements in the sample can be obtained.12,13However, due to the
Rayleigh–Taylor instability of the plasma signal and the inu-
ence of self-absorption and matrix effects, the accuracy and
repeatability of the measurement by this technology are
lower14,15 and cannot accurately reect changes in coal quality.

Near-infrared spectroscopy (NIRS)16–19 technology is one of
the widely used and relatively advanced technologies in the eld
of coal quality analysis and detection in recent years. Near-
infrared light refers to electromagnetic waves with wave-
lengths ranging from 780 to 2526 nm (12 500 to 4000 cm−1)
between visible light and mid-infrared light, which can cause
vibrational energy level transitions of molecules or atoms.
When the light in this wavelength region is irradiated onto
a substance containing the hydrogen group X–H (X = C, N, O),20

the chemical bonds within the substance will absorb the char-
acteristic wave of a certain wavelength, thus generating
absorption spectra that carry signicant information about the
substance's chemical composition and structure, physical state,
content, andmore. The amount of absorbance is directly related
to the content of the specic components in the substance, and
in the case of coal combustion, the primary components of
interest are those containing hydrogen or carbon. It is this
relationship that provides the theoretical basis for the practical
application of NIRS technology in the rapid, non-destructive,
and accurate measurement of the coal caloric value.21 In
recent years, a large number of studies have been conducted on
NIRS coal analysis both domestically and internationally. Kim
This journal is © The Royal Society of Chemistry 2023
et al.22 selected the absorbance at specic wavelengths in NIRS
spectra to analyze the properties of coal with good accuracy for
C and H elements. While the measurement repeatability devi-
ation for the caloric value was higher than that of the ISO/
ASTM reference method, it still provided fairly good results at
the level of semi-quantitative approximate analysis. Xiao et al.23

proposed a DR_TELM deep learning model, which includes
dilated convolution, multi-level residual connection and TELM,
with root mean square errors (RMSE) of 1.1%, 1.8% and 0.7 MJ
kg−1 for coal volatile matter, xed carbon and higher heating
value (HHV), respectively. Le et al.24 proposed a CNN-AELM
model based on the articial bee colony algorithm to optimize
the performance of CNN-ELM, and visible-infrared spectros-
copy was used to predict the low caloric value of coal samples,
which showed excellent accuracy. Begum et al.25 rst improved
the signal-to-noise ratio of NIRS spectra of coal samples using
a variety of pretreatment algorithms, and then the partial least
squares regression (PLSR), random forest (RF) and extreme
gradient boosting (XGBoost) regression models were used to
predict volatile matter, xed carbon, and the gross caloric
value (GCV) with improved accuracy. Liu et al.26 established the
PSO-ELM algorithm which combines the particle swarm opti-
mization (PSO) algorithm with an optimized extreme learning
machine (ELM), improving the prediction accuracy and
computing efficiency, and the normalized RMSE and prediction
time for caloric value were 0.026 MJ kg−1 and 0.002 s,
respectively. Usually, NIRS technology is more suitable for
analyzing the content of organic matter in coal, while it has
a weak response to inorganic compounds, therefore, it is diffi-
cult to analyze the content of K, Ca, Na, Mg, Al, Si and other
inorganic compounds in coal which are negatively correlated
with the caloric value.27

X-ray uorescence spectroscopy (XRF)28–31 technology, which
has good repeatability in coal quality analysis, is widely used for
measuring inorganic elements. The theoretical basis of XRF
analysis is Moseley's law, which states that the frequency of
characteristic X-rays of elements is linearly related to the square
of the atomic number, and the intensity of characteristic X-rays
is positively correlated with the content of elements. When
primary X-rays produced by an X-ray tube are incident on the
sample, the electrons in the inner shell of each element are
excited out of their orbitals and produce holes. This causes the
entire atomic system to become unstable and existing electrons
at higher energy levels spontaneously transition to the inner
layer to ll the holes. This process causes the atom to relax to
a lower energy state while radiating characteristic X-rays with
a specic energy level difference, known as secondary X-rays or
X-ray uorescence. By analyzing the wavelength (or energy) and
intensity of the X-ray uorescence produced by different
elements in the sample, information on the elemental compo-
sition and content of the sample can be obtained for qualitative
and quantitative analysis.32 For example, Wen et al.33 used XRF
and random forest regression (RFR) to predict coal ash content
with RMSE, MAE and R2 of 1.5423, 1.1136 and 0.9896, respec-
tively. Ward et al.34 used a hand-held energy dispersive X-ray
uorometer (ED-XRF) to measure the content of several main
inorganic elements in coal blocks, and the results were basically
J. Anal. At. Spectrom., 2023, 38, 2046–2058 | 2047
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consistent with the nominal data. Zhang et al.35 developed
a real-time ash analyzer based on pseudo-dual energy X-ray
transmission, and the absolute error of measurement was
within 1% for clean coal with about 10% ash content, for which
the probability of absolute error less than 0.5% was higher than
85%. Guo et al.36 used XRF and PLSR to model and predict the
ash content of 45 standard coal samples, and the R2 of the
calibration curve obtained reached 0.946 and the predicted
RMSEP was 1.177%. Zhang et al.37 measured heavy metals such
as Hg, Pb, Cr and other elements such as Ti, Fe and Ca in
pulverized coal using an online XRF analyzer, and the relative
standard deviations (RSDs) obtained from the measurements
were all less than 7.74%. Although XRF is effective for the
measurement of ash-forming elements and ash content in coal,
its uorescence yield for light elements is low, and it is usually
not suitable for analyzing elements38 with atomic numbers less
than 11, so it cannot be used to analyze the content of organic
elements such as C and H that are positively related to the
caloric value39 of coal.

To sum up, NIRS is well suited for the highly stable
measurement of the organic components in coal, while XRF is
procient at measuring the inorganic components in coal with
high stability. By combining the two technologies, a fused
spectrum containing comprehensive and rich chemical infor-
mation of coal can be obtained, which can realize the accurate
analysis of the coal caloric value. In this paper, we developed
a rapid analyzer for quantitative analysis of coal caloric value
based on NIRS-XRF fusion spectroscopic technology, and the
industrial eld testing and performance evaluation were carried
out in a coal preparation plant, and the results showed that it
can provide fast and accurate measurement of the caloric
value of coal. Our work offers a new technology and instrument
for the coal machinery industry to measure the coal caloric
value quickly and accurately.

2 Experimental
2.1 Instrumentation

Fig. 1(a) and (b) show the physical photo and schematic
diagram of this rapid coal caloric value analyzer based on
NIRS-XRF, respectively. The external dimension of the instru-
ment is 1200 mm × 1200 mm × 1800 mm, and the weight is
140 kg, which consists of six parts: NIRS module, XRF module,
sample delivery module, control module, hydrogen production
module and operation soware. The interior of the instrument
is divided into three layers, with the top layer containing the
NIRS module and XRF module encapsulated in a dustproof
aluminum shell equipped with vibration-damping rubber
gaskets, as well as the sample delivery module; the middle layer
with the control module; and the bottom layer with the
hydrogen production module. The following is a detailed
description of each.

2.1.1 NIRS module. The optical structure of this module is
shown in Fig. 2, mainly composed of a near-infrared light source,
near-infrared spectrometer, reection probe, reection probe
bracket, optical ber, reference tile, etc. Among them, the near-
infrared light source (AvaLight-HAL-S Mini, Avantes) is
2048 | J. Anal. At. Spectrom., 2023, 38, 2046–2058
a halogen lamp with a wavelength coverage range of 360–
2500 nm, and its color temperature is 2700 K when operating in
low power mode with a lifetime of over 13 000 hours. The near-
infrared spectrometer (Hamamatsu, C15511-01) is a Fourier
transform type, which is integrated with a miniature Michelson
spectral interferometer and control circuit. The effective oper-
ating band is 1100–2500 nm, the signal-to-noise ratio is 10 000 :
1, the spectral resolution is 5.7 nm, and the spectral reproduc-
ibility is ±0.5 nm. The reection probe (FCR-UVIR400-2-ME,
Avantes) is a ber bundle consisting of seven 200 mm core
diameter bers, six for illumination and one for detection, which
is xed to the bottom of the aluminum shell with a bracket. The
diffuse reection reference tile (WS-2, Avantes) is a type of diffuse
reection plastic white adhesive (PTFE) with an ideal Lambert
surface that can be used as a standard reference for reection
experiments, and its diffuse reection spectrum is used to
calculate the absorbance spectra of the samples to be measured.

When the module is working, the light emitted by the near-
infrared light source is coupled into the six illumination bers
of the ber bundle and irradiates to the surface of the coal
sample by the end of the reection probe, and the diffuse re-
ected light is collected by the detection ber and transmitted
to the near-infrared spectrometer for NIRS spectra detection.
The obtained spectral signals are then transmitted to the
computer via the USB data cable. The number of scans of the
near-infrared spectrometer in this instrument is set to 4096,
with 359 scanning points and a scanning time of 15 seconds.

2.1.2 XRF module. This module adopts the ED-XRF optical
structure as shown in Fig. 3, which is mainly composed of an X-
ray tube (VF-50J, VARIAN), silicon dri detector (VIAMP,
KETEK), digital pulse processor (DPP), high-voltage power
supply (MNX50P50, SPELLMAN), chamber, beryllium window,
collimator, etc. Among them, the X-ray tube with a collimator
and SDD is placed on both sides of the chamber at an angle of
45°. The X-ray tube is powered by a high-voltage power supply,
and the output voltage signals from the SDD detector are
transmitted to the DPP for digital processing and analysis. The
diameter of the beryllium window is 10 mm and the thickness is
20 mm, and it is 2 mm away from the surface of the sample. The
inlet of the chamber is connected to the hydrogen production
module, and the outlet of the chamber is used to discharge the
gas from the chamber.

When the module is working, the lament inside the X-ray
tube emits electrons under the action of the high-voltage
stable current. These electrons are accelerated to the anode
and interact with the atoms of the anode target material to
generate primary X-rays. The primary X-rays are transmitted
through the collimator and beryllium window and reach the
sample. Atoms of each element with low electron binding
energy in the sample are excited to generate secondary X-ray
uorescence, which is collected by the SDD detector aer
passing through the beryllium window. The collected signals
are then outputted to the computer through the DPP processor
for further analysis.

In this experiment, the ED-XRF spectrometer collected XRF
spectra. The module used a 50 W Rh target-anode X-ray tube as
the excitation source, and the tube voltage was set to 16 kV, the
This journal is © The Royal Society of Chemistry 2023



Fig. 1 Rapid coal calorific value analyzer based on NIRS-XRF.
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tube current to 0.6 mA, and the lament voltage and current to
1.5 V and 2.5 A, respectively. The SDD detector peak time was set
to 0.1 ms.
This journal is © The Royal Society of Chemistry 2023
2.1.3 Sample delivery module. This module is located
below the NIRS and XRF modules, and its 3D models are shown
in Fig. 4. Among them, (a) for the overall structure, (b) for the
J. Anal. At. Spectrom., 2023, 38, 2046–2058 | 2049



Fig. 2 Schematic diagram of the optical structure of the NIRS module
(OF: optical fiber, RP: reflection probe, RPB: reflection probe bracket).

Fig. 3 Schematic diagram of the optical structure of the XRF module
(SDD: silicon drift detector, DPP: digital pulse processor, HV: high-
voltage power supply, BW: beryllium window, CM: collimator).
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electrically controlled long translation platform, (c) for the
electrically controlled short translation platform, electrically
controlled liing platform and electrically controlled rotary
platform from bottom to top. The long and short translation
platforms are both double track ball screw linear guide slide
platforms, with effective translation lengths of 600 mm and
400 mm respectively, and a screw rod accuracy of 0.03 mm. The
long translation platform is equipped with a sample table for
placing the sample cell, which is used to transport the samples
to be measured. The short translation platform is xed with
a liing platform and a rotary platform for regular measure-
ment and calibration of samples. The liing platform adopts
a shear-type liing support structure, driven by a precision
grinding screw rod, with a repeated positioning accuracy of 10
mm, and is used to control the distance between the sample and
the beryllium window. The rotary platform is driven by a worm
gear, with 6 evenly distributed grooves on top for placing 6
calibration samples. The 3D model of the sample cell is shown
in Fig. 5, with an internal groove for placing coal samples, with
a groove size of 100 mm × 10 mm × 3 mm, which can hold
approximately 2 g of attened coal samples.

2.1.4 Control module. This module mainly consists of
a computer and programmable logic controller (PLC, S7-200CN,
SIEMENS), and auxiliary components include solid-state relays,
2050 | J. Anal. At. Spectrom., 2023, 38, 2046–2058
drivers, photoelectric switches, an emergency stop switch, etc.
Among them, the computer is responsible for communicating
with the PLC, processing spectral data, and running the oper-
ation soware. The PLC is used for sequence control during the
operation of the instrument. Solid-state relays are utilized to
control the on-off of the near-infrared light source, hydrogen
generator, and status indicator light. Drivers, meanwhile,
receive pulse signals from the PLC and drive the stepper motor,
while photoelectric switches provide position information
about the sample to the PLC. The emergency stop switch is used
to manually stop the operation of the instrument in an
emergency.

2.1.5 Hydrogen production module. This module consists
of a hydrogen generator (SFH-300, SFMIT), water tank, oat
level switch, water pump, etc. The hydrogen generator (425 mm
× 210 mm × 365 mm) can generate hydrogen gas with a purity
of 99.99% at a ow rate of 150 ml min−1 and continuously
supply the chamber of the XRF module to avoid the absorption
of low-energy X-ray uorescence signals by air. The hydrogen
generator integrates liquid storage, electrolytic hydrogen
production and oxygen discharge, with low electrolytic cell
temperature and long life, and only distilled water needs to be
replenished for daily maintenance for continuous use. The oat
level switch is installed in the hydrogen generator's electrolytic
cell. When the water level in the cell falls below the limit, the
water pump automatically starts to extract distilled water from
the water tank for replenishment.

2.1.6 Operation soware. The complete operation soware
for the instrument was written using LabVIEW, and the human–
machine interface is shown in Fig. 6. Under the main page
column, the user can ll in sample information, select
measurement methods, view the measurement process and
progress, and display caloric value measurement results. The
real-time spectrogram column can display the NIRS and XRF
spectrograms of the measured samples in real time. The history
column can view past measurement results. The status
parameter column displays real-time information on the
temperature, voltage, and current of the instrument's internal
components.
2.2 Workow

The overall operation process of the rapid NIRS-XRF analyzer
can be briey described as follows. First, aer starting the
instrument, initialization and preheating are performed, and
the sample table is extended from the inside of the instrument
to the initial position, while the hydrogen generator and near-
infrared light source are turned on, and the chamber is lled
with hydrogen aer 6 min. In advance, place the coal sample to
be measured in the sample cell, scrape it at, and place it on the
sample table. Then, click the measurement button to start the
measurement. During the measurement, the sample cell moves
below the NIRS module at a speed of 20 mm s−1 for measure-
ment, and it takes 15 s to collect the NIRS spectra; the sample
cell continues to move below the XRF module at a speed of
20 mm s−1 for measurement, and it takes 30 s to acquire XRF
spectra. Aer that, the X-ray tube enters a low-power state, at the
This journal is © The Royal Society of Chemistry 2023



Fig. 4 3D models of the sample delivery module.

Fig. 5 3D model of the sample cell.

This journal is © The Royal Society of Chemistry 2023
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same time, the sample cell returns to its initial position at
a speed of 30mm s−1, while the computer processes the spectral
data and displays the analysis result on the soware interface.
Finally, click the exit button to end the measurement process,
the sample table is extended into the instrument, and at the
same time, the hydrogen generator, near-infrared light source
and other components are turned off. The entire measurement
process takes only about 1 min.
J. Anal. At. Spectrom., 2023, 38, 2046–2058 | 2051



Fig. 6 Human–machine operation interface.
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2.3 Samples

To ensure that the samples collected covered all types of coal
produced by the Duanshi coal preparation plant in Qinshui
County, Jincheng City, Shanxi Province, a 10-day coal sample
collection was conducted on-site. The plant produces four kinds
of products: clean coal, medium coal, slime and gangue, with
a wide range of caloric value distribution covering 0–34 MJ
kg−1. Due to the diversity of coal types and signicant differences
in coal quality, it is necessary to consider the representativeness
of coal sample selection. The coal samples to be selected were
divided into calibration set samples and validation set samples.
For the calibration set samples, according to the daily coal
caloric distribution range produced by the coal preparation
plant, a certain number of coal samples were randomly collected
from each of the four types of coal, so that the caloric value
basically covered the above distribution range and roughly
uniform distribution. For the validation set, a certain number of
samples were collected from each of the four types of coal, and
the caloric value of the collected samples was then compared to
the range of caloric value distribution of the calibration set coal
to ensure that they covered as much of this range as possible and
maintained a uniform distribution. The coal samples collected
by the above methods ensure the coverage and uniformity of
distribution of the caloric value, so they are widely representa-
tive on a large scale. The photo of some coal samples collected is
shown in Fig. 7(a).

Due to the large number of samples and the long span of
collection time in this experiment, it was necessary to control
the conditions of temperature, humidity, and light in the eld
environment to reduce the inuence of the experimental envi-
ronment on the samples. Therefore, the room temperature was
maintained at about 25 °C, the humidity was regulated at about
2052 | J. Anal. At. Spectrom., 2023, 38, 2046–2058
50%, and the doors and windows were closed and shaded to
avoid any external interference. According to the standard
procedures for preparing coal samples, all coal samples were
crushed, sieved, mixed, downsized, air-dried, and ground to
produce air-dried-based pulverized coal samples with an
average particle size of 0.2 mm. A total of 274 samples were
collected at the end, of which 239 were used as the calibration
set for building the prediction model of the caloric value, and
the remaining 35 were used as the validation set to evaluate the
performance of the prediction model. To verify the measure-
ment repeatability of the established model, 8 coal samples
were randomly selected from the validation set and measured 5
times each. The caloric values of all coal samples were
measured according to the Chinese national standard GB/T 213-
2008, as shown in Fig. 7(b). It can be seen that the caloric
values of the calibration set and the validation set of coal
samples are basically evenly distributed and representative.

2.4 NIRS-XRF spectra

In the experiment, the near-infrared spectrometer was used to
collect the reference spectrum using a reference tile with high
reectivity each time aer the instrument was turned on and
before the rst measurement, and the 4096 spectra of each coal
sample were averaged and compared with the reference spec-
trum as the NIRS spectrum of that coal sample. Fig. 8 shows the
typical NIRS spectra of four kinds of coal samples collected,
including 10 clean coal, 8 medium coal, 7 slime, and 6 gangue.
As shown in the gure, the absorption peaks exist at 2200 nm
and 2400 nm for all four types of coal. The absorbance of each
type of coal sample shows a decreasing trend with increasing
wavelength. In particular, the absorbance of clean coal is the
highest, ranging from 1.05 to 1.45, followed by medium coal and
This journal is © The Royal Society of Chemistry 2023



Fig. 7 Coal samples and laboratory indicators.
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slime, which range from 0.95 to 1.30 and 0.88 to 1.15, respec-
tively, and that of gangue is the lowest, ranging from 0.70 to 1.03.

Fig. 9 shows the typical XRF energy spectra of four kinds of
coal samples collected, and the Ka spectral lines of Na, Al, Si, S,
K, Ca, Ti, Cr, Mn, Fe, Co and Cu were marked in the energy
range from 0 to 9 keV. It can be seen that the intensity of the
spectral lines of Si, Fe and Cu in each coal is higher, while that
of Na is smaller. This is because Na not only has a low content,
but also has a smaller atomic number, and the corresponding
This journal is © The Royal Society of Chemistry 2023
uorescence yield is also lower. In addition, the variability of
the intensity of each element in different coal samples is also
large. For example, the descending order of spectral line
intensities for Al, Si, K and Ti corresponds to the coal types of
gangue, slime, medium coal and clean coal, respectively.

2.5 Spectral pretreatment

For NIRS spectra, in order to reduce the interference of invalid
spectra and noise, the following pretreatment methods were
J. Anal. At. Spectrom., 2023, 38, 2046–2058 | 2053



Fig. 8 Comparison of typical NIRS spectra for four types of coal.

Fig. 9 Comparison of typical XRF energy spectra for four types of coal.
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done: the spectral data in the bands of 1000–1089 nm and
2481–2500 nm were removed, leaving the spectral data in the
band of 1090–2480 nm (314 variables) to calculate the absor-
bance from log(1/R) (R is reectance); used the Savitzky–Golay
(SG) convolutional smoothing algorithm to further reduce
noise and eliminate the “spike” phenomenon in the reection
spectrum data of the sample surface, where the window size
was set to 5 and the polynomial order was 3; the smoothed
spectral data were then standardized using the standard
normal variation (SNV) method to eliminate the effects of solid
particle size, surface scattering, and optical path changes on
NIRS diffuse reectance spectra. Although the absorbance
range of the processed spectral data changed, it did not change
the trend of the original spectral data. For the XRF energy
spectra, the pretreatment methods were to rst reduce the
original spectral data range to 0.37–18.52 keV (3425 variables)
to eliminate the low energy bands and then to process it using
2054 | J. Anal. At. Spectrom., 2023, 38, 2046–2058
SG smoothing, again using ve-point third-order smoothing.
The NIRS spectral and XRF energy spectral data were linked
end-to-end to form a fused spectrum, and the number of rows
of the new matrix was obtained as the number of samples, and
the number of columns was the sum of the number of NIRS
spectral and XRF energy spectral variables. Due to the large
differences in the intensity values between NIRS spectral data
and XRF energy spectral data, the fused spectrum needed to be
normalized so that the range of NIRS and XRF spectral data
was within the range of [–1,1] to enable more accurate
comparison and analysis of the spectral characteristics of
different samples.

2.6 Predictive model

The fused spectral data and coal caloric value standard values
were used to build the caloric value predictive model by PLSR.
A holistic-segmentedmodeling approach was adopted here. The
holistic modeling was based on PLSR to establish a model
within the entire caloric value range, and the corresponding
model was called the holistic model. Considering the large
disparity of coal types, a large number of samples, and the
obvious differences in the coal matrix, thus showing the
potential for classication, segmented modeling was consid-
ered to improve the accuracy of model analysis, and the corre-
sponding model was called the segmented model.

2.7 Model evaluation

The basic statistical indicators used to evaluate the measure-
ment accuracy of the built caloric value predictive model
include the coefficient of determination (R2), root mean square
error of prediction (RMSEP), average absolute error (AAE) and
average relative error (ARE). R2 reects the ability of the cali-
bration model to t sample data, and the closer the value is to 1,
the stronger the tting ability and higher the accuracy of the
model. RMSEP reects the degree of consistency between the
predicted and standard values of the validation set, and the
closer the value is to 0, the smaller the deviation between the
predicted and standard values, and the higher the predictive
ability of the built model. AAE is the sum of the absolute values
of all errors in the validation set divided by the number of
observations, and the closer AAE is to 0, the smaller the error
between the predicted and standard values, and the more
accurate the predicted values. Similarly, ARE is the sum of the
relative values of all errors divided by the number of observa-
tions, and the closer ARE is to 0, the smaller the relative error
between the predicted and standard values, and the more
accurate the predicted values. Using both the AAE and ARE can
help in evaluating the accuracy of the predicted values more
comprehensively. The denition formulae of the four are as
follows:

R2 ¼ 1�

Pnc
j¼1

�
yaj � ybj

�2

Pnc
j¼1

�
yaj � y

�2 ; (1)
This journal is © The Royal Society of Chemistry 2023



Fig. 10 Comparison between the predicted and standard calorific
values of coal samples using the holistic model.
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RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnv
j¼1

�
ycj � ydj

�2

nv
;

vuuut
(2)

AAE ¼ 1

nv

Xnv
j¼1

��ycj � ydj
��; (3)

ARE ¼ 1

nv

Xnv
j¼1

��ycj � ydj
��

ycj
� 100%; (4)

where, ya and yb represent the standard and predicted values of
the caloric value of the samples in the calibration set, yc and yd
represent the standard and predicted values of the caloric
value of the samples in the validation set, �y represents the
average of the standard values of the caloric value of all
samples in the calibration set, j is the sample order, nc repre-
sents the number of samples in the calibration set, and nv
represents the number of samples in the validation set.

Repeatability reects the degree of consistency between the
caloric value results obtained from multiple measurements of
the same coal sample under the same conditions. The indicator
used here to evaluate the repeatability of the established calo-
ric value model is the standard deviation (SD), and the smaller
the SD, the better the repeatability of the model for the
measurement of caloric value. The SD is calculated using the
following formula:

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i¼1

�
Xi � X

�2

n� 1
;

vuuut
(5)

where Xi denotes the caloric value obtained from the ith
measurement of the same coal sample, �X denotes the average of
all measurements of the same coal sample during repeated
measurements, i denotes the order of measurements of the
same coal sample, and n denotes the total number of repeated
measurements of the same coal sample.
3 Results and discussion
3.1 Holistic-segmented model

The holistic-segmented model based on PLSR is divided into
two parts: the holistic model and the segmented model. The
holistic model refers to the predictive model established by
directly treating the total caloric value of four types of coal as
a whole. The comparison between the predicted and standard
values of the caloric value of all coal samples using this model
is shown in Fig. 10. It can be seen from the gure that R2,
RMSEP, AAE and ARE of the caloric value of the coal sample in
the calibration set are 0.998, 0.65 MJ kg−1, 0.55 MJ kg−1 and
4.71%, respectively. The accuracy of prediction using the
holistic model is not high because the overall number of
samples is large, and the properties of clean coal, medium coal,
slime and gangue are quite different, and the holistic modeling
is easy to cover up the effective spectral information of various
coals, ignoring some details, leading to the fuzzy model. In
addition, the sample number of slime and gangue is less than
This journal is © The Royal Society of Chemistry 2023
that of clean coal and medium coal, which increases the
difference in the caloric value between them and reduces the
prediction accuracy of the holistic model. To address this
problem, further consideration is given to the use of segmented
modeling, based on which more accurate predictions can be
made.

Segmented modeling refers to the process of dividing the
caloric value range of all coal samples based on the concen-
trated range of caloric value distribution of gangue, slime,
medium coal and clean coal (Fig. 7(b)) into four regions of a (0–
8.74 MJ kg−1), b (8.74–15.74 MJ kg−1), c (15.74–27.51 MJ kg−1)
and d (27.51–33.50 MJ kg−1), respectively. This classication
ensures a higher degree of consistency among the coal types to
which each segment belongs, and the corresponding spectral
data have a higher homogeneity, which reduces the problem of
large differences in the properties of different coal types. As
a result, corresponding predictive models can be established for
the characteristics of different segments. The holistic-
segmented model established is shown in Fig. 11, and the
evaluation indicators of the holistic-segmented model and the
holistic model are shown in Table 1.

As can be seen from Table 1, the determination coefficients
R2 of both the holistic and holistic-segmented models reach
above 0.99; however, the average RMSEP, AAR and ARE of the
latter are signicantly lower than those of the former, especially
for regions c and d. The reason is that these two regions mainly
correspond to medium coal and clean coal, which have
uniform, stable physicochemical properties, and a larger
number of samples, resulting in better predictive performance.
The predictive performance of the model for region b is average,
but still better than that of the holistic model. The prediction
model for region a performs the worst, as gangue contains
various impurities and has non-uniform and signicantly
different components. The evaluation results of the prediction
performance show that the average RMSEP, AAE and ARE of the
holistic-segmented model decreased from 0.65 MJ kg−1, 0.55 MJ
J. Anal. At. Spectrom., 2023, 38, 2046–2058 | 2055



Fig. 11 Comparison between the predicted and standard calorific
values of coal samples using the holistic-segmented model.

Fig. 12 Comparison of the SDs of the calorific value measured using
the holistic model, the holistic-segmented model, and the national
standard method.
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kg−1 and 4.71% of the holistic model to 0.33 MJ kg−1, 0.28 MJ
kg−1 and 2.71%, respectively, which was almost a times
decrease. It can be seen that the segmented modeling method
based on PLSR signicantly improves the tting effect of the
traditional holistic modeling method and effectively improves
the modeling efficiency and measurement accuracy. This AAE
has met the requirement of no more than 0.42 MJ kg−1 in the
coal preparation plant.

When using the holistic-segmented model to predict coal
samples, the initial rough value of the caloric value is pre-
dicted using the holistic model, then the spectral data are
classied into corresponding segmented region based on the
discriminant condition, and nally the exact caloric value of
the coal sample is calculated using the corresponding
segmented model.

For samples with caloric values located in the intersection
region, the difference between the predicted caloric values by
two adjacent segmented models is around 0.05 MJ kg−1, which
can be ignored compared to the average RMSEP of 0.33 MJ kg−1

of the holistic-segmented model. For example, there is a coal
sample with a standard caloric value of 27.51 MJ kg−1 in this
validation set, and the segmented models for regions c and
d predicted its caloric value as 27.50 MJ kg−1 and 27.47 MJ
kg−1, respectively, with only a difference of 0.03 MJ kg−1

between them.
Table 1 Evaluation of predictive performance for the holistic and holisti

Model type Segmented region R2

Holistic model — 0.998
Holistic-segmented model a 0.995

b 0.995
c 0.996
d 0.999
Average 0.996
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3.2 Repeatability evaluation

In this paper, we compared the measurement repeatability of
the proposed holistic-segmented model and the conventional
holistic model. Eight repeatability validation samples were
randomly selected from 35 validation set samples, and the
corresponding coal types were clean coal, clean coal, medium
coal, medium coal, slime, slime, gangue and gangue, numbered
from 1 to 8. Using this instrument and these two models, each
coal sample was measured 5 times, and their SDs were calcu-
lated. The obtained results are shown in Fig. 12.

As shown in Fig. 12, the blue and red horizontal lines
represent the average SDs obtained by measuring the caloric
values of the 8 samples using the holistic model and the
holistic-segmented model, respectively. The purple horizontal
line represents the repeatability requirement of 0.12 MJ kg−1 for
coal caloric value measurement as stipulated by the Chinese
national standard. The SDs predicted by the holistic model are
all higher than 0.12 MJ kg−1, indicating that the holistic model
is unstable and the repeatability is poor. However, the SDs
predicted by the holistic-segmented model are signicantly
improved compared with the holistic model. Furthermore, the
repeatability of the model measurement is better in the regions
of c and d, while that in the regions of a and b is relatively poor.
This may be because slime and gangue belong to non-
c-segmented models

RMSEP (MJ kg−1) AAE (MJ kg−1) ARE (%)

0.65 0.55 4.71
0.43 0.32 6.57
0.35 0.30 2.22
0.31 0.27 1.27
0.22 0.24 0.81
0.33 0.28 2.71

This journal is © The Royal Society of Chemistry 2023
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homogeneous samples, which not only contain more elemental
compounds and impurities but also have more uctuations in
chemical components, resulting in poor measurement repeat-
ability. In contrast, medium coal and clean coal are typically
purer, with relatively stable chemical component content,
resulting in better measurement repeatability. The holistic-
segmented model achieved an average SD of 0.09 MJ kg−1 for
repeated measurements of the 8 samples, which is lower than
the 0.12 MJ kg−1 specied by the national standard method.
This indicates that the holistic-segmented model can greatly
improve the stability of measurement and has met the
requirements of the national standard.

4 Conclusions

In this work, a rapid coal caloric value analyzer based on NIRS-
XRF was developed, and eld testing and feasibility verication
were conducted in a coal preparation plant. The instrument
utilizes NIRS to measure organic groups such as C–, H– and O–,
which are positively related to the caloric value of coal. It also
utilizes XRF to measure inorganic ash-forming elements such
as K, Ca, Na, Mg, Al and Si, which are negatively related to the
caloric value of coal. This allows for accurate quantitative
analysis of the coal caloric value. The optical modules effi-
ciently capture NIRS spectra and XRF energy spectra, while the
control module uses PLC to control the timing of each module.
The hydrogen production module is used to maintain a pure
hydrogen atmosphere in the XRF measurement chamber. To
use this instrument, simply place the pulverized coal in the
sample cell, atten it, and then click the measurement button
on the human–machine interface to obtain the caloric value
result within 1 minute.

For the analysis of spectral data, we proposed a set of spec-
tral fusion preprocessing algorithms based on smoothing,
standard normal and normalization, as well as a quantitative
analysis algorithm of PLSR based on the holistic-segmented
model. The holistic-segmented model is a new type of predic-
tion model that combines the traditional holistic model with
four segmented models. The holistic model roughly determines
the region to which the sample belongs, and then the corre-
sponding segmented model to make an accurate prediction of
the caloric value. The test results showed that the RMSEP, AAE
and ARE of the holistic-segmented model were reduced by
a factor of 1 compared to the conventional holistic model,
reaching 0.33 MJ kg−1, 0.28 MJ kg−1 and 2.71%, respectively.
Additionally, the SD of measurement repeatability decreased
from 0.29 MJ kg−1 to 0.09 MJ kg−1, meeting the requirements of
the Chinese national standard.

The developed rapid analyzer, based on NIRS-XRF fusion,
enables accurate, rapid, and highly stable measurement of the
caloric value of coal. It also offers user-friendly operation with
a one-button fully automatic measurement feature. The
instrument provides coal preparation plants with valuable
caloric value data for timely adjustment of the washing
process and precise control of the coal quality. Future research
will be devoted to enhancing the long-term stability of the
instrument's performance in a harsh industrial environment,
This journal is © The Royal Society of Chemistry 2023
as well as exploring its potential application in other
industries.
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