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Machine learning assisted vector atomic
magnetometry

Xin Meng1, Youwei Zhang1, Xichang Zhang 1, Shenchao Jin1, Tingran Wang2,
Liang Jiang 3, Liantuan Xiao4,5, Suotang Jia 4,5 & Yanhong Xiao 4,5

Multiparameter sensing such as vectormagnetometry often involves complex
setups due to various external fields needed in explicitly connecting one
measured signal to one parameter. Here, we propose a paradigm of indirect
encoding for vector atomic magnetometry based on machine learning. We
encode the three-dimensional magnetic-field information in the set of four
simultaneously acquired signals associated with the optical rotation of a laser
beam traversing the atomic sample. The map between the recorded signals
and the vectorial field information is established through a pre-trained deep
neural network.Wedemonstrate experimentally a single-shot all optical vector
atomic magnetometer, with a simple scalar-magnetometer design employing
only one elliptically-polarized laser beam and no additional coils. Magnetic
field amplitude sensitivities of about 100 fT=

ffiffiffiffiffiffi
Hz

p
and angular sensitivities of

about 100∼ 200μrad=
ffiffiffiffiffiffi
Hz

p
(for amagnetic field of around 140nT) are derived

from the neural network. Our approach can reduce the complexity of the
architecture of vector magnetometers, and may shed light on the general
design of multiparameter sensing.

Developing atomic sensors with high sensitivity and compact config-
uration is a topic of great interest in quantum science and technolo-
gies. Prominentmeasurement devices including atomic clocks1,2, atom
interferometers3, magnetometers4 and microwave sensors5 etc., are
under active pursuit and play important roles in both fundamental
research and real-life applications ranging from new physics search6 to
navigation and medical diagnosis7,8. While in most scenarios the sen-
sing process can be described by a single parameter estimation pro-
blem, multiparameter estimation9,10 has recently attracted attention
both theoretically and experimentally. Notable examples are mea-
surements of a multi-dimensional field, identification of a spatial
structure11 or multi-frequency signals12. In general, multiparameter
measurement requires a more involved sensor architecture, such as
applying several electromagnetic fields along different directions to
interactwith the atoms, or performing successive interrogationsunder

varied conditions. Furthermore, the relation between the observable
readings and the parameters can be complex and decoding may
require model fitting or elaborate data analysis techniques13–15.

Machine learning (ML), as a part of artificial intelligence, involves
model-building based on sample data, or training data, to “learn" and
then to make predictions without an explicit programme. ML is used
widely for instance in speech recognition16, computer vision17, social
network filtering18, medical diagnosis19,20 etc. Recently, ML has been
applied in many fields of physics, to name a few, ultrafast laser
science21,22, ultracold atoms23, many-body physics24, classification of
quantum phases25, and quantum error correction26. Some works have
also demonstrated its use in atomic sensors12,27, where it was shown
that ML can perform better than a physics model. However, in these
proof-of-principle experiments on atomic sensors, ML is merely used
in analyzing the signal’s time trace to extract several frequency
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components. The potential of ML in atomic sensors, especially in
multiparameter estimation, is yet to be unveiled. How to obtain the
measurement sensitivity from the ML, and whether incorporating ML
can significantly reduce the complexity in the sensor’s hardware
remains elusive.

As an example of multiparameter atomic sensor, the vector mag-
netometer undergoes intense investigations for it provides more
complete information than its scalar counterpart and has applications
in biosciences, geophysics etc. To attain the magnetic field’s orienta-
tion, the sensor needs to incorporate certain axial references, for
example field compensation coils28, radio frequency fields29–31,
multiple crossing laser beams32–36, which all inevitably complicates the
setup. Also, in many schemes the three-dimensional information is
obtained successively29,37, or through sweeping the atomic resonance
spectra38–40, which may not be suitable for relatively fast or real-time
fieldmeasurement36. Simultaneous acquisitionof the three-dimensional
information can be achieved by modulating bias magnetic fields in
three perpendicular directions at different frequencies41–43, thus dis-
cerning the three orthogonal magnetic field components. An all optical
version of this method has been demonstrated by replacing the bias
magnetic fields with orthogonally propagating laser fields imposing
AC-stark shifts to the atoms44. However, in scenarios requiring
miniaturization and high density packing of the sensors, all optical
single-beam single-shot (within the sensor’s response time) vector
magnetometry is desired, whereas to the best of our knowledge has not
been reported.

Here, we propose a paradigm for vector magnetometry based on
machine learning, which enables a single-shot single-beam all optical
vector magnetometer. The information is encoded in the AC compo-
nents of the optical rotation signal, where the complicated and non-
linear relation between the set of four simultaneously recorded signals
and the three parameters of the B field is established via machine
learning. Removing the demand of the correspondence between one
signal and one parameter as needed in most existing designs allows
great simplification of the sensor structure, empowering vector mag-
netometry with a scalar magnetometer architecture. We further
develop techniques for extracting sensitivities and frequency response
of the ML-based magnetometer. The achieved sensitivities are about
100 fT=

ffiffiffiffiffiffi
Hz

p
for the field magnitude, and about 100∼ 200μrad=

ffiffiffiffiffiffi
Hz

p

for the field direction, in a room temperature Rb vapor cell. This
magnetometer approach may provide insight in designing compact
sensors with multiple measurement capabilities.

Results
Principle
Our magnetometer scheme is based on the well known nonlinear
magneto-optical rotation (NMOR) process45–48. An elliptically polarized
and frequency modulated laser beam serves as both the pump and
probe field. The ellipticity of the light is optimized for balanced sen-
sitivities of the magnetic field along different directions49 (see Sup-
plementary Note 3). The modulation frequency ωm is set near the
Larmor frequency of the atom ΩL = γB where B is the amplitude of the
total magnetic field to be measured and γ is the gyromagnetic ratio.
With the direction of B set as the quantization axis, the atomic levels
then couple with the σ+, σ− and π polarization components whose
amplitudes and phases depend on the orientation of the magnetic
field with respect to the wave vector of the laser38. These optical
fields and their frequency sidebands form multiple sets of Λ-type
electromagnetically-induced-transparency (EIT) interactions that
interfere with each other, as shown in Fig. 1a, giving rise to optical
rotation effects. Since the NMOR resonance occurs when ΩL and ωm

coincide, the phases and intensities of the transmitted sidebands
naturally encode both the amplitude and the orientation of B. The AC
components of the polarization rotation signals, i.e., the Stokes com-
ponent Sy, are acquired by phase-sensitive detection through

frequency demodulation,where the in-phase and quadrature signals at
the first and second harmonics of ωm, denoted as X1,2 and Y1,2, are
recorded. Simultaneous recording of these four signals allows for
single-shot vector magnetometry, lifting the requirement of sweeping
the EIT spectrum as in refs. 38–40.

To extract the vectorial information of themagneticfield from the
rotation signals, we adopt an artificial Neural Network (ANN) which is a
typical algorithm of ML. By mimicking the way biological neural net-
work learns from experience, the ANN establishes a map between
input signals and output results using pre-collected data, and can thus
give predictions on unknown parameters, for example, here, on the
direction and magnitude of an unknown B. The network weights
(parameters) are updated using the gradient descent algorithm50 to
minimize the defined loss functionover the training data set. Each time
when theNNgoes through thewhole training data set and returns new
weights in the network is called an epoch. The loss decreases as the
epoch number increases and the map is eventually established. In our
scheme, the demodulated optical rotation signals X1,2 and Y1,2 are first
collected for a range of field amplitudes and directions, and then are
used to train the NN. In the end, an accurate map is established
between the signal set (X1, Y1, X2, Y2) and the parameter set (B, θ,φ), i.e.,
the three-dimensional field information. Here θ is normally defined as
the angle between B and the wave vector k of the laser, and φ is the
azimuthal angle in the plane perpendicular to the wave vector with
φ =0 being the horizontal x direction associated with the polarization
axis of the optics (Fig. 1).

Experimental setup
As shown in Fig. 1b, the light beam from an external cavity diode laser
(ECDL) is near resonant with the 87Rb D1 line F =2 ! F 0 = 1 transition
with 200MHz red detuning to maximize the NMOR resonance
amplitude51,52. The laser is frequency modulated (FM) at ωm=997Hz
with a modulation range of 400MHz (or modulation amplitude of
200MHz), and its center frequency is locked via the dichroic atomic
vapor laser lock53. The laser beam (about 2 mm in diameter) has its
power (about 20μW) stabilized in order to suppress the residual
amplitude modulation. We adjust the laser polarization from linear to
elliptical through two wave plates, before a cylindrical atomic vapor
cell (2 cm in diameter and 7.1 cm in length) filled with enriched 87Rb at
room temperature (~22 °C).

The alkene coating54 on the inner wall of the vapor cell ensures
that atoms undergo thousands of wall collisions with little destruction
of their internal quantum states. The cell resides within a four-layer μ-
metalmagnetic shield (residual field inhomogeneity in the cell is about
1 nT), together with three orthogonal sets of well-calibrated Helmholtz
coils to generate the to-be-measured fieldB, with a fractionalmagnetic
field inhomogeneity of 8/1000 within the cell. The NMOR resonance
used for themagnetometer has an extracted zero-power linewidth (full
width at half maximum, FWHM) of about 1 Hz, and a power broadened
FWHM of about 16 Hz at the magnetometer’s operational laser
power 20μW.

The Stokes component Sy of the transmitted laser beam, after
traversing a half-wave plate and a polarization beam splitter, is
detected by a balanced photodetector in a homodyne configuration,
whose output is sent to a lock-in amplifier for demodulation at fre-
quencies ωm and 2ωm.

Experiment results
Before collecting data for NN training, it is necessary to calibrate the
residual magnetic field within the shields and the three sets of coils, in
order to generate a field B with arbitrary direction. For a single set of
coil, one can observe a good linear relation between the current
applied and the magnetic field generated, but for the vector compo-
sitions of the magnetic field, the small non-orthogonality between the
coils can’t be neglected. Thanks to the fact that the NMOR resonance
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appears when the Larmor frequency ΩL equals the modulation fre-
quency ωm or 1

2ωm
46, these imperfections can be well calibrated.

The details of the calibration process are described in Methods and
Supplementary Note 2.

First, we show the observedACoptical rotation signals in the form
of NMOR resonance spectra at a tilted magnetic field direction. For
instance, at θ = 60°,φ = 60°, when we scan the magnitude of B, as
shown in Fig. 2a, both the first harmonic and second harmonic NMOR
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Fig. 1 | Working principle and schematics of the single-shot all optical vector
magnetometer. a Frequency modulated elliptically polarized light interacts with
the 87Rb atom, coupling the ground state 5 2S1/2(F = 2) and the excited state 5
2P1=2 ðF 0 = 1Þ. With the direction of the total magnetic field set as the quantization
axis, atomic levels exhibit Zeeman splitting. Frequency modulation of the laser

gives rise to frequency sidebands with the intervals of the modulation frequency
ωm near the Larmor frequency ΩL. The σ+, σ−,π components of the laser form
multiple sets of EIT. b Schematics of the experiment setup. ECDL external cavity
diode laser, HWP half-wave plate, QWP quarter-wave plate, PBS polarization beam
splitter, PC personal computer.
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signals exhibit resonance atΩL = 0,ωm and 1
2ωm. The resonance center

can be found precisely by fitting the curves with a generalized Lor-
entzian function, which is the key in coil calibration. For vector mag-
netometry, we choose the resonance at ΩL =ωm, since more EIT
channels take part in the interferences than the ΩL =

1
2ωm resonance,

as can be seen from Fig. 1a, allowing more information to be encoded.
Figure 2b shows the spectrum calculated by the 8-level theoretical
model using the master equation. Despite of the qualitative agree-
ment, the experimental spectra deviate from the theory results
because it is impractical to include in the model the accurate infor-
mation of the following experimental complications which affect both
the resonance lineshape and the absolute signal values: (a) demodu-
lation phases are unknown in the phase sensitive detection due to
phase delays in the electronics. (b) the input light polarization is
slightly altered by the cell window. (c) there is a wide pedestal for the
narrowNMOR resonance, charateristic of the coated cell and related to
the thermal motion of the atoms55–58. We emphasize that due to
motional averaging57, the field inhomogeneities of the coil causes
negligible line broadening, as evidenced inour experiment by the zero-
power resonance linewidth55 of 1 Hz for both the resonances atΩL =ωm

andΩL =
1
2ωm, which is likely dominated by spin exchange. Because of

the above reasons, relying on the master equation theory model in
establishing the relation between the signals and the B field para-
meters is generally not suitable, while the NN can provide a better
solution.

Then we train the the NN using NMOR signals for a large range of
field amplitudes and orientations. The structure of the fully connected
NN is shown in Fig. 3a. There is one input layer receiving the four-
dimensional NMOR signal and one output layer releasing the field
information. Between the input and output layer there are 8 hidden
layers each containing 128 neurons and the L2 regularization59 is used
to prevent over-fitting. The activation function in the hidden layer is a
ReLU (rectified linear unit) function60. The data set is divided into the
training set and verification set in the proportion of 8 to 2 and the
mean squared error is defined as the loss. The training set is used for
learning, i.e., to determine the weights in the NN, while the validation
set is used to assess the performance of the already trained NN. In
practice, theNMORdata at the input layer for training is generatedby a
reverse-NN11 with a similar structure. After using the (B, θ,φ) set as the
input and the corresponding experimental data (X1, Y1, X2, Y2) as the
output for training, this reverse-NN can be employed to produce
optical rotation data which is denser and more robust against noise

a1

Experiment

b1
Theory

b2
Theory

a2

Experiment

Fig. 2 | AC quadratures of nonlinear magneto-optical rotation (NMOR) signals
as a function of the magnetic field amplitude. a Experimental NMOR signals
versus the amplitude of a tiltedmagneticfield. Thefirst harmonic signal and second
harmonic signal is shown in a1 and a2 respectively. The laser is frequency modu-
lated at 997 Hz, with a modulation range of 400MHz. The center frequency of the
laser is 200MHz red-detuned from 87Rb D1 line, F = 2 ! F 0 = 1 transition. The laser

power is 20μW. X is the in-phase signal and Y is the quadrature signal.
b Theoretically calculated NMOR signals as a function of magnetic field. The first
harmonic signal and second harmonic signal is shown in b1 and b2 respectively. In
all figures, the red (blue) curve corresponds to the X(Y) signals and left (right)
y-axis.
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than the measured. We then use these denser NMOR data to train the
NN as shown in Fig. 3a with an Adam optimizer61, and the training and
validation error is plotted in Fig. 3b. The trained NN can reproduce the
full vectorial information of the magnetic field accurately as shown in
Fig. 3c, where the solid lines are data generated from the reverse NN
and the scattered points are from the prediction of the NN. In our data
set, we have chosen the range for θ andφ to be 10�,170�½ �, because the
NMOR signals are insensitive to the variation of φ ("dead zone") when
B is nearly aligned with the propagation direction of the light k (θ ≈0°
and 180°). One other issue is the signal degeneracy forφ andφ +π, but
we propose an angled multi-pass configuration to lift this degeneracy
and also to remove the “dead zone" forφ (see Supplementary Note 6).

Finally, we examine the sensitivities of the three polar compo-
nents B, θ,φ given by our NN scheme. The normal way to obtain the
magnetometer sensitivity is to convert the fluctuations on the mea-
sured signal δS to that on the magnetic field δB through a measured
slope dS/dB. Here, an analogous “slope" is provided by the trained NN
which establishes a map between the optical rotation signals and
magnetic field parameters. We continuously record the signal set of
optical rotations (X1, Y1, X2, Y2) for about oneminute at a sampling rate
of 900 per second for each fixed B, and the signal set at each time
point is fed to the NN which then outputs the predicted parameter
(B, θ,φ). Consequently, the four time traces of the signals
X1(t), Y1(t),X2(t), Y2(t) are converted into three time traces B(t), θ(t),
φ(t). We then perform fast-Fourier-transform (FFT) on B(t),θ(t),φ(t)
respectively, and obtain the sensitivities, where the frequency
response has also been considered and was obtained experimentally
with the aid of the NN (see Supplementary Note 4) using a similar
approach as described here.

Shown in Fig. 4a are the sensitivities at low frequencies for an
exemplary B field direction of θ =63.435°,φ =60° with an amplitude of

about 140 nT, while we found that in other field orientations the sen-
sitivity is at a similar scale (see Supplementary Note 5). Due to the
relatively small bandwidth of our magnetometer (associated with the
narrow linewidth ~16Hz of NMOR resonance), sensitivities are better at
lower frequency. The best sensitivities are observed in the range of
10–20Hz, where the sensitivity of field magnitude is about 100
fT=

ffiffiffiffiffiffiffiffi
Hz

p
, and the angular sensitivity has the order of 100 μrad=

ffiffiffiffiffiffiffiffi
Hz

p
.

The extra noise at low-frequency near DC is mainly from the magnetic
field itself, aswell as 1/fnoises. In order to confirm the sensitivities given
by the NN, we examined whether a small change at these sensitivity
levels in the magnetic field can be detected. We applied a small
AC magnetic field at 11 Hz to slightly vary (B, θ,φ), and the NN is
trained for the AC field in the parameter space near B ≈ 140nT
(ΩL ~ 997Hz), θ=63.435°,φ =60°. The test field change has an interval
of (140 fT, 0.02°, 0.02°). The predicted changes in the vector compo-
nents ofB are consistent with the true values, as shown in Fig. 4b where
the sizes of the error bars (standard deviations) indicate the sensitiv-
ities,which agreewith those givenby theNN-aidednoise analysis shown
in Fig. 4a. These results prove that ML-assisted approach for vector
magnetometry can give the correct sensitivity levels.

Discussion
We propose a paradigm for atomic vector magnetometry based on
machine learning, allowing three dimensional single-shot information
extraction using a simple standard scalar magnetometer setup.
Acquiring the amplitude and phase of the AC optical rotation signals
removes the need for spectral sweep, enabling future real-time mea-
surement of time varying magnetic field. The single-beam all-optical
design is suitable for dense integration of the sensor units. We also
demonstrate how to obtain vector field sensitivities using the neural
network, and the best sensitivities on field amplitude and orientations

Hidden Layer ∈ R Output Layer ∈ RInput Layer ∈ R 128Hidden Layer ∈ R128 34

B

θ

φ

X1

X2

Y1

Y2

a

c1

ΩL  (Hz) θ  (degree) φ  (degree)

c2 c3

b

Fig. 3 | Architecture and performance of the neural network (NN). a Illustration
of the neural network. The demodulated optical rotation signals' quadratures X and
Y at the first and second harmonics of ωm form the 4-dimensional input. The NN
gives the magnitude of the magnetic field B and its direction θ,φ as output.
b Training process of the NN. Loss of the training set and validation set decreases
with the rounds of iteration. Mean squared error is used as the loss function. There

is no obvious difference between the training loss and validation loss which means
no over-fitting. c Test of the validity of NN. Scattered points are predictions from
the trainedNN and solid lines are the dense reproduction of the input data through
an inverse NN (see text), which show good agreement. In c1: θ = 60°,φ = 60°, in c2:
φ = 60°,ΩL = 997Hz, and in c3: θ = 60°,ΩL = 997Hz.
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are about 100 fT=
ffiffiffiffiffiffiffiffi
Hz

p
and 100∼ 200μrad=

ffiffiffiffiffiffiffiffi
Hz

p
respectively. The

current sensitivities are limited by electronic noises around the rela-
tively low modulation frequency. After removal of such noises, the
sensitivity may be further improved using a multipass design62. The
signal degeneracy for φ and φ +π can be lifted with an angled multi-
pass configuration, as shown in our simulation (see Supplementary
Note 6), which also removes the dead zone for φ when B is nearly
aligned with k of the laser. Furthermore, the dynamic range of
detectable magnetic field can be controlled through the resonance
linewidth or changing the modulation frequency of the laser. Higher
bandwidth can be obtained in vapor cells working in the higher tem-
perature spin-exchange-relaxation-free regime28.

Our strategy of usingmachine learning to simplify the structure of
vector NMOR-magnetometers can be extended to other types of
atomic magnetometers, as well as multiparameter sensors in general,
using the following procedure: (1) Identify a set of observables which
are sensitive to the target parameters and can be simultaneously, if
possible, recorded in the experiment. The rich degrees of freedom in
the interrogating laser or broadly the electromagnetic field, for
example the amplitude, polarization, spatialmodes, frequency spectra
etc., can be all used for encoding the information indirectly and
compressively. (2) Stabilize the experiment system as a prerequisite
for a robustmapbetween the observable set and the parameter set. (3)
Experimentally collect data within a suitable range of target para-
meters and perform the neural network training to build the map
between the signal set and parameter set. The NN structure is chosen
according to the complexity level of the problem, and overfitting
should be avoided. (4) Conduct real measurements using the
trained NN.

Methods
Theoretical model
Our numerical calculation used the eight-level atomic system as shown
in Fig. 1 in the main text. However, since our simulations showed that

the four-level model gave qualitatively similar results as the eight-level
model, to gain intuition on the key physics, we here describe a sim-
plified four-level system, as shown in Fig. S1, where the ground states
have three Zeeman levels which couple to one excited state by σ+,π, σ−

polarized light fields respectively. The atom-light interaction Hamil-
tonianH can be derived with the rotating wave approximation (RWA),
and the atomic coherences can be found from the density matrix ρ by
solving the master equation:

∂ρ
∂t

= � i
_
½H,ρ�+ Γrel + Γrep

� �
ρ, ð1Þ

where Γrel describes the decoherences including the spontaneous
decay and dephasing etc., and Γrep describes the repopulation of the
ground states63. Due to the periodicity of the system under frequency
modulation, the coefficients of a Fourier expansion of the density
matrix can be identified using the Floquet technique where ρ(t) is
expanded in harmonics of the modulation frequency ωm:

ρðtÞ=
X1

n=�1
ρðnÞeinωmt ð2Þ

Then the polarization rotation signal of the light we measure can be
derived from the atomic coherences, which is found to contain the full
vectorial information of the magnetic field. More details are in the
Supplementary Note 1.

Calibration of magnetic field
In the experiment, the magnetic field to-be-measured is provided
mainly by the three sets of orthogonal Helmholtz coils within the
shields, where precise calibration is required in order to generate a
magnetic field along any direction as we intend. In the calibration
process, we obtain the amplitude of the totalmagneticfield (produced
by the coils and background magnetic field in the shields) by
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Fig. 4 | Sensitivity of the machine learning assisted vector magnetometer.
aNeural network predicted sensitivity for field amplitude (a1) and orientations (a2,
a3) at low frequency. The measurement is performed at θ = 63.435°, φ = 60° for a
field magnitude about 140nT. b NN-predicted change of the magnetic field mag-
nitude (on top of 140nT, b1) and directions (b2, b3) versus the corresponding true

values. The dashed line corresponds to the y = x function. The results are demon-
strated formagnetic field changes at a frequency of 11 Hz. The size of the error bars
(standard deviation from 60 repetitive independent measurements) are in agree-
ment with the NN predicted sensitivity level at 11 Hz.
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identifying the resonance locations of the NMOR spectrum obtained
through slowly sweeping the lasermodulation frequencyωm.As shown
in Fig. S2, the spectra exhibit resonancewhen the Larmor frequencyΩL

equals ωm (or 1
2ωm, not shown). The resonance center is found by

fitting the experiment curvewith a linear superposition of a Lorentzian
absorption and dispersion function. For a single set of Helmholtz coil,
the relation between the current applied and the generated magnetic
field is linear. However, for the vector synthesis of a magnetic field
generated by three sets of coils, imperfection in the orthogonality of
the coils should be considered. Furthermore, the residual background
magnetic field in the magnetic shields couldn’t be neglected.

The strategy we used for calibration is similar to that used in
reference64. We consider a coil system with imperfect orthogonality
among the three sets of coils which yield magnetic fields BXc

,BYc
,BZc

along Xc,Yc,Zc axis respectively, as shown in Fig. S3. First, for each set
of coil we obtain the relation between the field amplitude and the
current through the NMOR spectra with only this coil in operation.
Then, without losing generality, we can set small angles ξ, η, ζ(see
Fig. S3) to describe the deviation of (Xc, Yc, Zc) from a normal ortho-
gonal coordinate system (X, Y, Z), and we have:

Xc =

cos ξ

0

sin ξ

0
B@

1
CA, Yc =

sin η cos ζ

cosη cos ζ

sin ζ

0
B@

1
CA, Zc =

0

0

1

0
B@

1
CA: ð3Þ

The total magnetic field is B=BXc
Xc +BYc

Yc +BZc
Zc +Bresidual, which

can be written as:

BXc
cos ξ +BYc

sinη cos ζ +BX0
=B sinθ cosφ

BY c
cosη cos ζ +BY0

=B sinθ sinφ

BXc
sin ξ +BYc

sin ζ +BZc
+BZ0

=B cosθ

ð4Þ

or:

ðBXc
cos ξ +BYc

sinη cos ζ +BX0
Þ2

+ ðBY c
cosη cos ζ +BY0

Þ2

+ ðBXc
sin ξ +BYc

sin ζ +BZc
+BZ0

Þ2 =B2:

ð5Þ

Here B, θ,φ are respectively the amplitude, altitude angle and azimuth
angle of the total magnetic field we intend tomeasure. BX0

,BY0
,BZ0

are
the components of the residual magnetic field along X,Y,Z respec-
tively. The total magnetic field’s amplitude B as expressed by Eq. (5)
can bemeasured from theNMOR spectra. By traversing the currents in
the three coils andmeasuring the totalfield amplitude B for each set of
(BXc

,BYc
,BZc

), we can determine parameters ðξ ,η,ζ ,BX0
,BY0

,BZ0
Þ using

Eq. (5) through non-linear least squares fitting. Then, to set a total
magneticfieldwithparametersB, θ,φ aswe intend,we can solve Eq. (4)
to find what magnetic field should be generated in each coil,
i.e., (BXc

,BYc
,BZc

).

Implementation of neural network
Neural Network (NN) is an artificial intelligence (AI) method based on
the connectivismwhich imitates the connection between neurons. Our
model is a simple fully connected Neural Network, and we proceed as
follows to mimic the function of the biological neural network. First,
data are collected in pairs of feature (input) and label (output). Com-
monly, the larger the amount of data, the better the performance of
the NN. Second, we build the structure of the NN with a complexity
determined by the scale of the problem to be solved. Similar to the
growth of cognitive ability of human, the NN receives large amount of
collected data with features and corresponding labels which change
the weights of neurons. The NN updates its parameters via back-
propagation using gradient descent algorithm aimed to reduce the

loss function we choose. This is the training process of the NN. In our
experimentmean-squared error is chosen to be the loss function. After
training, parameters in the NN are fixed and new data of features can
be sent to the input port of the NN and it will output the predictions.

Our Neural Network is implemented using the framework of
Keras, a high-level API (Application Programming Interface) of Ten-
sorflow written in python. In Keras, a model is understood as a
sequence or diagram composed of independent and fully configurable
modules. These modules can be assembled together with as few
restrictions as possible. In particular, modules such as Neural Network
layer, loss function, optimizer, initialization method, activation func-
tion, and regularization method, can be combined to build new
models.

The input layer of our NN receives the four-dimensional NMOR
signal (X1, X2, Y1, Y2) and the NN predicts the three-dimensional mag-
netic field information (B, θ,φ) as the output. Between them are 8
hidden layers each containing 128 neurons. The transmission between
layers is implemented via matrix operation and in each neuron there
should be a non-linear activation function. ReLU activation function is
used in each neuron. Mean-squared error is chosen to be the loss
function, and additional term is added to the loss function to prevent
overfitting. By calling the Keras API for L2 regularization in the hidden
layers, quadratic sum of all the parameters in the hidden layers are
recorded and added to the loss function. This procedure guarantees
the generalization ability of the model, i.e., it will prevent overfitting
whichoftenmeans a complicatedNN that adjusts the input and output
relation only for the training data set. As for the training process, the
adaptive moment estimation method65 is applied.

Data availability
Thedata supporting thefindings of this study are included in the paper
and its Supplementary Information. The NN training data used in this
study are available inGithub(https://github.com/XinMeng95/Machine-
Learning-Assisted-Vector-Atomic-Magnetometry/).

Code availability
The NN code for this study is available in Github (https://github.com/
XinMeng95/Machine-Learning-Assisted-Vector-Atomic-Magnetometry/).
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