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ABSTRACT: The theory of concerted electronic and nuclear
flux densities associated with the vibration and dissociation of a
multielectron nonrotating homonuclear diatomic molecule (or
ion) in an electronic state ***'¥¢  (JM = 00) is presented. The
electronic population density, nuclear probability density, and
nuclear flux density are isotropic. A theorem of Barth,
presented in this issue, shows that the electronic flux density
(EFD) is also isotropic. Hence, the evolving system appears as
a pulsating, or exploding, “quantum bubble”. Application of the
theory to Na, vibrating in the double-minimum potential of
the 2 'E} (JM = 00) excited state reveals that the EFD consists
of two antagonistic components. One arises from electrons
that flow essentially coherently with the nuclei. The other,
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which is oppositely directed (i.e., antagonistic) and more intense, is due to the transition in electronic structure from “Rydberg”
to “ionic” type as the nuclei traverse the potential barrier between inner and outer potential wells. This “transition” component of
the EFD rises and falls sharply as the nuclei cross the barrier.

1. INTRODUCTION

The most complete characterization of an electronically adiabatic
molecular process (the vibration of a diatomic molecule, for an
elementary instance) should tell us not only where the electrons
and nuclei are at any instant (i.e., probability (population)
densities) but also how they get there (i.e., flux densities).
However, except in special cases, the electronic flux density, in
particular, is beyond the reach of standard computational
techniques based on the Born—Oppenheimer approximation
(BOA). Indeed, it is a new special case that this work deals with:
vibrating or dissociating, but nonrotating (JM = 00), multielectron
homonuclear diatomic molecules, such as Na,,

A previous article' reports the results of a study of concerted
electron—nuclear dynamics in the one-electron system H,"
prepared in the special state *XJ (JM = 00), for which the
corresponding wave function is expressed in the BOA as

"P(l‘,R,t) = lI"e(l‘;R) LPn(R’t) (1.1)
In eq 1.1 r stands for the position of the electron relative to the
nuclear center of mass (NCM) and R for the distance vector
from one proton to the other, ¥,(r;R) is the ground-state
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electronic energy eigenfunction, and the nuclear wave packet is
assumed to be spherically symmetric

W (Rt) = Ypo(6,) Ry (Ryt)

= (4n) PR (R 1) (12)
The subscript 00 on the spherical harmonic function
corresponds to JM = 00. The consequence is that the nuclear
probability and flux densities are isotropic (i.e., spherically
symmetric) about the NCM. The electronic probability and flux
densities are likewise isotropic. Hence, when the total energy is
below the threshold for dissociation, the evolving system appears
as a pulsating “quantum bubble”: all probability densities and flux
densities remain spherically distributed about the NCM. At
energies above threshold the “quantum bubble” explodes.””

In section 2 we outline the extension of the theory for the one-
electron nonrotating homonuclear diatomic to the general case of
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the multielectron nonrotating homonuclear diatomic in the state

25+1Z;u (JM = 00). We show that the rotational quantum
numbers JM = 00 imply isotropy of the nuclear probability and
flux densities, as well as that of the electronic population density
and we infer from this agreement with the one-electron case that
the electronic flux density is also isotropic. (A rigorous proof of
this property is presented in this volume by Ingo Barth.*) The
isotropy of all densities and fluxes means that the nonrotating
multielectron homonuclear diatomic molecule evolves as a
pulsating “quantum bubble”, irrespective of the number of
electrons.

Our choice of the specific system, Na, vibrating in the double-
well potential of the 2 ' state, is motivated by several prior
investigations of its electronic structure,”™ and by the search for
the properties and dynamical consequences of the double
minimum,®™"® both theoretically'’™'® and experimen-
tally.>”">~"” Valance and Nguyen Tuan, who first discovered
the double-well, noted that the inner and outer wells have
different electronic configurations.” The quantum chemical
analysis of Jeung attributes the phenomenon to the avoided
crossing of two neighboring electronic states with the same
symmetry but different electronic structures.” According to
Verges et al,,” the resulting inner and outer potential wells of the
2'%} state have dominant (though not perfect®) Rydberg and
ionic character, respectively. Because these labels have been
adopted in the subsequent literature,”"” we use them in the
present context. The main purpose of Vergés et al.”® was to
determine the shape of the double-minimum potential accurately
by inversion of Fourier transform spectra.

Subsequently, efforts to tease out the implications of the
transformation of the electronic structure for dynamical
properties have been made. For example, Arasaki et al. predicted
that the electronic-structure change should induce significant
changes in dipole transitions from the 2 ' state to the ground
state and to excited ionic states, which in turn should be reflected
in the energy-, angle-, and (femtosecond) time-resolved
photoelectron spectra.'®™"* Their theoretical results stimulated
experimental two-color femtosecond pump—probe photoelec-
tron spectroscopy designed to monitor the nuclear wave packet
dynamics in the double-minimum potential of the 2 ' state of
Na,."> Wollenhaupt et al."> observe bound-to-ionic ionization
probability four times greater at the outer (“ionic”) classical
turning point than at the inner (“Rydberg”) turning point (see
also refs 9, 16, and17).

In a recent article several of us announced the discovery of a
novel consequence for the electron dynamics (namely the
occurrence of antagonistic, or oppositely directed, electron fluxes
in contiguous regions) due to transformation of the electronic
structure in the 2 'X% (JM = 00) state of Na, that occurs as the
nuclei cross the potential barrier.' Section 3 provides a detailed
analysis of the phenomenon based on the theoretical develop-
ment of section 2. The essential idea is that the rapid change of
electronic structure at the barrier between the inner and outer
potential wells should be accompanied by significant rearrange-
ment of the electronic population density, and this rearrange-
ment, in turn, should be reflected in the electronic flux. In other
words, one should observe a strong isotropic electronic flux
density as the nuclei traverse the potential barrier. We stress that
this flux due to the electronic structural change is complementary
to the “normal” flux of the electrons that travel more or less
coherently with the nuclei.’ Analogous strong electronic fluxes
due to non-adiabatic transitions, or “surface hopping” between
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different electronic states, have already been reported by
Takatsuka and co-workers.””™** In contrast, the present work
documents strong electronic flux density during adiabatic
passage over the barrier between the “Rydberg” and “ionic”
structures. The results for the 2 'E} (JM = 00) state of Na, are
presented and discussed in section 3. Our conclusions are
summarized in section 4.

2. THEORY

We consider an isolated generic homonuclear diatomic molecule
or molecular ion that can be adequately described by
nonrelativistic quantum mechanics. In terms of center-of-mass
coordinates we can write the internal Hamiltonian (i.e., the
Hamiltonian exclusive of the total center of mass) as

H=H,+T,=T,+ V(r"R) + T, (2.1)
where the electronic Hamiltonian H, is defined implicitly,
V(r™R) is the Coulombic potential energy of interaction of all
particles,

N,
2 N
L=-3-2W%
2me i=1 (2.2&)
is the electronic kinetic energy operator and
2
T,=-—V
24 (2.2b)

is the nuclear kinetic energy operator. The reduced mass of the
nucleiis y, = M/2, where M is the nuclear mass. In eqs 2.1 and 2.2
™ stands for the configuration of the N, electrons with respect to
the nuclear center of mass (NCM) and R for the distance vector
between the nuclei. The derivation of eqs 2.2 also invokes the
following approximations® (see also Appendix A of the
Supporting Information): the center of mass of the whole
system is replaced by the NCM; the mass-polarization
contribution to H, is ignored; the reduced mass of the electron
is replaced by its mass, m,; spin is ignored, except for the implicit
requirement that the eigenfunctions of H, obey the Pauli
exclusion principle.

We assume that the molecule is in a state fully characterized by
the BOA wave function

W(r'Rt) = W(r"R) W (Rt) (23)
which is analogous to the one-electron wave function in eq 1.1.
The BOA is justified by noting that for the particular system of
interest, namely, Na, vibrating in the double-well potential of the
2 'S¢ state, the kinetic energy in the vicinity of the potential
barrier, where the electronic structure undergoes a strong
transformation, is about an order of magnitude smaller than the
energy gaps between the neighboring potential curves. The
consequence is that the nonadiabatic coupling to neighboring
electronic states is negligible, in accord with refs 10—17. The
electronic wave function W, obeys the electronic energy
eigenvalue equation

HY.(r"5R) = V(R) ¥(r"5R) (240)
where the eigenvalue V(R) is a parametric function of the
internuclear distance R = [RI that serves as potential energy for
the nuclear motion. The nuclear wave packet obeys the nuclear
Schrédinger equation (SE)
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in [T, + V(R)J%,(R)

0V, (Rt)
ot (2.4b)

Finally, exploiting the zero angular momentum of the nuclear
state, we can express the assumed normalized packet
conveniently by

Y (Rt) = Yoo(O,®)R Y (R,t) = (4) >Ry (R t)

(2.5)
which is the analogue of eq 1.2. The auxiliary packet satisfies the
radial SE

(Rt 29
n R |0y L(rye)
ot 2y OR (2.6)

The electronic population density (EPD) is given by

du(t) = (PO Y S—r)¥ (1))

i=1

= -/‘dR‘/drNe lI’e(rNe;R) Wi(R)
N,

x Y 6(r—x) W(rR) ¥,(R)

i=1

N N,
= / dR RO Y]] f dr; [¥2(e5R) ],
i=1 j#i
; (2.7)

where fdrNe Hfielfdri = fdrlfdr2 /drNc. (Note that
[drd.(xt) = N, ie., d.(rt) is normalized to the number of
electrons (population).) Transforming the nuclear variables of
integration from Cartesian coordinates to spherical coordinates
and invoking the indistinguishability of the electrons, we can
rewrite eq 2.7 as

d(rt) = (47)"" fo T dR (R )P /0 7 4o

1
x f d(cos ©) Nd,, .(5R

1 (cos ©) N (15R) (2.8)
We define the “one-electron” probability density appearing in eq
2.8 by

N,
don®) = [ [ [92G%R),,

j#i (2.9)
which is the probability of finding any electron in the volume
element dr about the point of observation r for a fixed separation
R between the nuclei. Thus, N.d, . ,(r;R) is the population density
of electrons at r with R fixed (the semicolon denotes that
dien(1r;R) depends parametrically on R).

If the one-electron probability density possesses cylindrical
symmetry, as is the case for the electronic states of interest here,
then d,, ,(r;R) depends only on 1, R, and the cosine of the angle y
between r and R. But y is related to the polar angles of r and R by
the formula

cos y = cos O cos 0 + sin O sin O cos(DP—¢) (2.10)

We now observe that because the integration indicated in the
basic formula for d,(r,t) (eq 2.7) runs over all possible values of
R, the polar axis of the spherical coordinate frame need not be
specified. In other words, the choice of the polar axis is arbitrary.
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For convenience, we choose it to lie along the direction of r (i.e.,
we take r to lie along the polar axis parallel with e,, the Cartesian
unit vector). It follows from eq 2.10 that @ = 0 and therefore that
cosy = cos®. Hence, d;.,(r;R) can be expressed as
81en(r3R,cos®). (Note that to this juncture the symbol d is
used for “density” expressed generally in terms of the vectors r
and R; henceforth, the symbol J is reserved for density expressed
in spherical coordinates.) Then eq 2.8 can be rewritten

8,(rt) = (4n)”! fode (RAF 5,,(riR) (2.11)

where, for the sake of convenience, we define the quantity (static
electronic population density at fixed R)

2 1
6e,n(r;R) =N, / dod / d(cos ©) 51e‘n(r;R,c0s 0)
0 -1

1
= 27N, f d(cos ©) 6, .(r;R,cos ©)
-1

len (2.12)
Equation 2.11 implies that the EPD is isotropic, which is a
consequence of the isotropy of the nuclear wave packet (eq 2.5).
An alternative, more detailed, demonstration that the EPD is
spherically symmetric is given in Appendix A of the Supporting
Information.

We note that 8, ,(r;R) can be regarded as the result of the
integration over all solid angles of one vector of fixed length with
respect to another vector of fixed length. From the original
viewpoint described above, r is taken to be parallel with e, and the
integration is taken to run over all solid angles of R with respect r.
However, we can as well take R to be parallel with e, and the
integration to range over all solid angles of r with respect to R.
Then eq 2.12 can be recast as

(r,cos O;R)

len

1
8..(r;R) = 22N, /:1 d(cos 0) & (2.13)
Because only the magnitudes of r and R appear in the integrand,
along with the cosine of the angle between r and R, we can adopt
either perspective in principle. However, from a physical
standpoint eq 2.13 provides an illuminating interpretation of
the EPD at fixed R, as well as a formula that can be readily
implemented within the framework of standard quantum
chemistry.

The nuclear probability density (NPD) (i.e., the probability
per unit volume of observing the internuclear distance in volume
element dR about R’) is given by

d,(R,t) = (P(t)I5(R'—R)IW(t))
_ f dR / dr M (+"5R) W (R f) 5(R'—R)
X W(r"R) ¥, (R;t)
=¥ (R )P
= (42R™*) 'y (R, )1 (2.14)

where the last line follows from eq 2.5 and the (assumed)
normalization of the electronic energy eigenfunction:
fdrNe ¥ 2(rR) = 1. As shown in ref 3 (eq 93) (see also ref
1), the probability density of observing nucleus a (=a, b) at
distance R, from the NCM is related to d,(R;t) by

1
ﬂR 2 l}((ZRart)lz

d, (Rput) = 8d,(2R,,t) =2
’ 4 (2.15)

a

DOI: 10.1021/acs jpca.7b11732
J. Phys. Chem. A 2018, 122, 2150—2159


http://pubs.acs.org/doi/suppl/10.1021/acs.jpca.7b11732/suppl_file/jp7b11732_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jpca.7b11732/suppl_file/jp7b11732_si_001.pdf
http://dx.doi.org/10.1021/acs.jpca.7b11732

The Journal of Physical Chemistry A

As expected, in either frame (observer on either a or b or on the
NCM) the NPD is spherically symmetric (i.e., we may set d,(Rt)
= 8,(Rit) and dn,(l(Ra)t) = 6n,(z(th))'

Elsewhere in this issue Barth proves the following theorem: If
the molecular wave function satisfies the SE i dl¥(t))/dt =
HI¥(t)) and the total angular momentum and its z-component
vanish (ie., J = 0 and M = 0), then the electronic and nuclear flux
densities are spherically symmetric." Though the BOA wave
function does not obey the SE, it does satisfy the constraints of
the theorem approximately. Therefore, we assume that the EFD
for our state of interest is spherically symmetric. In that case, we
immediately have the expression for the radial (ie., the only
nonzero) component

[ 05,(r' t)
i (rt) = —r 2/ dr 22
Jo (1) | ”

which follows from the reduced radial continuity equation (see
eq 39 of ref 3).

The nuclear flux density (NFD), i.e., the flux density of one
nucleus relative to the other, is given by

(2.16)

j,(R',t) = Re{(¥(t)I5(R'=R)RI¥(t))}
h N, N, %k
= —Im{ [ dR [ dr =¥ (r"5R) ¥, (R,
ﬂnI { f R f (r75R) PH(RE)

x 8(R'—R)V, ¥.(r"sR) ¥, (Rt)}

A (W (R Ve (R ) Jare

h/4mu R Im[y" (R,t) Oy (R,t)/OR Jp_peq
(2.17)

where the third line follows from the normalization of ¥,(r™;R)
and from eq 2.5. It can be shown (see eqs 92 and 93 of ref 3) that
the flux density of nucleus o with respect to the NCM is

in,a (Ra)t) = 4jn(2R(x)t)

As indicated by eqs 2.17 and 2.18, the NFDs in either of the
“atomic” (a or b) frames or the NCM frame are spherically

SYmmetriC (i'e') ]n(R)t) = jn(R)t)eR and jn,(z(th) = jn,(z(Rmt)eR)'

3. ANTAGONISTIC ELECTRONIC FLUX IN THE 2 "X UM
= 00) EXCITED STATE OF Na,

The application of the theory to Na, begins with the computation
of the double minimum potential of the 2'% excited state. For
this purpose we employ Gaussian 09 to solve eq 2.4a for the
potential curve V(R) and the electronic eigenfunction ¥,(r";R)
using the symmetry adapted cluster-configuration interaction
(SAC-CI) method™ with Dunning’s correlation consistent-
polarized valence triple-{ basis set augmented with the diffuse
functions (aug-cc-pVTZ) basis set.”> The ab initio double-well
potential is shown as a continuous line in Figure l1a. The minima
of the rather narrow and shallow inner potential well and of the
deeper and wider outer well are located at R; = 3.8 Aand R, = 6.9
A, respectively, and separated by the barrier, whose maximum is
at R, = 4.9 A. The dots in Figure la represent the experimental
double-well potential determined by Cooper et al. by a refined
RKR analysis of high-resolution Fourier transform spectra.® The
agreement of the theoretical curve with the experimental data is
quite satisfactory. Indeed, we chose the SAC-CI/aug-cc-pVTZ
method, after a systematic investigation of a number of other ab
initio methods, because it yields the best agreement with

(2.18)
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Figure 1. Nuclear and electronic properties of Na, in the electronic
excited state 2 'E}. (a) Double minimum potential curve (solid black
curve, SAC-CI/aug-cc-pVTZ calculation; dots, experimental data from
ref 8). Internuclear distances R,, Ry, and R, at the minimum of the inner
well, at the top of the barrier, and at the minimum of the outer well are
marked by vertical dashed, dash-dotted, and dotted lines, respectively.
The horizontal line indicates energy. Also shown are snapshots of
nuclear probability density 5,(R,t) (weighted by 47R?) at times t =0, ¢, =
66 fs, t, = 168 fs, t, = 334 fs, and £y, = 548 fs, when mean values of R are
Ry Ry Ry R, and Ry, respectively. (b)—(d) Results of approximate
CASSCF-CI(2,36)/aug-cc-pVTZ calculation. (b) Probabilities of the
HOMO-to-k excitations, P¥,(R), for the dominant terms in the CI
expansion (eq 3.10). (c) Equidistant contour plots of the electronic
probability density for HOMO (top), LUMO (k = 12, middle), and the
excited “Rydberg”-type MO (k = 14, bottom) in the x—z plane at
internuclear distances R, (left), R; (middle), and R, (right). (d)
Equidistant contour plots of the population density [2d,,,(x,z;R)] of
valence electrons in the x—z plane, approximated by the sum of MO
densities shown (panel c) weighted by occupation probabilities P¥;(R)
(panel b). (e) Equidistant contour plots of the SAC-CI/aug-cc-pVIZ
population density of valence electrons [2d,, ,(x,z;R)] in the x—z plane;
plots of §,,(r;R) (eq 2.9) versus r oriented at the right-hand boundaries
(abscissa is parallel with the z-axis). Values of r at maxima and minimum
are indicated by dotted lines, which also indicate intersections of the x—z
plane with spherical surfaces on which 8, ,(r;R) is evaluated at these
values of r (eq 2.13).
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experiment.” This agreement supports the reliability of the
electronic properties that we derive on the basis of the SAC-CI/
aug-cc-pVTZ method.

Next we focus on the time evolution of the nuclear
wavepacket. The two observables of principal interest are the
NPD and NFD. Though the time development of the NFD is
presented here for the first time, that of the NPD has already
been reported.””"® We include the NPD here for several reasons.
First, the results for the concerted NPD and EPD, as well as for
the NFD and EFD, are based on the potential V(R) and the
electronic eigenfunction ¥,(r"5R)), which are obtained by
means of one and the same solution of eq 2.4a. Also V(R) agrees
well with ex;)eriment.8 In contrast, previous quantum
simulations’~"” employ the experimental potential, possibly
shifted to yield the known excitation energy and ionization
potential. Second, the NPD is an indispensable input to the
subsequent calculation of the EPD and EFD (eqgs 2.11 and 2.16,
respectively). Third, the NPD serves as a reference for
discrimination of two branches of the EPD that give rise to
two different contributions to the electronic flux (ie. the
“normal” flux that travels with the nuclei and the antagonistic
“transition” flux due to the change of electronic structure when
the nuclei cross the barrier).

For the quantum simulation of the time evolution of the NPD,
we follow the experimental scenario of ref 9, which employs a
linearly polarized Gaussian laser pulse with electric field &(t) =
Egs(t) cos(w (t — t.)), where s(t) = exp[—(t — t.)*/27%] is the
Gaussian envelope, 7 is the pulse duration, and @, is the carrier
frequency. The constant t_ is arbitrary. The amplitude E, is also
arbitrary, except that it should be in the weak field limit (i.e., the
excitation probability should not exceed a few percent). This
restriction avoids interference from such subsequent processes as
multiphoton excitation of higher electronic states and ionization.
The carrier frequency is related to the experimental wavelength 4
= 341.5 nm by @, = 27c/A, where ¢ is the speed of light. The
experimental full width at half-maximum (FWHM) of the
corresponding intensity I(t) = eoce(t)’, where &, is the
permittivity of the vacuum, is FWHM = 2+/In27 = 60 fs.
Note that the experimental laser parameters of ref 9 differ from
those employed in refs 16 and 17 (see Figure 4.9 of ref 16, where
A = 340 nm and FWHM = 35 fs, values also used in ref 18). The
present longer wavelength and duration imply a slightly smaller
excitation energy and a significantly narrower spectral width A

= 2+/In 2 /FWHM than that in refs 16—18. As a consequence,
the present nuclear wave packet is broader, and the present
period of the strongly anharmonic nuclear motion with energy
just above the potential barrier is slightly longer, compared with
those of refs 16—18.

At the end of the laser excitation the time is set to zero, and the
initial (= 0) nuclear wave function is determined as in ref 16 (for
details, see Appendix C of the Supporting Information):

2R, 0) = Y ez, (R)

v (3.1)
where the subscript ev denotes the vth vibrational eigenstate of
the electronic excited state e = 2'S!, and the expansion

coeflicients are given by

¢, = N, W) expl— (o, — @)’ FWHM?/81n(2)]  (32)
In eq 3.2 w, = (E,, — Ey)/h, where E is the vibronic ground-
state energy. The Franck—Condon factors (y,,lyoo)
(= f dR y,,(R) ¥0o(R)) for the transition from the vibronic
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ground state (00) to the excited state (ev) is multiplied by a
Gaussian filter that selects the vibrational states y,, with energy
E,, close to the carrier photon energy 7w . The coefficients are
normalized by the factor N such that Y. c,* = 1. The vibrational
eigenfunctions y,, and energies E,, are solutions of the eigenvalue
equation

[T, + V(R) ]y, (R) = E,x, (R)

which is solved by means of the Fourier grid Hamiltonian
method”® on a uniform grid with 1001 points in the domain 2.4 A
<R<124A

The solution of the nuclear SE (eq 2.6) is expressed as

X(R,t) = Y ¢, exp(—iE,t/h)y, (R)
v (3.4)

The mean energy of the relative nuclear motion,
_ 2
E= Z S Eev
v

is indicated by the horizontal line in Figure la. The energy gap
between E and the ground-state energy E, is close to the carrier
photon energy, i.e.,

(E — Ey) =~ A,

(3.3)

(3.5)

(3.6)

The intersections E = V(R,,) mark the inner and outer classical
turning points R.; = 3.2 A and R, = 9.1 A, respectively. The
mean value of the internuclear distance is

(R(t)) = f dR Iy(R,t)PR

The mean values (R(0)) = Ry; = 3.3 A at t = 0 and at the
quantum-mechanical outer turning point, (R(ty,)) = Ry =8.9 A
at ty, = 554 fs, are close to the classical ones, Ry; and Ry,
respectively. The deviations are due to various effects, including
wave packet tunneling from the classical turning point into the
classically forbidden domain,”” dispersion, and interferences.”®
The times when the mean value of the internuclear separation
passes the values (R(f;)) = R, (R(t:)) = Ry, and (R(t,)) = R, for
the first time are ¢, = 66 fs, t. = 168 fs, and t, = 334 fs, respectively.
The expected values R, Ry, and R, and the corresponding times t,
t;, and t, are indicated in Figures la,b, and 2a—e.

The time evolution of the NPD is illustrated in Figure 1a by a
selection of snapshots at the times t =0, t, t,, t,, and £, when the
nuclear wave packet is centered at the quantum-mechanical inner
turning point R, at the minimum of the inner potential well R;,
at the potential barrier R;, at the minimum of the outer potential
well R, and at the quantum-mechanical outer turning point R,
respectively. For convenience Figure 1a shows §,(Rt) times the
factor 4zR* (ie., ly(Rit)I? 47R*S,(R,t); eq 2.14). The
corresponding probability density of observing nucleus a (=a,
b) at distance R, = R/2 from the NCM is shown in Figure 2b by
color-coded contours of 47R,*5, ,(R,t) (eq 2.15). The mean
value (R,(¢)) = (R(t))/2 is indicated by the continuous green
line in Figure 2b. In accord with the Ehrenfest theorem, this line
is close to the classical trajectory that starts out with zero velocity
from R at t = 0. It is apparent that, after an initial rather short
period of acceleration, the nuclei separate at approximately
constant speed until they decelerate at the outer turning point
Ry at ty, = 554 fs. Scrutiny of (R, (t)) shows that the nuclei slow
down slightly as they cross the barrier. After the turn at Ry, the
nuclei proceed toward the inner turning point R ;. The quantum-
mechanical time evolution of the “backward” motion from Ry, to

(3.7)
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Figure 2. Color-coded contour plots of nuclear and electronic
probability and flux densities for Na, in the electronic excited state
2'%: (JM = 00). (a) Static electronic population density &, ,(r;R/2) (eq
2.13) weighted by factor 471> as a parametric function of the internuclear
separation (R/2) (in units of 1/A). Profiles along cuts at R, R;, and R,
correspond to curves shown in Figure le. (b) Time evolution of nuclear
probability density &, ,(R,=R/2,t) weighted by factor 4zR,* (in units of
1/A). Its mean value is indicated by a continuous green line. (c) Time
evolution of radial nuclear flux density j, ,(R,=R/2,t), weighted by factor
47R,? (in units of 1/fs). (d) Time evolution of electronic population
density 5,(rt), weighted by factor 4zr* (in units of 1/A). (e) Time
evolution of radial electronic flux density j.,(r,t) = j.(r,t), weighted by
factor 477 (in units of 1/fs).

R is approximately the reverse of the “forward” motion from
Ry to Ry, The corresponding classical trajectory is perfectly
time reversible with respect to the time t.,, when it coincides
with the outer turning point, but in quantum mechanics the
corresponding nuclear wave packets at the analogous times
before and after f, differ from each other because of dispersion
and interference effects.”®

The resulting radial flux density j, ,(Ryt)er = 4j,(2R,t)er (eq
2.18) of the nuclei at distance R, = R/2 from the NCM is
illustrated in Figure 2c¢ by a color-coded contour map. For
reference the mean value (R,(t)) is also shown as a continuous
green line. The NED follows the NPD, of course with a switch of
sign (i.e., the NFD is positive as the bond stretches from Ry to
Ry and it is negative as the bond contracts from Ry, to Rqﬁ).
Although this observation appears to confirm intuition, it is
nevertheless nontrivial in view of the subsequent counterexample
(see below), where part of the electronic flux density (EFD)
follows neither the NPD nor the EPD. Close inspection reveals
local maxima in the absolute values of the NFD at the potential
minima and local minima at the top of the potential barrier and
the quantum-mechanical turning points. This observation may

be rationalized by recalling that the corresponding classical flux
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density is proportional to the classical probability density times
the velocity. If we assume that the classical density is rather
localized, as suggested by the quantum mechanical NPD shown
in Figure 2b, then the time evolution of the classical flux density is
dominated by the velocity, which has its local maxima at the
potential minima and its local minima at the potential barrier and
at the classical turning points.

We turn next to the computation of the EPD, which begins
with the calculation of the one-electron probability density
dien(R) (eq 2.9) from the SAC-Cl/aug-cc-pVIZ wave
function W,(rVR). The EPD is divided into two parts’
corresponding to the 20 core electrons and the two valence
electrons. It is known that the core electrons tend to travel with
the nuclei.’ Here we center attention on the valence electrons
(N, =2). Henceforth, the notation “d,,(r;R)” (and likewise the
notation for quantities derived from d, ,(r;R)) refers to the one-
electron probability density of the valence electrons.

For convenience we take R to be aligned with the z-axis (i.e., R
=Re,). Then d,,,(r;R) has cylindrical symmetry about the z-axis
(internuclear axis). The one-electron probability density (multi-
plied by N, = 2) is shown in Figure 1e as contour plots in the x—z
plane for three characteristic internuclear distances: R = R;, R,
and R,. At the shortest distance R; (i.e., in the domain of the inner
potential well) d,, ,(r;R) consists of three parts: a dominant inner
one close to the NCM and two equivalent, much less intense,
outer lobes well removed from the NCM. The inner part has two
centers at the nuclei a and b. Away from the nuclei the closed,
approximately ellipsoidal contours indicate molecular compact-
ness. The outer lobes may be interpreted as signatures of the
“Rydberg” character of the electronic structure in the domain of
the inner potential well. Hence we shall call them “Rydberg
lobes”. In contrast, at the largest distance R, (i.e., in the domain of
the outer potential well) the “Rydberg lobes” are absent, whereas
the inner part of d,.,(r;R) separates into two fragments that
remain centered at the nuclei, thus indicating a highly stretched
Na—Na bond. At the intermediate separation R; (ie., at the
potential barrier between the inner and outer wells) the contour
plot (Figure le) illustrates the transition from the character of
dien(r;R) at R; to that at R,. Apparently, the dominant inner
centers of d, ,(r;R) around the nuclei move outward as the bond
stretches (i.e., they travel with the nuclei). At the same time the
“Rydberg lobes” move inward until they are “absorbed” by the
inner part and disappear approximately at the barrier.

It turns out that the properties of the one-electron probability
density d,.,(r;R) described just above are essential for the EPD
and for the EFD. Before proceeding, we look in some depth at
the origin of these characteristic properties. Because the SAC-
CI/aug-cc-pVTZ implementation in the Gaussian suite” does
not lend itself to the present purpose, we performed
complementary state (2'Z!) selective complete active space
self-consistent-field (CASSCF-CI(2,36)) calculations, which
permit a ready interpretation of the approximation
decasscen(TiR) to dy.,(r;R) obtained by the SAC-CI/aug-cc-
pVTZ method. These CASSCF-CI(2,36) calculations for the
Na, molecule aligned along the z-axis R = Re,, are carried out by
means of the MOLPRO suite”” with the same aug-cc-pVTZ basis
set and with inactive space consisting of the lowest ten molecular
orbitals (MOs) ¢;(r;R) doubly occupied by all 20 core electrons
and an active space of 36 MOs, labeled k = 11 (HOMO), 12
(LUMO), 13, .., 46 for the two valence electrons. The final
CASSCF wave function is expanded in terms of the pseudo-
canonical MOs, as implemented by MOLPRO. Since the
optimized CASSCF pseudo-canonical MOs k = 11 and k = 12
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are similar to the corresponding HOMO and LUMO, for
convenience we henceforward refer to them as such. It turns out
that contributions of double excitations from the two valence
electrons are negligible. The CASSCF-CI(2,36)/aug-cc-pVTZ
electronic wave function can therefore be written approximately
as a configuration-interaction (CI) expansion restricted to single
excitations:

‘P,CASSCF(rn;R) = Z D1k1(R)[lP11<’1/,ja(1‘225R) + lplfi,a/j(l’niR)]

k
(3.8)
Here ‘P’f{f (r*%;R)and ‘I’If’ffﬁ(rzz;R) are the Slater determinants
with all 20 core electrons occupying MOs k = 1, .., 10, and the
two valence electrons occupying the molecular spin—orbitals
@11(5;R) X a and @(r;R) X B, or vice versa. The Cl-expansion
coefficients D¥;(R) are normalized according to

> Pi(R) =1

k>11 (3.9)
where
Pf(R) = 2[Df;(R)T’ (3.10)

is the CI-probability of the HOMO-to-k excitation. Integration of
[W. casscr(r”5R)]* over the coordinates of all electrons but one
(eq 2.9) yields, to a very good approximation, the CASSCF-CI/
aug-cc-pVDT one-electron probability density of the valence
electrons (N, = 2),

1 k
die,casscra(tiR) = N Iy, (6RO + Z P(R)lg, (5R)P
e k

(3.11)

In principle, cross terms from MOs labeled 11 and k also
contribute to the sum in eq 3.11, but they turn out to be
negligible.

The beauty of this approximation (eq 3.11) is that it allows one
to analyze the one-electron probability density in terms of the
(squares of the) CI coefficients D¥;(R) and of the HOMO
@11(;R) together with the excited MOs ¢, (r;R), k = 12, 13, 14,
... This is illustrated in Figure 1b—d. Figure 1b shows the
dominant populations of the HOMO (k = 11) and of the excited
MOs (ZI{(R), k = 12 and 14) together with the next highest
populations (<0.02) of MOs @(r;R), k = 18 and 24. All other
MOs are occupied with lower probability. Apparently, only three
MOs (k = 11, 12, and 14) make the dominant contributions to
dyecasscen(r;R). The corresponding orbital densities
diecasscri(tiR) = 1@ (r;R)I* are illustrated in Figure 1c for the
characteristic internuclear distances R = R, Ry, and R,. The
weighted sum of these three orbital densities (i.e, eq 3.11) with
the sum restricted to the two dominant contributions, k = 12 and
14, is shown in Figure 1d. Though the agreement with the SAC-
ClI/aug-cc-pVTZ one-electron probability density (Figure le) is
not yet perfect, it is clear that d, cxsscra(r;R) already exhibits the
main features of d,,(r;R). This suggests the following
interpretation. The one-electron probability density d,,(r;R)
(multiplied by N, = 2) of the valence electrons of Na,(2 ') is
essentially the weighted sum of three orbital densities, namely, of
the HOMO (k= 11), the LUMO (k = 12), and the excited orbital
k = 14. The three orbital probability densities maintain their
dominant topologies as the internuclear distance increases from
R; to R,. Thus, one may say that the probability density of the
HOMO represents molecular compactness, except when the
Na—Na bond is highly elongated at R, In contrast, the
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probability density of the LUMO displays the topology of
separated atoms, not only at R = R but also already at R = R; and
R,. Finally, the probability density of the excited MO k = 14
represents typical features of a “Rydberg”-type MO, extending
from the nuclei to intense lobes far from the nuclei. What really
matters are the weightings of these MO densities. In the domain
of the inner potential well, d;.,(r;R) is dominated by just two
MO densities, namely, those of the HOMO and of the
“Rydberg”-type MO (k = 14). This explains its characteristic
features (i.e., the inner part and the two outer “Rydberg lobes”).
In contrast, in the domain of the outer potential well, d,, ,(r;R) is
dominated by the orbital densities of the HOMO and the
LUMO, whereas the “Rydberg”-type MO (k = 14) is negligible.
This explains the topology of the contours of d,,(r;R) at R=R,,
indicating the onset of separation of the Na atoms. Finally, at the
transition R = R, from the domain near R = R; to that near R,, the
population of the “Rydberg”-type MO (k = 14) is depleted to the
benefit of the HOMO. This explains the disappearance of the
“Rydberg lobes” of d,, ,(r;R) through a merging with the inner
part of the one-electron probability density at the potential
barrier.

The above interpretation is not quantitative, but it explains the
most important features of the evolution of d,,(r;R) as the
internuclear separation increases from R = R, to R = R,. We
emphasize that subsequent calculations are based on d,,,(r;R)
determined through the SAC-CI/aug-cc-pVDT method, rather
than on the semiquantitative d;,casscpa(r;R). We also remind
the reader that d,, ,(r;R) depends only on the distances r and R
and the angle 0 between the z-axis and the vector distance r from
the NCM to the electron. To emphasize the dependence of
din(5;R) on spherical coordinates, we henceforth denote it
81en(r,costR) (eq 2.13).

According to eqs 2.11 and 2.13, we require the quantity
8.,(r;R) to compute the EPD. We accomplish this task by fixing r
and R and integrating N,-8,,,,(r,cosO;R) over the angle 6. The
plots of 8,,(r;R) versus r displayed in Figure le for the three
characteristic internuclear distances R = R;, Ry, and R, depend
strongly on R. At R = R; (the minimum of the inner potential
well), 8, ,(r;R;) is bimodal. The values of r at the two maxima and
the minimum between them are indicated in Figure le by dotted
lines, which also indicate the intersection of the x—z plane with
the spherical surfaces on which 8, ,(r;R;) is evaluated at these
values of r. The inner maximum at the smallest r corresponds to
the maximum of §,.,(r,cosé;R;) at the nuclei. The outer
maximum at the largest r is due to the “Rydberg lobes” of
81en(r,cosBiR;). In contrast, 6, ,(r,cost;R,) at the minimum R,
of the outer well does not possess “Rydberg lobes”. As a
consequence, J,,(r;R,) has just a single maximum, which
corresponds to the maximum of §,,,(r,cos#;R,) at the nuclei.
The transition from a bimodal to a unimodal ,,(r;R), which
occurs close to the barrier at R = Ry (Figure le), is illustrated in
detail in Figure 2a, a color-coded contour plot of §,,,(r;R,=R/2).
Apparently, 8,,(r;R/2) has two branches, a dominant inner
branch and a less prominent outer one at small and large r,
respectively. The inner branch accounts for the valence electrons
that travel with the nuclei from small to large values of R. The
outer branch, due to the “Rydberg lobes”, is significant only in the
domain of the inner potential well. Near the potential barrier it
coalesces with the inner branch, which persists in the domain of
the outer potential well.

The EPD &,.(r,t) is given by eq 2.11 as an integral over R of the
product of the time-independent electron population density
8.(r;R) and the time-dependent “nuclear probability density”
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(47)"'ly(Rt)*. The EPD is exhibited in Figure 2d as a color-
coded contour plot. One immediately observes the similarity of
the topology of 8,(r,t) in the temporal domain 0 < t < , (Figure
2d) to that of §, ,(r;R,=R/2) in the corresponding spatial domain
Ryi/2 < Ry < Ryo/2 (Figure 2a). This correlation may be
understood as follows. We note from Figure 2b that the NPD is

extremely well localized. Hence we can make the approximation

(R, =~ 3[R — (R(t))]

where 0 here denotes the Dirac distribution. Substitution of eq
3.12 into eq 2.11 yields

8.(rt) = (47)7'8,,(r;(R($)))

Thus, we see that the EPD at time ¢ is proportional to &, ,(r;R) at
the mean value of R at that time. As a consequence, all the
properties of §, ,(r;R) also hold for 6,(r,t). In particular, the EPD
consists of two branches. The dominant branch accounts for the
valence electrons that flow with the nuclei. This “normal” branch
is centered at the mean distance of nucleus @ from the NCM,
which is indicated in Figure 2d by the continuous green line. The
other branch is due to the “Rydberg lobe” in the domain of the
inner potential well. This less intense “Rydberg” branch merges
with the “normal” branch at the time t; as the nuclei cross the
potential barrier.

Equation 3.13 also holds for times t > ty,, when (R(t))
decreases from the outer quantum mechanical turning point R,
to the inner one R;. As shown in Figure 2d, the EPD in this
temporal domain is approximately the mirror image of the EPD
in the domain t.; < f < t.,. Deviations from perfect symmetry are
due to nuclear wave packet dispersion and interference effects.”®

Finally, we use eq 2.16 to compute the EFD, which is displayed
in Figure 2e as a color-coded contour plot. The EFD comprises
two branches. One is due to the valence electrons that travel with
the nuclei. (To guide the eye along this branch, Figure 2e shows
the corresponding time evolution of the mean value (R,(t)) as a
continuous green line). Accordingly, this “normal” branch is
positive as R increases from Ry to Ry, negative as R decreases
from Ry, to Ry and zero at the quantum-mechanical turning
points. The second branch consists of a transient flux of electrons
that rises and falls as the nuclei cross the barrier at R;. Inspection
of Figure 2d shows that this transient flow is due to the rapid
change of the “Rydberg” branch of the EPD as it merges with the
“normal” branch (ie., the electronic structure changes from
“Rydberg” to “ionic” as the nuclei traverse the potential barrier).
The coalescence is actually supported by two effects. On one
hand, as R increases in the domain R; < R < R; the “normal”
branch bends upward (toward increasing r). On the other hand,
the “Rydberg” branch bends downward. As a consequence, the
two components of the EFD (i.e., the “normal” component due
to the valence electrons that travel with the nuclei, and the
“transition” component that accounts for the change of the
electronic structure at the barrier) are oppositely directed (i.e.,
they are antagonistic). We emphasize that this mechanism of
production of antagonistic fluxes does not involve interference of
the two components. An alternative mechanism, which is indeed
due to interference of different partial waves, is documented in
ref 3.

Figure 2e shows that the “transition” contribution to EFD is
even stronger than the “normal” contribution. This seems
surprising because Figure 2d suggests an opposite trend (i.e., the
EPD in the “Rydberg” branch appears negligible compared with
that of the “normal” branch). The apparent paradox can be

(3.12)

(3.13)
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explained by the corresponding classical expression for the flux
density, which is the product of the probability density, and the
velocity. Hence, high (low) probability density does not
necessarily imply high (low) flux density, respectively. Instead,
high flux density may arise from low probability density that flows
with high velocity. In the present case, the electrons in the low-
density “Rydberg lobe” rearrange so rapidly during the transition
from the “Rydberg” to the “ionic” structure that the absolute
value of the “transition” component of the EFD is even larger
than the “normal” component.

The principal results are summarized in Figure 3, which shows
“arrow” plots of the NFD and EFD superposed on color-coded
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Figure 3. Color-coded contour plots combined with arrow plots of
electronic population and nuclear probability densities and flux densities
weighted by factor 477 or 47R,,” for Na, in the excited state 2 '= (JM =
00) at three characteristic times t; = 66 fs, t; =168 fs, and t,=334fs. (a)
Nuclear probability density [8,,(R,=R/2,t)] and flux density
[jna(Re=R/2,t)] weighted by factor 47R,? in units of 1/A and 1/fs,
respectively. (b) Electronic population density (of valence electrons)
[8.(r,t)] and electronic flux density [j.(r,t)] weighted by factor 47+, in
units of 1/A and 1/fs, respectively. Vertical lines indicate internuclear
separations corresponding to the three characteristic times: R;/2 (long
dash); R:/2 (dash-double dot); R,/2 (short dash). Magnitudes of flux
density are indicated by arrows at the bottom left of the plots.

contour plots of the NPD and EPD at the three characteristic
times t, t;, and t, when the mean internuclear distance (R(t))
coincides with the minimum of the inner potential well at R;, the
top of the potential barrier at R; and the minimum of the outer
potential well at R, respectively. These snapshots demonstrate
significant dispersion of the NPD; still, the NPD of the heavy
nuclei are always far more localized than the EPD of the light
electrons. The NFD is always unidirectional, with the nuclei

flowing outward from R ,; toward Ry, In contrast, the EFD at R,
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and at R, are antagonistic, for the reasons that have been
explained above in detail. The highest magnitudes of the EFD are
caused by the transition of the electronic structure from
“Rydberg” to “ionic” as the nuclei cross the potential barrier.
At larger internuclear distances (e.g, at R,) the EFD is
unidirectional, like the NFD, because there are no further
significant changes of the electronic structure. The valence
electrons simply flow with the nuclei.

4. CONCLUSION

The present work extends the prior theory of concerted
electronic and nuclear fluxes in the one-electron, nonrotating,
diatomic H," *Z} (JM = 00) to the multielectron, nonrotating
homonuclear diatomic in the state ***'X!, (JM = 00). The results
for the many-electron system are entirely analogous to those for
the one-electron system. In particular, the symmetry of the state
implies that the EPD, NPD, and NFD are isotropic. A theorem
due to Barth,* based in part on ref 30, permits us to deduce that
the EFD is also isotropic. The reduced radial continuity equation
yields an expression for the EFD in terms of the EPD. Because all
evolving quantities are isotropic, the system can be viewed as a
pulsating or exploding “quantum bubble.”

As a first application of the theory we consider Na, vibrating in
the double-minimum potential of the excited state 2 '. The
most remarkable phenomenon is the two antagonistic
contributions to the EFD. On the one hand, there is a
component due to electrons that travel with the nuclei. This
“normal” component is positive as the bond stretches and
negative as it contracts. On the other hand, there is another, more
intense, component appearing at greater distances from the
NCM and opposing the “normal” component. We refer to this
second contribution, which is transient (i.e., it rises and decays as
the nuclei cross the barrier from one potential well to the other),
as the “transition” component, because it is due to the change of
electronic structure from “Rydberg” in the domain of the inner
well to “ionic” in the domain of the outer well.

The present work should stimulate systematic investigations of
concerted electronic and nuclear fluxes associated with adiabatic
vibration and dissociation in other homonuclear diatomic
molecules in their electronic ground and excited ZSHEQU (M =
00) states. The isotropy of the NPD and EPD suggests
experimental measurements with high radial and temporal
resolutions, where one needs to monitor the probability (or
population) density only along one degree of freedom (see, for
example, refs 31 and 32). The NFD and EFD can then be
determined from the experimental NPD and EPD by means of
the reduced radial continuity equation.’ The present application
of the theory should also promote systematic searches for
antagonistic electronic fluxes in more complicated systems and
processes, such as adiabatic chemical reactions.
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