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A method called the optimal demodulated Lorentzian spectrum is employed to precisely quantify the narrowness of
a laser’s linewidth. This technique relies on the coherent envelope demodulation of a spectrum obtained through
short delayed self-heterodyne interferometry. Specifically, we exploit the periodic features within the coherence
envelope spectrum to ascertain the delay time of the optical fiber. Furthermore, the disparity in contrast within the
coherence envelope spectrum serves as a basis for estimating the laser’s linewidth. By creating a plot of the coef-
ficient of determination for the demodulated Lorentzian spectrum fitting in relation to the estimated linewidth
values, we identify the existence of an optimal Lorentzian spectrum. The corresponding laser linewidth found
closest to the true value is deemed optimal. This method holds particular significance for accurately measuring the
linewidth of lasers characterized as narrow or ultranarrow. ©2024Optica PublishingGroup

https://doi.org/10.1364/AO.510265

1. INTRODUCTION

Narrow linewidth lasers characterized by high coherence and
minimal noise are essential for various applications, including
optical atomic clocks [1], distributed fiber sensing [2], precise
quantum manipulation of atoms and molecules [3,4], gravita-
tional wave detection [5], and other fields [6]. Consequently, a
precise measurement of laser linewidth is a fundamental require-
ment for these applications, attracting significant attention [7].
Traditional methods for measuring laser linewidth, such as opti-
cal spectrometers and Fabry–Perot interferometers, are limited
in terms of spectral resolution. Currently, commercial optical
spectrometers based on diffraction gratings afford resolutions of
approximately 0.01 nm (equivalent to the GHz level at the com-
monly used near-infrared wavelengths), whereas Fabry–Perot
scanning interferometers can typically achieve resolutions in the
MHz range. However, lasers with linewidths as narrow as kHz
or even sub-Hz levels have been realized in various applications
[6]. Conventional measurement methods cannot accurately
measure such narrow laser linewidths.

The heterodyne beat method can provide high measuring
precision for laser linewidth, which is a Lorentzian lineshape
pointed out by Scully and Lamb [8]. However, this method
requires an extra laser with very narrow linewidth and close
frequency to the laser under test, which is hard to be achieved.
In contrast, the self-heterodyne method needs no extra laser

and can get linewidth values from the beat signal of beams
arising from the same laser under test. Thus, it is widely used
for the ultranarrow linewidth laser [9]. There mainly are two
ways when utilizing the self-heterodyne method for linewidth
measurement: directly calculating the laser linewidth using
the power spectrum density (PSD) of the laser and deducing
the linewidth indirectly based on the relationship between
the phase noise and linewidth [7]. Although the latter also
involves phase and frequency noises, the calculated processes
involving b-separation line theory are very complicated [10,11].
Alternatively, the power spectrum contains more intuitive
linewidth information, and it is relatively easy to obtain. In
many aspects of applications based on ultranarrow lasers, the
linewidth characteristic measurement is enough. Therefore,
a large proportion of linewidth measurement experiments
focus on the former. In 1980 Okoshi et al. [12] first proposed
a delayed self-heterodyne interferometry (DSHI) method to
measure linewidth. It involves splitting a single laser beam into
two, with a controlled time delay between them, followed by
recording the power spectral density (PSD) of the resulting beat
signal to deduce the laser linewidth via Lorentzian fitting. To
ensure that the beat signal exhibits a Lorentzian lineshape, the
delay time must be at least six times greater than the coherence
time of the laser being analyzed [13]. For lasers with sub-kHz
linewidths, this requires delay fibers exceeding 1000 km in
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length. However, the use of such long fibers is economically bur-
densome, results in significant optical power loss, and broadens
the measured spectrum due to 1/ f frequency noise [13,14].

Reducing the length of the delay fiber effectively elimi-
nates the impact of 1/ f noise. Thus, a method known as short
delayed self-heterodyne interferometry (SDSHI) [13,15]
has been proposed for determining laser linewidth. In this
approach, a coherence envelope is observed that combines a
Lorentzian spectrum with a periodic modulation spectrum.
Recently, an increasing number of studies have focused on the
derivation of laser linewidth from the measured PSD of SDSHI.

Two primary approaches exist for determining laser linewidth
from the coherence envelope of the SDSHI spectrum. One
approach involves formula calculations using specific points
from the coherent envelope spectrum. This method relies on
comparing the amplitude difference of the coherent envelope
(ADCCE) with theoretical calculations that are related to and
yield the laser linewidth. ADCCE can involve metrics such as
the contrast difference between the second peak and second
valley (CDSPSV) [16,17], dual-parameter acquisition (DPA)
[18], or the amplitude difference between any adjacent pair of
extreme points [19]. These methods require manual measure-
ment of amplitude differences within the coherent envelope and
impose strict requirements on the length of the optical fiber to
avoid noise floor interference with short fibers or 1/ f noise with
long fibers [18,19].

An alternative method is the coherent envelope demodu-
lation (CEDM) spectrum, which is particularly suited for
measuring narrow and ultranarrow linewidths. The concept
involves recovering the Lorentzian spectrum through demodu-
lation of the SDSHI spectrum and subsequently deriving the
linewidth through Lorentzian fitting. He et al. [20] initially
proposed the CEDM method, incorporating an iterative algo-
rithm for measuring kHz-level linewidth lasers. The linewidth
obtained from the SDSHI spectrum fitting was used as an initial
estimate, demodulating the concealed Lorentzian spectrum.
An updated linewidth derived from this spectrum served as
a new estimate; this process was iterated until the tentative
linewidth and derived linewidth converged. More recently,
Xue et al. [21] and Bai et al. [22] respectively suggested set-
ting the initial linewidth based on measurements with long
delay fibers or CDSPSV. Regardless of the specific method
employed, the iterative algorithm, with consistent convergence
criteria, may introduce demodulation errors due to the ran-
dom characteristics of the initial laser linewidth and repeated
iterations.

Hence, in this paper, we propose an alternative approach
for obtaining the CEDM spectrum in the measurement of
narrow laser linewidths. Our method relies on fitting the derived
CEDM spectrum with the Lorentzian formula itself, obviat-
ing the need for special initial laser linewidth estimates and
repeated iterative calculations. Our approach hinges on the
principle that the derived Lorentzian spectrum from the CEDM
method achieves the best fit with the Lorentzian formula when
the estimated linewidth closely aligns with the actual value.
We quantify the degree of Lorentzian fitting using coefficients
of determination obtained from the demodulated spectrum.
Experimental results demonstrate the existence of a maximum
value when plotting coefficients of determination against a

range of estimated linewidth values. Consequently, the optimal
demodulated Lorentzian spectrum (ODLS) and its correspond-
ing linewidth are identified at the point of best fit. The ODLS
method we present offers a straightforward and universally
applicable approach for measuring narrow laser linewidths.

2. PRINCIPLE

The SDSHI spectrum serves as the cornerstone of the CEDM
method for laser linewidth measurement. The principle
underlying the SDSHI spectrum revolves around the partially
coherent optical interference of beat signals.

The corresponding power spectrum function, S, can be
expressed as follows [13,18,20,23]:

S( f , 1 f )= S1S2 + S3. (1)

Here,

S1 =
P 2

0

4π

1 f
1 f 2 + f 2
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×
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where P0 is the power of the beat signal, 1 f is the laser
linewidth, f = f1 ± f0 is the relative frequency of the beat
signal ( f1 and f0 are the frequency of beat signal and the radio
frequency driving AOM, respectively), τd is the fiber delay
time of one path with respect to the other path. The delayed
fiber length, L , and the refractive index of the fiber core, n, are
determined based on the expression τd = nL/c (c is the speed of
light in vacuum). δ( f ) is the impulse function.

From the expressions in Eqs. (2)–(4), the total power spec-
trum S in Eq. (1) is the δ-peak spectrum S3 plus the product
of the Lorentzian spectrum S1 and the periodic modulation
spectrum S2. From Eq. (4), when f1 6= f0, δ( f )= 0, and
thus, S3 = 0; when f1 = f0, S3 = infinite. Therefore, we can
ignore the item S3 as the detected power spectrum is unstable at
f1 = f0; thus, Eq. (1) can be simplified as follows:

S( f , 1 f )= S1S2. (5)

As described in Section 1 (Introduction), two distinct
approaches can be adopted for treating the SDSHI spectrum
[shown with Eq. (5)] to derive the laser linewidth (1 f ). These
methods involve either calculations using specific points within
the coherent envelope profile or the employment of Lorentzian
fitting with the CEDM spectrum.

In the former method, ADCCE is commonly used owing
to its simplicity and widespread applicability. Typically, this
approach involves selecting a specific order, 1S, and utilizing
the contrast difference between peaks and valleys (CDPV) at
that order to derive the laser linewidth. It can be conveniently
expressed in a logarithmic coordinate system:
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Here, the parameters l = 2, 3, 4, . . . and m = 1, 2, 3, . . .
represent the order numbers of the peaks at positions within the
l series and the valleys at positions within the m series, respec-
tively. Owing to the large disturbance near the spectrum center
and the influence from the noise floor at high orders [23], the
contrast difference between the second peak and the second
valley (CDSPSV) is typically chosen as l =m = 2 to derive the
linewidth. As per Eq. (6), the exact value of τd and the values
of order numbers l and m are required to derive linewidth1 f .
Previous studies [16,20] have used the known length of optical
fiber (L) and the refractive index of the fiber core (n) to calculate
the value of τd . Thus, this method may introduce deviations
from real values. Moreover, a lack of data for these two parame-
ters is challenging. Therefore, we propose a more accurate and
straightforward approach, where the value of τd can be directly
derived from the periodic envelope spectrum [Eq. (5)] with a
period of 1/τd determined by Eq. (3).

The CEDM method also stems from Eq. (5). The core prin-
ciple of CEDM is the exact recovery of the Lorentzian spectrum
(S1) containing the expected1 f via demodulation:

S1 =
S
S2

. (7)

In this equation, S represents the modulated signal that can
be readily measured in the experiment. The modulation signal
S2 encompasses two parameters: one is the fiber delay time (τd ),
as elaborated in the preceding paragraph, and the other is the
linewidth (1 f ), a crucial parameter derived from spectroscopic
fitting with S1. Previous studies [20–22] tackled this challenge
using iterative algorithms to deduce the linewidth. They ini-
tiated the process with an estimated linewidth (1 fupd) that
was substituted into S2. Subsequently, S1 was fitted with the
Lorentzian formula to yield an updated linewidth (denoted as
1 fupd). This updated linewidth then served as the new esti-
mated value, iterating the procedure until1 fest closely matched
1 fupd consistently.

Here, we introduce an alternative approach to determine the
linewidth. The concept hinges on the premise that the derived
spectrum S1 exhibits the best fit with the Lorentzian formula
when the estimated linewidth (1 fest) closely approximates
the actual value. In practical operations, we must plot a quan-
titative parameter (such as the coefficient of determination
utilized in this study) that reflects the degree of conformity
between the Lorentzian formula and the derived spectrum.
This parameter should be plotted as a function of the esti-
mated linewidth, enabling us to identify the best fit based on
this relationship. Notably, the range of estimated linewidths
should encompass extreme values for comprehensive analysis.

3. EXPERIMENTAL SETUP

Figure 1(a) illustrates our experimental setup. The output of
a semiconductor laser with grating external cavity feedback
(Toptica, DLC Pro), operating at a wavelength of 1557 nm,
is split into two beams using a half-wave plate (λ/2) and a
polarization beam splitter (PBS). One of these beams is coupled
into an optical fiber for laser frequency stabilization based on
the Pound–Drever–Hall (PDH) technique, while the other is
coupled into a different fiber for laser linewidth measurement
using the SDSHI spectrum method.

In the module dedicated to laser frequency stabilization, the
output beam from the fiber is shaped by two lenses with focal
lengths of 100 mm and −100 mm to facilitate coupling with
an ultra-stable optical cavity. Adjusting the distance between
these lenses enables control of the waist of the Gaussian beam.
For our experimental parameters (laser wavelength of 1557 nm,
cavity length of 10 cm, and radius of curvature of the concave
mirror of 50 cm), the expected waist of the Gaussian beam
ω0 = 314.9 µm and the measured value is 315 µm with an
uncertainty of 1 µm, shown in Fig. 1(b).

To obtain the error signal corresponding to the cavity mode, a
sinusoidal signal from the PDD110 module modulates the laser
current through the MOD AC port. The modulated reflected
beam is detected by PD2, and the electrical signal is directed
to the input of PDD110 for frequency demodulation. The
resulting demodulated error signal is presented in Fig. 1(c). This
error signal is subsequently fed into the fast analog servo module
(FALC110) that executes both slow feedback to the piezoelectric
ceramic modulation and fast feedback to the MOD DC current
port. These dual feedback mechanisms on the laser controller
lead to reductions in the laser linewidth over both short and long
time frames.

For the measurement of the laser linewidth, we employ
the DSHI method, indicated within the dotted rectangle.
The input laser beam is once again divided into two beams.
One beam undergoes an 80 MHz shift using an acousto-optic
modulator (AOM) to mitigate the influence of low-frequency
environmental noise. The other beam is delayed by a single-
mode fiber with a specified length of 20.33 km. After combining
these two beams with a 1× 2 fiber coupler, the photocurrent of
the beat signal is detected by a fast fiber detector (New Focus,
1554-B). A spectrum analyzer (Rohde & Schwarz, FSVA13) is
employed to record the power spectrum of the beat signal.
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Fig. 1. (a) Experimental setup for obtaining narrow linewidth laser with PDH method (shown in dashed rectangle) and measuring linewidth via
the SDSHI method (shown in dotted rectangle). The yellow lines represent optical paths, the blue lines represent optical fibers, and the black lines
represent electric cables. (b) Transmitted spectrum measured by PD1 in (a). The two large peaks are the two adjacent modes of optical cavity. The
inset shows the measured beam radius around the waist. The red curve shows the fitting results with Gaussian distribution formula. (c) Error signal
at one cavity mode position where the laser frequency is locked. λ/2, half-wave plate; PBS, polarization beam splitter; AMP, power amplifier; AOM,
acousto-optic modulator; PD, photodetector.

4. EXPERIMENTAL RESULT

Figure 2 presents our experimental results. The red dots and
blue curve in Fig. 2(a) represent, respectively, typical PSD of
the beat signal before and after frequency locking using the
PDH method. Prior to frequency locking, the optical fiber delay
time significantly exceeds the laser’s coherence time, resulting
in a characteristic Lorentzian profile for the beat signal with a
linewidth of approximately 10 kHz. Post-frequency locking, the
laser linewidth is considerably reduced, and the fiber delay time
is smaller than the coherence time, leading to the emergence of a
typical coherence envelope in the SDSHI spectrum, as shown in
the enlarged view in Fig. 2(b) for delay fiber length of 20.33 km.
The horizontal coordinate values are adjusted to account for
the AOM drive frequency (80 MHz) for consistency with the
concept explained in Section 1 (Introduction). The spectrum in
Fig. 2(b) is normalized relative to the maximum value near the
center.

In the subsequent sections, we describe the processing steps
of the spectrum presented in Fig. 2(b) based on the proposed
approach. The objective is to obtain the ODLS to precisely
measure the narrow laser linewidth.

As discussed in Section 2 (Principle), the crux of the demodu-
lated Lorentzian spectrum method lies in determining the
periodic modulation signal, S2, which depends on both the fiber
delay time, τd , and the linewidth 1 f . Although τd has been
calculated using the formula τd = nL/c in previous studies,
inaccuracies in fiber length (L) and the influence of incident
light properties (wavelength, polarization) on the refractive
index (n) can introduce deviations from the real value. In this
context, we derive the value of τd from the observed periodic
envelope spectrum.

Figure 2(c) displays the positions of all valleys in the
SDSHI spectrum shown in Fig. 2(b), plotted as a func-
tion of their corresponding order numbers. The linear
relationship observed reflects the periodic nature of modu-
lation spectrum S2. Using the slope obtained from linear
fitting, 1/τd = 10037.7± 5.2 Hz, we calculate τd to be
99.624± 0.052 µs.

Once τd is determined, we can plot the dependence of
CDSPSV on the linewidth based on Eq. (6), with both order
numbers l and m set to two. The calculated results are shown
in Fig. 2(d). CDSPSV is chosen as the metric for estimating
the Lorentzian laser linewidth owing to its advantages of low
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Fig. 2. Short delayed self-heterodyne interferometry spectrum for determining the fiber delay time and estimating the laser linewidth. (a) Power
spectrum density of the beat signal with a fiber delay length of 20.33 km when the laser frequency is locked (blue curve) and unlocked (red dots). In
the unlocked frequency case, the spectrum exhibits a traditional DSHI Lorentzian profile with a linewidth of approximately 10 kHz. Conversely,
under the frequency lock condition, a substructure emerges, featuring a typical coherence envelope of the short DSHI spectrum, as shown in the
enlarged view in (b). (c) Positions of all valleys of SDSHI spectrum in (b) as a function of the valley order number for determining the fiber delay time.
(d) Dependence of CDSPSV on the linewidth for estimating laser linewidth.

detection error and high stability, with minimal influence from
1/ f noise and noise floor. For our observed CDSPSV value
[12.6 dB, as shown in Fig. 2(b)], the corresponding linewidth is
estimated to be 310 Hz.

Following the determination of the fiber delay time (τd ) and
estimated linewidth (1 fest), one can obtain the periodic modu-
lation spectrum and subsequently recover the demodulated
Lorentzian spectrum using Eq. (7). In previous studies [20–22],
an iterative algorithm was employed to derive the linewidth,
with convergence based on the consistency between 1 fest and
1 fupd. To avoid demodulation errors resulting from the ran-
dom nature of the initial laser linewidth and repeated iterative
calculations, we change the criterion to the fitting of the derived
CEDM spectrum with the Lorentzian formula itself.

We generate a series of linewidth values around 1 fest to
obtain a periodic modulation spectrum (black dotted line) and
subsequently demodulated Lorentzian spectrum (blue solid
curve) with Lorentzian fitting (red curve), as partially shown in
Figs. 3(a) and 3(b) and Fig. 3(d). To compare the fitting effect
under different estimated linewidths, we also plot the residual
value between the demodulated spectrum and Lorentzian fitting
(green curve). When the estimated linewidth is too small, the
demodulated Lorentzian spectrum exhibits upward spikes in
both wings [Fig. 3(a)], whereas it shows downward spikes when
the estimated linewidth is too large [Fig. 3(b)]. To determine
the most suitable value, we quantify the degree of Lorentzian

fitting by plotting the coefficients of determination as a func-
tion of the estimated linewidth [Fig. 3(c)]. The coefficient of
determination reflects the agreement between the demodulated
Lorentzian spectrum and the standard Lorentzian formula; a
higher value indicates a closer fit. A maximum value is noted,
indicating the best Lorentzian fitting. We use a polynomial
function to fit this relationship, and the optimal Lorentzian
spectrum corresponds to a linewidth of 283 Hz, representing
the laser linewidth to be measured. It is noted that there are still
two small peaks left on both sides of the center frequency for
the optimal demodulated spectrum [labeled with red shadows
in Fig. 3(d)]. In fact they exist in the original power spectrum
in Fig. 2(b) and are supposed to arise from laser intensity noise,
which is also observed in [23].

To verify the correctness and reliability of our present
method, we change the delay fiber length and record corre-
sponding coherent envelope spectra. Figure 4(a) shows three
typical coherent envelope spectra with delay fiber lengths of
20.33 and 35.33 km. Each spectrum is an averaged result of
100 times. We use the ODLS method we present to derive
linewidths and plot the dependence on delay fiber length, along
with the values derived with CDSPSV and with an iterative
algorithm. Each dot is the averaged value of three measurements
and the error bar is the corresponding standard deviation. There
is a lack of data for the iterative algorithm method at a delay
fiber length of 5 km due to that the derived linewidth is not
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Fig. 3. Measurement of narrow laser linewidth with the optimal demodulated Lorentzian spectrum. (a), (b), (d) Demodulated Lorentzian spectra
(blue curves) with estimated laser linewidths of 100, 500, and 283 Hz, respectively. The black dots show the corresponding modulation signal, and
the red curves indicate Lorentzian fitting. (c) Coefficient of determination for the demodulated Lorentzian spectrum as a function of the estimated
linewidth, with the red curve representing the experimental fitting using a polynomial function.

Fig. 4. Dependence of (a) coherent envelope spectra and (b) derived linewidth on delay fiber length.

converged. It shows that the linewidths derived with our present
ODLS are more coincident with the CDSPSV method than
with the iterative algorithm method. It is expected that the laser
linewidths under locking status have little change when delay
fiber length varies. Thus, the CDSPSV and ODLS methods
look better than the iterative algorithm because the fluctuations
for them are little when fiber length is above 15 km, while the
values derived with the iterative algorithm cover a much larger
range. The reason why the value below the fiber length of 10 km
strongly deviates from other derived values (the value with our
present method deviates relatively weakly) is that the influence

from the noise floor on coherent envelope spectra near the cen-
ter frequency increases when the delay fiber length decreases. A
similar influence is also observed in [16].

5. CONCLUSION

We introduced an ODLS method based on the SDSHI spec-
trum to accurately measure narrow laser linewidths. This
measurement is accomplished by locking a semiconductor
laser to a high-finesse ultra-stable optical cavity using the PDH
method. Our approach begins with the coherence envelope
of the SDSHI spectrum, from which we derive the fiber delay
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time by leveraging the periodic characteristics of the envelope
spectrum. This approach avoids deviations from real values
that may occur with traditional methods due to inaccuracies in
fiber length and refractive index determination. Based on the
determined fiber delay time, we calculate the dependence of
CDSPSV on the linewidth. In typical ADCCE methods, the
linewidth corresponding to the observed CDSPSV is often con-
sidered the final measured value. However, in reality, the actual
linewidth is expected to be larger. To obtain the true linewidth
accurately, we recover a CEDM spectrum by dividing the peri-
odic modulation spectrum with the observed SDSHI spectrum
and fit it with a Lorentzian formula. Previous methods typically
employed iterative algorithms to derive the linewidth, relying on
the consistency between the estimated and updated linewidth
values. This approach was susceptible to demodulation errors
due to the random characteristics of the initial laser linewidth
and repeated iterations. In contrast, we propose a new approach
to obtain the CEDM spectrum, with the criterion being the best
fit of the derived CEDM spectrum with the Lorentzian formula.
We quantify the degree of Lorentzian fitting using coefficients
of determination obtained from the demodulated spectrum.
Remarkably, we discover the existence of a maximum value by
plotting the coefficients of determination against a range of
linewidth values around the estimated figure. Consequently, we
obtain the optimal demodulated Lorentzian spectrum and the
corresponding linewidth, which is supposed to be the closest
approximation to the real linewidth. Finally, we verify the cor-
rectness of our present ODLS method with a comparison with
the CDSPSV method, but need to avoid the influence from the
noise floor.

This measurement method for laser linewidth offers several
advantages. It eliminates Gaussian broadening caused by 1/ f
noise compared to the traditional long fiber DSHI method.
Additionally, it avoids errors introduced by manually selecting
data points, a common issue in the ADCCE method. By not
relying on random initial laser linewidth estimates or repeated
iterative algorithms, as seen in previous approaches, we obtain
the optimal demodulated Lorentzian spectrum and the cor-
responding laser linewidth more objectively. Therefore, our
proposed method holds significant importance for the measure-
ment of laser linewidth, particularly for narrow and ultranarrow
laser linewidths.
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