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We study steady-state phases of a one-dimensional array of Rydberg atoms coupled by a microwave (MW)
field where the higher-energy Rydberg state decays to the lower-energy one via single-body and collective
(superradiant) decay. Using mean-field approaches, we examine the interplay among the MW coupling, intrastate
van der Waals (vdW) interaction, and single-body and collective dissipation between Rydberg states. A linear
stability analysis reveals that a series of phases, including uniform, antiferromagnetic, oscillatory, and bistable
and multistable phases can be obtained. Without the vdW interaction, only uniform phases are found. In
the presence of the vdW interaction, multistable solutions are enhanced when increasing the strength of the
superradiant decay rate. Our numerical simulations show that the bistable and multistable phases are stabilized
by superradiance in a long chain. The critical point between the uniform and multistable phases and its scaling
with the atom number is obtained. Through numerically solving the master equation of a finite chain, we show
that the mean-field multistable phase could be characterized by expectation values of Rydberg populations and
two-body correlations between Rydberg atoms in different sites.
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I. INTRODUCTION

Collective behaviors are intriguing in various many-body
systems and attract intensive interest currently. Among them,
superradiance is a cooperative radiation effect in dense atomic
samples [1]. Spontaneous decay of individual atoms occurs
due to fluctuations of vacuum fields surrounding atoms. When
interatomic separation Rjk is smaller than the wavelength λ

of the respective transition, i.e., the Dicke limit Rjk � λ [2],
decay becomes collective such that its rate depends on the
number of atoms in the ensemble and hence can be much
larger than the individual decay rate [3]. Since being predicted
by Dicke [2], superradiance has been confirmed in a variety
of experimental settings including Rydberg atoms [4–8], cav-
ities [9–11], Bose-Einstein condensates [12–14], and quantum
dots [15]. On the other hand, insights gained from the study
of superradiance have allowed us to develop applications in
quantum metrology [16,17], narrow linewidth lasers [18–20],
atomic clocks [21], etc.

Rydberg atoms become an ideal platform for study-
ing superradiance because of their millimeter-wavelength
energy intervals, inherent dissipation [5,22], and spatial con-
figurability [23–25]. Rydberg atoms have extremely large
electric dipole transition moments that can cause strong and
long-range interactions of Rydberg states. There have been
numerous theoretical and experimental investigations on the
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competition between dissipation and strong Rydberg atom
interactions [26–35]. The strong interaction between Rydberg
atoms leads to blockade effects [36–39]. Taking into account
single-body dissipation, novel phases [40–42] and critical be-
haviors [26,43–46] emerge in such driven-dissipation many-
body settings. We have recently experimentally observed
blackbody-radiation-enhanced superradiance of ultracold Ry-
dberg atoms in a magneto-optical trap [8]. In a cold gas
of dense Rydberg atoms, decay from the |nD〉 state to the
|(n + 1)P〉 state is much faster than the single-body decay
rate, which has been identified to be superradiant. It has been
found that the strong van der Waals (vdW) interaction between
Rydberg atoms plays crucial roles. The interplay between
superradiance and vdW interactions affects the many-body
dynamics as well as scaling of the superradiance with respect
to the number N of Rydberg atoms.

In this work, we study superradiance between two Rydberg
states in a one-dimensional (1D) lattice (see Fig. 1), where
atoms experience strong vdW interactions and are coupled by
a microwave field. This lattice setting allows us to explore
superradiance between Rydberg states in a controllable fash-
ion, e.g., by modifying the effective collective dissipation and
interaction strength between Rydberg atoms by changing the
atomic density and the principal quantum number. Dynamics
of the driven-dissipative Rydberg lattice is governed by a
Lindblad master equation. We first establish mean-field phase
diagrams as a function of external drive and detuning. We find
a variety of stationary phases, including antiferromagnetic,
oscillatory, phase bistabilities, and multistabilities. We show
that Rydberg superradiance leads to multistable phases that
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FIG. 1. One-dimensional array of interacting Rydberg atoms.
(a) A large number of atoms are fixed on the 1D lattice. a is the
lattice distance and γm is the many-body decay term. (b) The energy
level of our model. A microwave field with Rabi frequency � drives
atoms from |1〉 to |2〉. � = ω − ω0 is the detuning from the two-level
transition ω0. γs is the single-body decay term and V (1)

jk (V (2)
jk ) is the

vdW interaction between the same state |1〉 (|2〉) when atoms are in
sites j and k.

are absent in previous studies [47]. In a finite chain, we
obtain steady states by numerically solving the master equa-
tion. Two-body correlations and Rydberg populations exhibit
different features in the corresponding mean-field phases
and could signify the emergence of bistable and multistable
phases.

The paper is organized as follows. In Sec. II, we describe
master equation of the Rydberg atoms on a 1D lattice. In
Sec. III, we use mean-field theory and an ansatz to analyze
steady states of the model. Different phases, described by the
order parameter Sz, are identified. We show dependence of
the steady-state phase diagrams on the collective (nonlocal)
dissipation. In Sec. IV, we explore the linear stability of the
steady state. The dynamics of different phases, in particular
the multistable phases, are discussed. In Sec. V, we numer-
ically obtain the quantum correlation and the Von Neumann
entropy in the quantum master equation, and we link the result
with mean-field predictions. We conclude in Sec. VI.

II. THE MODEL

We consider a one-dimensional lattice of N atoms in elec-
tronically high-lying Rydberg states |1〉 and |2〉, as depicted
in Fig. 1. Similar to the experiment in Ref. [8], we assume
that state |2〉 = |nD〉 and state |1〉 = |(n + 1)P〉, with n being
the principal quantum number. These states are coupled by
a microwave (MW) field with Rabi frequency � and detun-
ing �. In Rydberg state |s〉 (s = 1 and 2), atoms located at
sites j and k interact strongly with vdW interactions V (s)

jk =
Cs

6/a6| j − k|6, where Cs
6 and a are the dispersion coefficient

and the lattice constant. The interstate interaction is neglected,
as the two states are energetically separated [48]. The Hamil-
tonian of the many-body system is given by (h̄ = 1) [8]

H =
N∑
j

[
�

2
σ j

x − �

2
σ j

z

]
+ 1

2

∑
α=1,2

N∑
k �= j

V (α)
jk σ j

αασ k
αα

+ 1

2

N∑
k �= j

V DD
jk

(
σ j

x σ k
x + σ j

y σ k
y

)
, (1)

where σ
j

ξ (ξ = x, y, and z) are the Pauli matrices on site

j, σ
j

(±) = 1
2 (σ j

x ± iσ j
y ) is the raising (lowering) operator, and

σ
j

ss = [1 + (−1)sσ
j

z ]/2 are projection operators to the Ryd-
berg state. The dipole-dipole (DD) interaction is given by
V DD

jk = C3(1 − 3 cos2 θ jk )/a3| j − k|3, where θ jk is the angle
between their internuclear axis and quantization axis.

The Rydberg states are subject to individual and collective
(superradiant) decay [8]. The dynamics of the system are
governed by the Lindblad master equation [3]

ρ̇(t ) = −i[H, ρ(t )] + L[ρ(t )], (2)

where ρ is the many-body density matrix, and operator L(ρ)
describes the dissipation,

L[ρ] =
N∑
j,k

� jk

2
[2σ

j
− ρ σ k

+ − {σ k
+σ

j
−, ρ}], (3)

where � jk is the collective decay rate between sites j
and k. When j = k, the single-body decay rate γs = � j j =
ω3

jμ
2
j/3πε0 h̄c3, where ω j is the transition frequency and μ j

is the dipole moment [3]. If the atom separation Rjk is much
larger than the photon wavelength λ = 2πc/ω, the decay is
dominated by the individual (local) ones. For densely packed
atoms, superradiance leads to nonlocal dissipation that varies
with the distance between atoms [3,49,50]. In our analysis,
we neglect the distance dependence as the average spacing
(∼μm) between Rydberg atoms is much smaller than the MW
wavelength (∼mm). In a mesoscopic setting (tens to hundreds
of atoms), the collective decay becomes all-to-all with equal
strength, i.e., � jk = γm [47].

In the following discussions, the DD interaction will be
neglected for the following reason. First, in our recent ex-
periment [8] it has been shown that superradiance in dense
Rydberg gases is strongly affected by the van der Waals
interactions while effects due to the DD interaction are not
significant. This is due to the fact that dipolar interactions are
long ranged (∼R−3), but the vdW interaction is short ranged
(∼R−6). The vdW interaction can be stronger than the DD in-
teraction at short distances (see Appendix A for illustrations).
Second, one can turn off the DD interaction by adopting the
magic angle (i.e., 1 − 3 cos2 θ jk = 0) in the one-dimensional
model (see Appendix A for details). The influence of the
DD interaction on Rydberg superradiant dynamics will be
discussed elsewhere.

III. MEAN-FIELD PHASES

The Hilbert space of the Hamiltonian grows as 2N , while
the dimension of the density matrix is 22N . The computational
complexity prevents us from numerically solving the many-
body problems when N > 10 in typical computers. Due to
the dissipation, we could employ the mean-field (MF) theory
to analyze the steady state and the dynamics. In the MF
approximation, the many-body density matrix ρ is decou-
pled into individual ones through ρ̂ ≈ �i ρ̂i. This decoupling
essentially ignores quantum entanglement between different
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sites [51]. We obtain MF equations of motion of the spin
expectation values [8] as follows:

Ṡ j
x = −γs

2
S j

x + �S j
y +

∑
k �= j

(
S j

y S jk
V + F jk

x

)
, (4a)

Ṡ j
y = −γs

2
S j

y − �S j
x − �S j

z −
∑
k �= j

(
S j

x S jk
V − F jk

y

)
, (4b)

Ṡ j
z = −γs

2

(
1 + 2S j

z

) + �S j
y − γm

∑
k �= j

D jk, (4c)

where S j
ξ = 1

2 Tr(σ j
ξ ρ̂) are the expectation values of the

operator σ
j

ξ , D jk = S j
x Sk

x + S j
y Sk

y , and F jk
ξ = γmS j

z Sk
ξ .

We have defined the site-dependent interaction term
S jk

V = [V (1)
jk (1 − 2Sk

z ) − V (2)
jk (1 + 2Sk

z )]/4 = [(V (1)
jk − V (2)

jk ) −
2Sk

z (V (1)
jk + V (2)

jk )]/4, which is dependent on the interaction
strength and Sz. It shows that the nonlinear interaction will
decrease when V (1)

jk ∼ −V (2)
jk . Note that the vdW interaction

decreases rapidly with spin separations (∝ 1/a6| j − k|6).
In the coherent regime, the classical ground state forms
crystalline structures in the thermodynamic limit [52–55]. The
Rabi coupling, on the other hand, could melt the crystalline
phase [56]. The vdW type interaction between Rydberg
atoms means that the nearest-neighbor (NN) interaction is p6

times the other long-range interactions (with atom separation
pa with p � 2). Typically the long-range tail of the vdW
interaction leads to subtle details in the crystal melting
[57–59]. Following Ref. [47], we take into account the NN
interaction V1(2) = C1(2)/a6 in the following analysis. Without
losing generality, we scale energy with respect to γs in the
numerical simulations, except in Sec. IV C.

At the mean-field level, the nonlocal, collective decay leads
to nonlinear dissipative terms in the mean-field equations,
while the local decay leads to linear dissipative terms [see
Eq. (4)]. The collective decay is all-to-all and independent
of distance. Depending on the parameters, we find Rydberg
populations in the MF steady state can have different distri-
butions along the lattice. To characterize the phases, we use
Sz as an order parameter, and we identify uniform (UNI) and
nonuniform solutions.

A. Uniform phases

The uniform phase corresponds to spatially homogeneous
excitation of both Rydberg states. To obtain the uniform solu-
tion, one can find the fixed point through

Ṡx = −γs

2
Sx + �̃Sy + κSzSx, (5a)

Ṡy = −γs

2
Sy − �̃Sx − �Sz + κSzSy, (5b)

Ṡz = −γs

2
(1 + 2Sz ) + �Sy − κ

(
S2

x + S2
y

)
, (5c)

where �̃ = � + SV and κ = (N − 1)γm. Order parameter Sz

in the UNI phase satisfies

�̃2 +
(

γs

2
− κSz

)2

+ �2Sz

2Sz + 1
= 0. (6)

This is a nonlinear function of Sz, where analytical solutions
are typically difficult to derive. In a special case, V1 = −V2 =
V , an analytical solution can be obtained. The expression of
the solution is lengthy and is given in Appendix B. Under gen-
eral conditions, solutions in the uniform phase are obtained
numerically. According to values of Rydberg excitation, we
further divide the UNI phase into a low-excitation phase
(ULE phase) when −1/2 < Sz < −1/4 (i.e., the population
on level |2〉 S22 = 0.5 + Sz; it satisfies 0 < S22 < 1/4), and a
high-excitation phase (UHE phase) if −1/4 < Sz < 1/2 (i.e.,
1/4 < S22 < 1).

B. Nonuniform phases

Due to the NN interaction, we employ a bipartite sub-
lattice ansatz to analyze the stationary states. Here two NN
sites, labeled with A and B, repeat their pattern periodically
throughout the lattice. With this periodicity in mind, Eq. (4)
is simplified to the following coupled equations of the A − B
sublattice,

ṠA
x = −γs

2
SA

x + (
� + SB

V

)
SA

y + NγmCx

2
SA

z , (7a)

ṠA
y = −(

� + SB
V

)
SA

x − γs

2
SA

y + NγmCy − 2�

2
SA

z , (7b)

ṠA
z = �SA

y − γs

2

(
1 + 2SA

z

) − N − 2

2
γm(SA

⊥)2 − Nγm

2
DAB,

(7c)

where Sα
⊥ =

√
Sα

x
2 + Sα

y
2 (α = A and B) is the projection of α

spin on the x − y plane and Cξ = (N − 2)SA
ξ /N + SB

ξ . Equa-
tions for B sites can be obtained by swapping indexes A and
B in Eq. (7). We then obtain MF steady-state solutions by
solving these equations numerically.

According to values of Sα
z , we identify antiferromagnetic

(AFM) phases, oscillatory (OSC) phases, and bistable and
multistable phases. In AFM phases one sublattice has a higher
excitation than the other (SA

z �= SB
z ). The AFM phase is sta-

tionary, which means that Sα
z will not change with time when

t → +∞. In the OSC phase, however, populations of two
neighboring sites oscillate over time.

C. Phase diagrams

Examples of MF phase diagrams for different values of
γm are shown in Fig. 2. They elaborate on the consequences
arising from the nonlocal character of the dissipation. Without
the nonlocal decay (γm = 0) [Fig. 2(a)], the steady state is
dominated by a ULE phase when � is small and � < 0. By
decreasing |�| and increasing �, the ULE phase becomes un-
stable and enters into the AFM phase, due to the competition
between the local decay and the vdW interaction [47]. It is
found that the OSC phase emerges when roughly � > 0.6 and
� > −4. More details on the phases without superradiance
can be found in Appendix C. The presence of the Rydberg
superradiance enhances the nonuniform phase and also brings
multistable phases. As shown in Figs. 2(b) and 2(c), areas of
the ULE phase shrink when increasing γm, while areas of the
nonuniform phase, especially the OSC phase, increase dras-
tically. Importantly, a new multistable phase (labeled by M1)

063319-3



HE, BAI, JIAO, ZHAO, AND LI PHYSICAL REVIEW A 106, 063319 (2022)

FIG. 2. Mean-field phase diagrams for (a) γm = 0, (b) γm = 0.6,
(c) γm = 0.8, and (d) γm = 1. When γm is small, the phase diagram
is mainly occupied by the UNI phase (ULE and UHE), the AFM
phase, and the OSC phase. When γm is large, bistable (OSC/ULE
with orange area) and multistable phases (M1 with purple area) can
be seen in panels (b), (c), and (d). Other parameters are V1 = 10,
V2 = 10, and γs = 1.

emerges in which the AFM, OSC, and ULE phases coexist.
For example, we find both a bistable region of the OSC and
ULE phase, and a M1 phase when γm = γs, as depicted in
Fig. 2(d).

The rich MF phases result from the competition between
the collective decay and the strong vdW interaction. Without
the vdW interaction, we only find uniform phases, as shown
in Fig. 3(a). Here the ULE phase smoothly crosses over into
the UHE phase as � is increased while � is fixed. When
V1 = V2 = 10, on the other hand, a variety of nonuniform
phases are generated, as shown in Fig. 3(b). Here even in
the UNI phase, we find a bistability between the ULE/UHE
phases when |�| ∼ 0. Note the bistable ULE/UHE phase
is different from the AFM phase in that the population in
the A − B site is still same as in the former case. The tran-
sition to these steady phases depends on initial conditions
[40,50], which are demonstrated in detail in the next section.

FIG. 3. Homogeneous phases when (a) V1 = V2 = 0 and more
structured phases when (b) V1 = V2 = 10. These figures show that
the strong vdW interactions turn the simple uniform phase into
complicated phases. Parameters are γs = γm = γ = 1.

FIG. 4. Superradiance-dependent multistability. When increas-
ing �, a series of phase transitions can be found in panel (a1). The
solid (dotted) lines correspond to the stable (unstable) solutions.
The blue (orange) lines correspond to the uniform (nonuniform)
solutions. Multiple solutions coexist to represent the multistable
phase. Point C is the critical point between the nonuniform phase
and the UHE phase. The gray dashed lines indicate the crossing
into OSC/ULE, M1, M2, ULE/UHE, and UHE regions, respec-
tively. Dynamics of Rydberg populations in (b1) the M1 phase with
� = 5.8 and (b2) the M1 phase with � = 6.2. Different curves
represent different simulations. The red (blue) lines denote the dy-
namical behaviors of atoms in site A (B) of the simulation. The solid
lines correspond to the AFM phase, the dash lines correspond to
the OSC phase, and the dotted lines correspond to the ULE phase.
(a2) Variance σ as a function of Rabi frequency in the long-time
limits t = 300 and t = 5000. Other parameters are N = 50, � = −2,
V1 = V2 = 10, and γs = γm = 0.5.

Other bistable phases, including AFM/ULE and OSC/ULE
phases, are also found, though they occupy a small pa-
rameter space. We also find a new multistable phase in
which AFM(OSC)/ULE/UHE solutions [labeled by M2; see
Fig. 4(a1) below for detail] are found. This multistable phase
can only occupy a very small region in the parameter space.
Hence, the vdW interaction and the nonlocal dissipation be-
tween different atoms together result in complicated phases
[50]. In the following, we focus on the bistable and the multi-
stable M2 phases.

IV. STABILITY AND DYNAMICS
OF THE MEAN-FIELD PHASES

The phase diagram obtained previously is based on mean-
field calculations with Eq. (6) (uniform phases) and Eq. (7)
(bistable and multistable phases). In the following, we study
stabilities of these phases in a long chain N � 2 and hence
verify especially the stability of the M1 phase.

A. Linear stability analysis

We first present examples of the multistability and the
bistability as a function of � in Fig. 4(a1). The blue lines
represent the uniform solutions and the orange lines represent
the nonuniform solutions. We then analyze the linear stability
of the steady-state solution by calculating eigenvalues λ j of
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the Jacobian matrix of Eqs. (7) [60]. If the real parts of all
eigenvalues are negative, i.e., Re(λ j ) < 0, the corresponding
solution is stable (solid lines); otherwise, it is unstable (dotted
lines).

When � is small, the steady state is the ULE phase then
changes to the OSC/ULE phase and then to the M1 phase by
increasing � [Fig. 4(a1)]. The nonuniform fix points become
stable, which means the system shows an antiferromagnetic
pattern. These unstable, nonuniform fixed points lead to the
OSC phase, in which the Rydberg population oscillates pe-
riodically in time. In particular we find multistable solutions
in the M1 phase (AFM/OSC/ULE), ULE solutions are stable
while two other solutions are not stable. Further increasing
�, the nonuniform solutions become unstable while the UHE
phase becomes stable at a critical �c (marked by C) after
passing through the very narrow M2 phase and the ULE/UHE
phase.

B. Dynamics of the multistable phase

In the multistable phase, atoms at different sites can oc-
cupy different stable populations. To verify this, we solve
Eq. (4) numerically with N = 50 and periodic boundary con-
ditions. The initial values of different atoms are {Si

x, Si
y, Si

z} =
{0, 0, r}, where r is a random number between −0.5 and 0.5.
We then probe the multistable phase by tuning the parame-
ters. In Figs. 4(b1) and 4(b2), we show mean values of S j

z

for a block of six sites with index j = 1 ∼ 6. As shown in
Fig. 4(a1), the simple two-site MF theory predicts three stable
solutions in the M1 phase, which can be seen in the dynam-
ical simulation with N = 50. We note that in the many-site
simulation, the system prefers a ULE and OSC solution when
� is approaching the lower critical value around 5.8, as the
example shown in Fig. 4(b1). Increasing �, the three phases
coexist in the dynamical simulation, as shown in Fig. 4(b2).
The OSC phase oscillates around the AFM phase and its
oscillation amplitude reduces with the Rabi frequency. Further
increasing �, the strength of the OSC phase gradually reduces
such that only the AFM and ULE phases survive.

To characterize distributions of the Rydberg spin popula-
tion across the lattice, we evaluate the variance σ of the spins
in different sites [50]:

σ = 1

N

N∑
i

(S̄ − Si )2, (8)

where Si = (Si
x, Si

y, Si
z )/S, S =

√
(Si

x )2 + (Si
y)2 + (Si

z )2, and

S̄ = ∑N
j S j/N is the average spin. Here the translational sym-

metry of the lattice is broken when σ �= 0, which takes place,
for example, in the AFM phase [47]. In Fig. 4(a2), we show
the variance obtained from a simulation by varying �. The
spin fluctuations are large especially in the M1 phase due to
different sites occupying very different populations. In the M1
phase, we find the variance reaches maximal values when the
OSC phase dominates. It decreases when increasing �, as
the strength of the OSC phase decreases, while the AFM and
ULE phases become important. We evaluate the values at two
different times. It is found that the spin fluctuation persists
even when t = 5000, indicating that the various phases are

FIG. 5. Scaling of the critical value �c with respect to (a) atom
numbers N and (b) parameter Nγm for different γ . (b) The colored
dots denote numerical simulation, and the lines represent analytical
results from Eq. (9).

truly stable. Note that in the bistable phases, the atoms will
pick up either the lower or the upper branch of the solution in
individual simulations, and hence σ = 0 in these phases.

C. The critical value �c

As shown in Fig. 4(a1), point C marks the boundary be-
tween the M1 and UHE phases. It is interesting to understand
the critical value �c that distinguishes these two phases. When
increasing γs = γm = γ , our numerical simulations indicate
that �c increases, as shown in Fig. 5(a). In addition, the
critical value increases with N monotonically for a given γ ,
as the effective collective decay rate of each atom is propor-
tional to (N − 1)γm. Note that �c can only be tuned in the
superradiance regime. When γm = 0, it is a constant and has
no dependence on N any more. As shown in Fig. 5(a), �c

increases nearly linearly when N and γm are large and displays
different scaling when N and γm are small. To understand this
behavior, one notes that the critical point can be obtained by
solving Eq. (7). Approaching the critical point from the UHE
phase, Sz is solved numerically using Eq. (6). We derive an
analytical solution,

�c =
√

−2Sz + 1

Sz

[
(� + SV )2 +

(
γs

2
− (N − 1)γmSz

)2]
.

(9)

The analytical �c shows that the critical point will depend
on N if γm �= 0. When Nγm < γs, �c varies with SV and
γs nonlinearly. Hence this is a regime where the vdW inter-
action dominates, as SV is affected by the vdW interaction.
When Nγm is large, on the other hand, one can expand
�c by assuming γs and SV to be small, leading to �c ∼√−Sz(2Sz + 1)(N − 1)γm. In Fig. 5(b), the scaled �c values
with respect to Nγm are shown. The numerical data agree well
with the analytical prediction �c.

V. QUANTUM MANY-BODY DYNAMICS
OF FINITE 1D CHAINS

MF theory is expected to be valid in higher dimensions
where quantum fluctuations are averaged out. Despite this,
MF theory can capture qualitative aspects of the quantum sys-
tem. To illustrate signatures of the MF phases, we numerically
solve the master equation (2) for a 1D chain of length N =
8 with periodic boundary conditions in the long-time limit
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FIG. 6. Numerical solutions of the master equation (ME) and MF
calculations for 1D chain of length N = 8 with periodic boundary
conditions. Mean population 〈σz〉 by varying (a) detuning � with
� = 2 and (b) Rabi frequency � for � = −2. The red lines represent
the master equation results. The blue and orange curves are MF
results. The M1 phase is highlighted in panels (a) and (b). The
tendencies of the MF and master equation calculations are similar.
It seems that the M1 phase emerges before 〈σz〉 reaches the maxi-
mal value when increasing � or �. The respective Von Neumann
entropies in panels (c) and (d) have shapes similar to those of 〈σz〉
shown in panels (a) and (b). The dark blue squares are calculated by
only considering the NN interaction (VNN) while the light blue circles
are calculated by considering both NN and the next NN interaction
(VNN and VNNN). Other parameters are N = 8, γ = 1, V1 = 5, and
V2 = 5.

t = 300. In Figs. 6(a) and 6(b), mean values of spin pop-
ulation, 〈σz〉 = 1/N

∑
j Tr(ρsσ

j
z ), in the stationary state ρs

are shown. It is found that some trends of the master equa-
tion calculation agree with the MF prediction. For example,
in the M1 phase [Figs. 6(a) and 6(b)], mean values of the spin
component σz become large when varying � or �. This means
the spin state |2〉 is excited in these parameter regions. A con-
sequence is that the von Neumann entropy S = −Tr(ρs ln ρs)
in the steady state also becomes large [Figs. 6(c) and 6(d)]. As
shown in Figs. 6(c) and 6(d), even longer-range interactions
(i.e., next-nearest-neighbor interactions) only play a minor
role, justifying that it is a good approximation to consider only
the nearest-neighbor interaction in the calculation.

Another important quantity is the correlation between dif-
ferent lattice sites, 〈σ i

zσ
i+ j
z 〉c = 〈σ i

zσ
i+ j
z 〉 − 〈σ i

z 〉〈σ i+ j
z 〉 [47].

Due to a periodic boundary condition, the correlation will vary
with the lattice separation. For concreteness, we consider i =
1 and 0 � j � 8 in the calculation. The correlation exhibits
rather different features in different MF phases. In the ULE
phase, the correlation decays rapidly with increasing distance
and vanishes when j > 1, which is independent of γm, shown
in Fig. 7(a). In the ULE phase, atoms in the system are largely
in the low-lying |1〉 state. Hence jumping from state |2〉 to
state |1〉 is unlikely, such that the stationary state as well as
the correlation is largely insensitive to γm. This, however,
changes in the UHE phase, where the occupation in state |2〉

FIG. 7. The correlation operator 〈σ i
zσ

i+ j
z 〉c as a function of dis-

tance with γs = 1 and V1 = V2 = 5 for N = 8 spins on a chain with
periodic boundary conditions. (a) ULE phase, � = 0 and � = 2;
(b) UHE phase, � = 0 and � = 8; (c) AFM phase, � = −3 and
� = 4; and (d) OSC (M1) phase, � = −3 and � = 2.4, for γm =
0(1).

in every site is large. In this phase, the superradiance plays an
important role in the stationary state. As shown in Fig. 7(b),
a long-range, positive correlation is obtained when γm = 1,
while the correlation does not exist any more when γm = 0.
In the AFM phase [Fig. 7(c)], we find that the correlation os-
cillates between positive and negative values with increasing
j when γm = 1. In the M1 phase region, however, the correla-
tion is negative when j = 1 and 7, and it becomes positive at
large separations [Fig. 7(d)]. The correlation, however, decays
with increasing separation when γm = 0. This indicates that
the nonlocal decay can enhance the two-body correlation.
Hence the different profiles of the spin-spin correlation could
be used to characterize the MF phases.

VI. CONCLUSIONS

We have investigated stationary phases of a 1D chain
of MW coupled, strongly interacting Rydberg atoms with
nonlocal dissipations. Using MF theory, we have obtained
interesting bistable and multistable solutions in the stationary
state. By analyzing the MF phase diagram, the dependence of
the multistable phases on the MW coupling, nonlocal dissipa-
tion, and vdW interaction is studied. Dynamical simulations
show that Rydberg atoms in different sites occupy all available
solutions simultaneously in the multistable phase. We have
found the critical value �c between the multistable and UHE
phases. The scaling of �c is examined and agrees with numer-
ical calculations. By solving the master equation numerically
for a finite chain, it is found that certain features predicted
by the MF theory persist in the quantum regime. Different
profiles of the spin-spin correlation could be used to probe and
characterize the MF phases. Such a superradiance-induced
many-body phase transition is observable under current ex-
perimental conditions [8,61]. Our study is relevant to current
theoretical [62] and experimental [8] efforts to understand and
probe dynamics due to the interplay between strong vdW in-
teractions and superradiant decay in arrays of Rydberg atoms.
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FIG. 8. DD and vdW interactions. In panel (a), θ jk = 30◦, where
the vdW interaction is comparable to the DD interaction. In panel
(b), θ = 54.7◦, and the DD interaction is zero. In panels (c) and (d),
θ jk = 60◦. We can see that the vdW interaction is important at short
distances (c), while the DD dominates when atom separations are
large (d).
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APPENDIX A: DIPOLE-DIPOLE
AND VDW INTERACTIONS

In this section, we discuss the strength of both DD and vdW
interactions and the motivation of neglecting the DD interac-
tion in this work. The experimental and numerical results in
our recent work [8] demonstrate that the dipolar interaction ef-
fect might not be critical in dense gas. This is because dipolar
interactions are a long-range interaction (∼R−3), but the van
der Waals interaction is short ranged (∼R−6). For high atomic
density, the distance between atoms is small (R � λ), where
the vdW interaction could play a dominant role (see Fig. 8
for illustrations). Moreover, we can control the strength of the
DD interaction by manipulating the angle θ jk . To highlight the
contribution of vdW interaction in a one-dimensional system,
we can adjust the magic angle (1−3 cos2 θ jk = 0) to turn off
the DD interaction. Hence the DD interactions can be safely
ignored in our model (see blue line in Fig. 9).

In this work cesium atoms are used with |1〉 = |(n +
1)P3/2〉 and |2〉 = |nD5/2〉. The dispersion coefficient C6 can

FIG. 9. (a) The interaction energy (including DD and vdW in-
teractions) as a function of the principal quantum number n with
lattice constant a = 12 μm. (b) The interaction energy varies with
lattice spacing a when n = 65. Here we select the magic angle where
θ jk = arccos( 1√

3
) ≈ 54.7◦, and the dipole-dipole interaction VDD is

close to zero.

be calculated using the ARC package [63]. The results show
that dispersion coefficients in states |(n + 1)P3/2〉 and |nD5/2〉
are both anisotropic [see Fig. 10(a)]. From Fig. 10(b), one can
see that the ratio between V1 and V2 can be precisely controlled
by manipulating the angle θ jk . The condition for V1 = V2 is
achievable in our system when θ jk ≈ 17.6◦ [see point a in
Fig. 10(b)]. We also conduct the simulation at the magical
angle with the interaction strengths V1 = 32 and V2 = −5
[correspond to point b in Fig. 10(b)]. Their corresponding MF
phase diagram is shown in Fig. 11. Similar to the result given
in Fig. 3(b) in the main text, abundant many-body phases can
also be obtained here.

APPENDIX B: ANALYTICAL SOLUTIONS
OF THE UNIFORM PHASE

When V1 = −V2 = V and �̃ = � + V/2, we can obtain
the uniform solutions analytically as follows:

Sz = 1

12κ

{
− 2κ + 4γs + 4(�2 − 6c1)

(
√

3i − 1)c
1
3
3

+ (
√

3i − 1)c
1
3
3

}
,

(B1)

FIG. 10. The calculation results with experimental parameters.
(a) The dispersion coefficient C6 varies with angular θ jk . (b) The ratio
between V1 and V2 as a function of θ jk . The points a and b indicate
V1 = V2 [the corresponding MF phase diagram is shown in Fig. 3(b)]
and V1 = −6.4V2 [the corresponding MF phase diagram is shown in
Fig. 11], respectively.
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FIG. 11. MF phase diagram with V1 = 32 and V2 = −5. The
superradiance rate is used with γs = γm = 1.

where we have the following defined parameters,

� = κ + γs,

c1 = 2�̃2 + �2,

c2 = (−�2 + 6c1)3 + [�3 + 36��̃2 − 9(κ − 2γs)�2]2,

c3 = −κ3 − 3γsκ
2 − 3

[
γ 2

s + 3(4�̃2 − �2)
]
κ

− γs
(
γ 2

s + 18c1
) + √

c2.

This expression is lengthy and therefore is not shown in the
main text. It agrees with the numerical simulation.

APPENDIX C: MF PHASES WITHOUT SUPERRADIANCE

The mean-field phase diagram without superradiance is
shown in Fig. 12. Similar work has been studied in Ref. [40].
The difference is that the two-level system in our model con-
sists of two Rydberg states. Compared to the superradiance
phase diagram [see Fig. 3(b) in the main text], the influence

FIG. 12. Mean-field phase diagram without superradiance. Other
parameters are V1 = 10 and V2 = 10.

FIG. 13. Mean-field phase diagrams for different V2: (a) V2 = 0,
(b) V2 = 5, and (c) V2 = 10. The interaction V2 acts as a detuning
shift in the phase space. Here � = 2.

of superradiance is negligible when the MW field driving is
strong. Around −5 < � < −1, superradiance makes obvious
changes. For example, the stable ULE phase in Fig. 12 be-
comes nonuniform and emerges as the M1 phase.

We further study the influence of vdW interaction on phase
transitions. Figure 13 shows the mean-field phase diagrams as
a function of � and V1 for � = 2 with the vdW interaction
V2 being equal to 0, 5, and 10, respectively. Figure 13(a)
shows the phase is symmetric with respect to the origin,
i.e. one always observes an identical phase at points (�,V1)
and (−�,−V1). The central region of the phase diagram is
affected by the driving field, i.e., sufficiently strong driv-
ing strength changes the system to the UHE phase. When
the vdW interaction of the |1〉 state is weak, |V1| < 10,
there is only the UNI phase when scanning the detuning.
As the detuning increases, a continuous phase transition oc-
curs from the UHE phase to the ULE phase, which means
the atoms from the high-lying Rydberg state return to the
lower-lying Rydberg state. For positive detuning and nega-
tive interaction V1, which appears as an attractive potential,
the uniform phase disappears, and the AFM phase emerges.
With the further increase of the parameters, the AFM phase
becomes unstable and develops into the OSC phase. A series
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FIG. 14. Dynamics of the order parameter S j
z ( j = 1 ∼ 6) with

different interactions and N = 50, � = −2, � = 6, and γ = 0.5,
(a) ULE phase with V1 = 0 and V2 = 5, (b) UHE phase with V1 = 0
and V2 = −5, (c) AFM phase with V1 = 2.5 and V2 = 5, and (d) OSC
phase with V1 = 5 and V2 = 5. The purple dotted lines correspond to
the UNI phase. The red (blue) lines denote the dynamical behaviors
of atoms in site A (B) at the same simulation. The solid lines cor-
respond to the AFM phase; the dashed lines correspond to the OSC
phase.

of continuous phase transitions occur as the interaction V2

increases. The increase of V2 breaks the symmetry of the
phase diagram and the symmetry point moves downward. The
regions of the five phases except the UNI phase increase at
the positive interaction V1.

APPENDIX D: MORE EXAMPLES OF POPULATION
DYNAMICS IN THE MF REGIME

We simulate the dynamic evolution process to get some in-
sight into the characteristics of different phases with nonlocal
dissipation. Figure 14 shows the dynamics of the first six sites
(N = 50) with different initial states in the long-time limit
around t = 5000. Figure 14(a) shows that, when V1 = 0 and
V2 = 5, the spins with different initial states evolve through
time to reach the same steady state at the long-time limit.
The atoms are almost in the lower state, which is in the ULE
phase. Figure 14(b) shows the negative interaction V2 = −5
drives the atoms from the lower state into the superposition
state, the dynamics of which show the ULE phase becomes the
UHE phase. Figures 14(a), 14(c), and 14(d) have the same pa-
rameters but different interaction V1 values. With the increase
of the interaction V1, the uniform phase gradually becomes
nonuniform and enters the AFM phase. For the AFM phase,
the system coexists in two stable steady states that evolve
over time in which one has a higher population than the other.
Figure 14(d) shows the population in the OSC phase oscillates
periodically in time as V1 further increases.

For a single simulation, we typically obtain one phase.
The bistable and multistable phases are found in different
simulations. We consider different initial states to check for
bistability. Figure 15 shows examples of spin dynamics cor-
responding to the bistable and multistable phase regions in
Fig. 3(b). The left panels represent the bistable phases and the
right panels represent the multistable phases. In the bistable

FIG. 15. Dynamics for the bistable and multistable phases with
the same parameters as in Fig. 3(b). (a) AFM/ULE phase with
� = −1.15 and � = 2, (b) OSC/ULE phase with � = −4.14 and
� = 0.56, (c) ULE/UHE phase with � = −0.5 and � = 2.5, (d) M1
phase with � = −2.6 and � = 1.01, (e) AFM/OSC/ULE/UHE
phase with � = −2.28 and � = 1.14, and (f) OSC/ULE/UHE
phase with � = −2.51 and � = 1.07.

phase, both phases can coexist. The M2 phase show the exis-
tence of the AFM and OSC phases [see Figs. 15(e) and 15(f)].

As N increases, only ULE/UHE phase stability exists. In
the bistable ULE/UHE phase, on the other hand, all sites will
have identical occupation, and hence all curves collapse to a
single line. However, they could have either low occupation or
high occupation, depending on the initial condition. In Fig. 16,
we show two examples from different simulations where all
sites have higher (lower) occupations, illustrating the bistable
phase.

FIG. 16. Dynamics simulations of the M2 phase. When N = 50,
only the ULE/UHE phase exists. Different lines represent differ-
ent simulations. Other parameters: V1 = V2 = 5, � = −2, and γs =
γm = 0.5.
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