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The situation is modeled, in which two electronic states of a diatomic molecule are nonadiabatically coupled to each
other as well as to other states, so that levels of the former two states can be registered, while the latter (perturbing) states
are unobserved in an experiment. An example being explored is the model of the states 23�g � 41�þ

g of Rb2; the
computation is done with the multichannel (3-channel, where the third channel represents an effective unobserved
perturber) split operator method. Besides the typical resonance-like shifts of a part of the levels, the cases are observed,
which cannot be explained within the approximation of a pair–wise resonant interaction. We tested a capability to
analyze the synthetic data via an estimate of the interaction matrix element from the magnitudes of the resonance-like
shifts combined with an iterative correction of the potential functions, as well as via the two-channel close-coupling
calculation.

1. Introduction

In modern molecular spectroscopy, considerable attention
is paid to an observation and analysis of excited electronic
states of various symmetries, lying noticeably higher above
the first dissociation limit.1–11) They are interesting for a
study of the general energetic structure of a molecule, and as
the means to investigate the states of the lower dissociation
limit.12–16)

Due to a high density of electronic-vibrational-rotational
levels in this region, they exhibit much stronger non-
adiabatic effects than the states of the lower limit, so that a
considerable portion of the levels are substantially perturbed.
This fact complicates their analysis via traditional approaches
implying smooth dependencies of energies of the levels on
vibrational and rotational quantum numbers, such as those
based on the approximations by Dunham17,18) or by LeRoy
and Bernstein.19–22)

This drawback is rather easily resolved if the character of
the coupling is local, so that a mutual interaction within
closely spaced pairs of levels governs the principal effect.
Properties of such isolated pair–wise interactions are well
known: the energetic levels symmetrically repel each other
by a value predicted by the secular equation.

In our experience, engaging of experimental intensity data
(namely, fluorescence of bound–bound and bound–free
transitions to lower electronic states) is very helpful for
resolving the problem.13,15,23)

In cases where the interactions cannot be treated as local
and the intensity data are absent or not representative enough,
more laborious computational procedures are employed,
based on a numerical solution of the multichannel Shrödinger
equation considering complete interaction mechanisms.24–28)

However, even the latter approach can be of questionable
success, if the states being observed and analyzed interact
significantly with some states, which are not observed in the
experiment directly (e.g., the ones not fluorescing in the

experimentally accessible wavelength range thanks to
selection rules, or just presenting very poor experimental
information). On the one hand, inclusion of such states into
the computational model is necessary for an adequate
accounting of all the interaction mechanisms; on the other
hand, there is no enough empirical information on them
needed to describe them with an appropriate level of
accuracy.

An example of such a situation can be the system 23�g �
41�þ

g of rubidium dimer. The experimental ro-vibrational
term values of the 23�g and 41�þ

g states were measured in
Refs. 15 and 29. To do that, the fluorescence to the lower
states (a3�þ

u , A
1�þ

u ) was registered while the frequency of the
probe (exciting) laser scanned. Analyses of these data in the
cited articles were done (with a partial participation of one
of us) separately for every state without explicitly taking
into account any non-adiabaticity; however, the results of
these analyses clearly showed that these states are strongly
coupled to each other as well as to other states of the
energetic range.

Inclusion of the total bulk of interactions into the analysis
does not look to be possible at the moment as many outer
perturbers remain “unobserved”, and the entire system is very
complicated. Consequently, the question arouse of how much
the results can be improved by taking into account the
coupling of the two states but ignoring the influence of outer
perturbers. It is clear that, any case, a reproduction of the
experimental data would improve thanks to a more elaborated
model, but this cannot ensure that these results would be
physically realistic but not just mathematically artificial.

Based on all these, we came to that at the current stage
it would be reasonable to check this circumstance on a
simplified synthetic model with known accurate solution,
without a pretense to provide a realistic description of the
actual molecular states for a while. This is done here.

The purposes of the present work were the modeling of a
situation described above and, as far as it was possible, the
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search for a comparably simple approach to an analysis of
this problem, including the check of its capability to improve
a reproduction of the accurate potential energy functions.

2. Numerical Model

We based our test model on the perturbed system Rb2
23�g � 41�þ

g . We decided to imitate the outer perturbations
from unobserved states by an interaction with one perturbing
electronic state. We have made calculations with several
states of Rb2 in this role. The results have occurred
qualitatively similar between each other. Below the results
achieved with the 11�g perturbing state are presented: this
state fairly well spans the energetic region of our interest, and
have a rather high density of states within it— see Fig. 1.

We must emphasize that such a model obviously remains
rather artificial and very much simplified compared to the
actual physical processes in the system. Indeed, if the implied
perturbation mechanism is the spin–orbit interaction, then the
first-order couplings can only occur between the components
� ¼ 2 of 23�g � 11�g and between the components � ¼ 0

of 23�g � 41�þ
g , while a transfer of the perturbations

between the � ¼ 0 and 2 components of the 23�g state is
only possible via quite indirect higher order mechanisms.
Besides, the heterogenic (�� ≠ 0) matrix elements depend
on J,1) the effect which was completely neglected by us. In
this sense the forces included into our model should be
considered effective, i.e., describing a cumulative effect on
the “observed” 23�g � 41�þ

g levels of many complicated
mechanisms employing many other states of the energetic
region. This approach comply with our purpose to investigate
the situation under consideration (how the neglect of
unobserved perturbers inflicts the analysis?) using the
simplest possible, although more or less realistic, synthetic
model without a pretense of describing the actual physics of a
system quantitatively.

For the model diabatic potential energy curves we adopted
the ab initio potentials.15,29,30) The matrix elements of
23�g � 41�þ

g and 23�g � 11�g coupling were rather ar-
bitrary taken equal 20 cm−1; this generated the shifts of the
levels comparable with their experimentally observed scatter;
since the direct spin–orbit interaction between the states 11�g

and 41�þ
g is forbidden by a selection rule �� � 1, the states

11�g and 41�þ
g did not interact directly. The diabatic

potential energy curves of the model system are shown in
Fig. 1; the origin of the energy scale is the bottom of the
ground X1�þ

g state.

The simulations of the spectra were done with the
technique of the multichannel (3-channel in our case) split
operator.31–37) This is a kind of a so-called pseudo-spectral
method, producing an entire spectrum in one time-dependent
calculation in a form similar to the experimentally observed
one with the regulated spectral resolution. The initial
wavepacket in the channels 23�g and 41�þ

g was formed by
a sum of unperturbed stationary wavefunctions with energies
T � 23000 cm−1 (see Fig. 1 for the “experimental range”),
and set to zero in the channel 11�g. Consequently, the
intensities of the lines of the 23�g and 41�þ

g states became
approximately equal to each other, while the state 11�g got
the status of “unobserved”. The unperturbed stationary
wavefunctions were computed with the familiar Numerov
method.37–39)

We computed the non-perturbed (i.e., with the interactions
being turned off) and perturbed spectra for the rotational
quantum numbers J ¼ 2; 4; 19; 21; 49; 51, imitating exper-
imentally observed15,29) P and R branches in various
excitation schemes. The line energies and their assignments
were determined from the synthetic spectra in a manner
similar to the analysis of experimental spectra: energies
— from the intensity maxima, assignments— based on the
requirement of a relative regularity of the energy dependence
on the vibrational v and rotational J quantum numbers.

Some characteristic features of the computed spectrum
J ¼ 2 are shown in Fig. 2.

Figure 2(a) presents an example, where the levels of the
23�g and 41�þ

g states exhibit a mutual repulsion, which is
expected for the local pair–wise (resonant) interaction. This
does not mean that they are not perturbed by many other ro-
vibrational states, but these perturbations are relatively weak
and effectively compensate each other. The effect of the
intensity borrowing can be noticed.

The bottom of the 23�g well lies near the 41�þ
g (v ¼ 5)

level, so that the lowest levels of the 41�þ
g state do not have

close neighbors of the 23�g symmetry. Nevertheless, they
experience the bulk effect (pressure) from all the higher levels
of the 23�g state, causing their shifts downwards. Figure 2(b)
shows the most distant from the 23�g level 41�þ

g (v ¼ 0),
whose shift ∼0.7 cm−1 is quite noticeable.

In Fig. 2(c) the 41�þ
g line is repelled from 23�g, however,

in place of the single 23�g line the two lines of similar
intensities are observed. These two lines represent blended
states 23�g � 11�g, so that their assignment to a specific
electronic state becomes ambiguous.

The lines shown in Fig. 2(d) exhibit, contrary to the
predictions of the pair–wise resonant approximation, not a
mutual repulsion but an attraction. The intensity borrowing is
also seen.

Thus, as expected, along with the cases, which can be
interpreted within a framework of the pair–wise resonant
approximation, many examples are observed, where the
positions and intensities of ro-vibrational lines are signifi-
cantly influenced by energetically distant levels of the
observed partner, as well as by levels of an unobserved
electronic state.

3. Analysis

Our desire was to find and check such approaches to an
analysis of a set of perturbed ro-vibrational term values in

Fig. 1. (Color online) Model diabatic potential functions of Rb2 23�g,
41�þ

g , and 11�g states.

J. Phys. Soc. Jpn. 87, 024303 (2018) G. Feng et al.

024303-2 ©2018 The Physical Society of Japan

J. Phys. Soc. Jpn.
Downloaded from journals.jps.jp by 218.26.34.67 on 01/18/18



presence of an unobserved perturber, which would avoid
addressing any experimentally unconfirmed information on
the unobserved state. Below we describe such approaches
and test them for the set of synthetic experimental data from
the previous section of the article.

At our first approach, we relied on a supposition, that there
existed a group of levels, which could be described within an
approximation of the pair–wise resonant interaction with an
adequate accuracy [see Fig. 2(a)]. Their selection out of the
entire multitude of the registered levels would allow us to
estimate the coupling matrix elements, and then update the
potential energy curves iteratively.

Notice, that an attempt to include into this system the third
perturbing level does not make much sense: three isolated
levels is a rare event; besides, if even such an event occurs,
it is unclear of how to separate this group containing an
unobserved state from other levels.

Within the approximation of the pair–wise resonant
interaction, the energies T1, T2 of the mutually perturbed
levels are the solutions of the secular equation

det
T ð0Þ
1 � T W12

W12 T ð0Þ
2 � T

 !
¼ 0; ð1Þ

where T ð0Þ
1 , T ð0Þ

2 are the non-perturbed eigenenergies, W12 ¼
h1jWj2i is the interaction matrix element, W is the electronic
matrix element. Solving this equation for W12, we get the
expressions:

W ðaÞ
12 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT ð0Þ

1 � T1ÞðT ð0Þ
2 � T1Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT ð0Þ

1 � T1Þ2 þ ðT ð0Þ
2 � T ð0Þ

1 ÞðT ð0Þ
1 � T1Þ

p
; ð2Þ

W ðbÞ
12 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT ð0Þ

1 � T2ÞðT ð0Þ
2 � T2Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT ð0Þ

2 � T2Þ2 þ ðT ð0Þ
1 � T ð0Þ

2 ÞðT ð0Þ
2 � T2Þ

p
; ð3Þ

enabling to estimate the coupling matrix element W12 from
the hypothetical unperturbed term values T ð0Þ

1 , T ð0Þ
2 and at

least one of the experimental term values T1, T2. The
formulae (2) and (3) can produce different results if jT ð0Þ

2 �
T2j ≠ jT ð0Þ

1 � T1j, which might happen either if the approx-
imation of the pair–wise resonant interaction breaks or if the
hypothetical non-perturbed eigenenergies T ð0Þ

1 , T ð0Þ
2 are not

adequate. The first effect is partly canceled out by adopting
the mean value of the two estimates:

W ðabÞ
12 ¼ 1

2
ðW ðaÞ

12 þWðbÞ
12 Þ: ð4Þ

The second effect can be overcome by a correction of the
zero-th approximation in such a way as the empirical estimate
of the matrix elementWðabÞ

12 to accord its quantum-mechanical
prediction h1jWj2i.

The potentials UðRÞ (R is the atomic separation) were
modeled by the functions:40–43)

UðRÞ ¼ ED þ
UIRðRÞ; RSR � R � RLR,

USRðRÞ; R < RSR,

ULRðRÞ; R > RLR,

8><
>: ð5Þ

UIRðRÞ ¼
XN
i¼0

ai�
iðRÞ; � ¼ R � Rm

R þ �Rm
;

USRðRÞ ¼ u1 þ u2=R
Ns ;

ULRðRÞ ¼ �
XL
i¼1

CNi
=RNi :

The values at the dissociation limits were chosen (from
the atomic asymptotes) ED ¼ 23349 cm−1 (23�g) and ED ¼
24126 cm−1 (41�þ

g ); the values of the long-range asymptote
powers N1 ¼ 6 and N2 ¼ 8; the value of the short-range
asymptote power Ns ¼ 4:5; the coefficients u1, u2, C6, C8

were computed so as to ensure the continuity of the function
and its first derivative. However, all the synthetic exper-
imental term values lie within the middle part UIRðRÞ of the
potential functions and are not almost influenced by the
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Fig. 2. (Color online) Examples of characteristic perturbational features (upper) in comparison with the unperturbed lines (lower) in the model spectra of the
Rb2 23�g � 41�g � 11�g system; unperturbed levels belong to the states: (+)–41�þ

g , (�)–23�g, (�)–11�g.
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asymptotic parts, which thereby play a pure technical role in
computational algorithms.

At the zero-th step we computed the Rydberg–Klein–Rees
(RKR)37,44–47) potentials and approximated them with
Eq. (5). After that, parameters ai, α, Rm were optimized
within the following iterative procedure.
(1) Current approximations for the 23�g and 41�þ

g potential
functions were constructed in the form of Eq. (5).

(2) The unperturbed eigenenergies T ð0Þ
v1J1

, T ð0Þ
v2J2

and wave-
functions �ð0Þ

v1J1
, �ð0Þ

v2J2 were computed with the
Numerov method.37–39)

(3) For every J the resonance-like pairs of neighboring
levels ðv1; v2Þ were found and selected (i.e., those which
repel each other).

(4) For every selected pair ðv1; v2Þ the matrix element
WðabÞ

v1v2;J
was estimated with Eqs. (2)–(4).

(5) For every selected pair ðv1; v2Þ the overlap integral

wv1v2;J ¼ jh�ð0Þ
v1;J

ðRÞj�ð0Þ
v2;J

ðRÞij
was computed.

(6) The interaction constant W was estimated as a mean
value of W ðabÞ

v1v2;J
=wv1v2;J over all the selected pairs

ðv1; v2Þ.
(7) The evaluation (objective) function was constructed

from the squares of the residuals T1 � T ð0Þ
1 , T2 � T ð0Þ

2 ,
and WðabÞ

v1v2;J
�W � wðabÞ

v1v2;J
.

(8) The parameters of the model were corrected by
minimizing the evaluation function with the
Levenberg–Marquardt algorithm.37,48)

The residuals of the final reproduction of the synthetic
experimental term values are shown in Fig. 3.

The resulting estimate of the interaction constant was
W ¼ 28 cm−1 (recall that the accurate model value had been
W ¼ 20 cm−1).

Along with the algorithm described above, we tried a
direct fit of the synthetic experimental term values with the
global two-channel 23�g � 41�þ

g close-coupling computa-
tion performed with the Fourier grid method.9,11,37,49–51) This
resulted in the interaction constant of W ¼ 17:5 cm−1. Quite
expectedly, the reproduction of the synthetic experimental
term values improved (mean square error 0.82 cm−1 vs
1.03 cm−1).

The errors of the final reproduction of the accurate model
potential functions with the both approaches are shown

in Figs. 4 and 5 in comparison with the straightforward
RKR37,44–47) potentials.

4. Discussion

The results of the analysis can be accepted as a satisfactory
zero-th order approximation. The estimates of the coupling
constant are at least reasonable. The potential functions
exhibit a definite improvement over the RKR curves in the
regions of the potential well bottoms, but worsen at higher
energies, especially at the left walls, whose influence on the
simulations is relatively weak.19–22) The overall qualities of
the potential functions found with the method exploiting the
resonance-like pairs and the one based on the two-channel
close-coupling simulation are similar to each other. However,
an improvement over the RKR curves does not look crucial.
For a better result an inclusion of the unobserved states into
the computational model looks to be necessary.

We would also like to emphasize, that the potential energy
functions of the Rb2 23�g and 41�þ

g states reported in
Refs. 15 and 29 remain their best descriptions available for
the moment.

5. Conclusions

The problem of the analysis of nonadiabatically coupled
molecular states in presence of unobserved perturbers is

Fig. 3. (Color online) Residuals of the final simulation with the pair–wise
deperturbation approach of the synthetic experimental ro-vibrational term
values TvN in the model spectra of the Rb2 23�g � 41�g � 11�g system.
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Fig. 4. (Color online) Accuracy of the potential function determination
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circles indicate postions of the potential minimum and of 1=4 depth of the
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circles indicate postions of the potential minimum and of 1=4 depth of the
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proponed. The model of the coupled states 23�g, 41�þ
g , 1

1�g

of rubidium dimer is investigated as an example. The
characteristic perturbational features are simulated. Algo-
rithms to analyze such systems are tested, where no
information on the unobserved state is addressed. The
outcome of these approaches can be accepted as a reasonable
zero-th approximation. The work illustrates what can be
expected from the analysis of nonadiabatically coupled
molecular states neglecting an influence of unobserved
perturbers.
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