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A self-absorption quantification method is proposed to quantify the self-absorption degree of spectral 

lines, in which plasma characteristics including electron temperature, elemental concentration ratio, and 

absolute species number density can be deduced directly. Since there is no spectral intensity involved 

in the calculation, the analysis results are independent of the self-absorption effects and the additional 

spectral efficiency calibration is not required. In order to evaluate the practicality, the limitation for ap- 

plication and the precision of this method are also discussed. Experimental results of aluminum-lithium 

alloy prove that the proposed method is qualified to realize semi-quantitative measurements and fast 

plasma characteristics diagnostics. 
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. Introduction 

Laser-induced breakdown spectroscopy (LIBS) is a well-known

nalytical technique based on the atomic emission spectroscopy.

he elemental composition and relative abundance information

an be obtained by analyzing the plasma radiation generated

y focusing high-energy pulsed laser on the sample. It has a

ide range of applications in industrial analysis, environmental

onitoring and biomedical field due to its advantages of rapid,

imultaneous multi-element analysis and no or minimal need

or sample preparation [1–8] . In LIBS, self-absorption is a phe-

omenon of re-absorption (by unexcited atoms in the periphery

f the plasma plume) of the emitted radiation as it passes out-

ards from the central region of the plasma. It not only reduces

he spectral line intensity and increases its full width at half

aximum (FWHM) [9–12] , but also produces saturation effects.

s a consequence, self-absorption is usually an undesirable ef-

ect in LIBS measurements. There have been numerous studies

nvestigating its mechanism and developing efficient methods to

chieve proper correction. Omenetto et al. interpreted the self-

bsorption mechanism in inductively coupled plasmas by using

quations and the curve of growth method [13,14] . Bulajic et al.
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roposed a self-absorption effect model to extend the calibration-

ree LIBS (CF-LIBS) to optically thick plasmas, and enhanced

he measurement precision by almost one order [15] . St-Onge

t al. investigated two typical response curves for resonance and

on-resonance lines of sodium, and discussed the relationships

etween self-absorption degree, selection of spectral lines, detec-

ion sensitivity, and dynamic content range [16] . Sherbini et al.

eveloped a method to calculate the self-absorption ( SA ) coeffi-

ients of emission lines such that the precision in quantitative LIBS

nalysis could be improved [17] . Bengoechea et al. studied the

ffects of self-absorption, collection time window, ablation pit size,

nd spatial inhomogeneity on laser-induced plasma emission lines

18] . Sun et al. chose a weakly self-absorbed internal reference line

o correct the self-absorbed aluminum lines and obtained more

egular Boltzmann plots [19] . Li et al. developed a LIBS assisted

aser-stimulated absorption technique to make the ground-state

toms transit up to an excited state and avoid the serious self-

bsorption effect [20] . As can be seen, these existing methods

ither rely on some ideal assumptions or approximate modeling

o correct the self-absorbed spectral lines, or employ additional

evices to minimize the self-absorption effect on a particular line.

owever, the complex laser-target interaction process and the fast

lasma evolution can reduce the applicability of these assumptions

r models for real quantitative LIBS analysis [17] . 

In this paper, a self-absorption quantification LIBS analysis

ethod, which utilizes the intensity independent information in
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the self-absorbed spectral lines, is proposed to characterize the in-

duced plasma and perform semi-quantitative measurements. The

electron temperature, elemental concentration ratio, and absolute

species number density can be deduced by directly quantifying

the self-absorption degree. LIBS analysis of aluminum-lithium alloy

was performed to verify the practicability, advantages, limitations,

and precision of this method. 

2. Methodology 

Assuming the plasma is in local thermodynamic equilibrium

(LTE) condition during the spectra acquisition period, the spectral

line intensity that corresponds to the transition between two levels

(upper level j to lower level i ) is [17,21] : 

I(λ) = 

8 πh c 2 

λ5 
0 

n j 

n i 

g i 
g j 

(
1 − e −k (λ) l 

)
, (1)

where h (erg ·s) is the Planck’s constant, c (cm ·s −1 ) is the speed

of light, λ0 (cm) is the central wavelength of the emission line, n

(cm 

−3 ) is the number density, g is the degeneracy, k ( λ) (cm 

−1 ) is

the absorption coefficient, and l (cm) is the length of the absorp-

tion path. The k ( λ) l , also called as optical depth, determines the

self-absorption degree of the line. 

The SA coefficient is defined as the ratio of the measured in-

tensity of the emission line at its maximum over the value of the

intensity expected in absence of self-absorption [12,15] : 

SA = 

I( λ0 ) 

I 0 ( λ0 ) 
= 

1 − e −k ( λ0 ) l 

k ( λ0 ) l 
. (2)

The relationship between SA and the FWHM of a self-absorbed

line can be expressed as [17] : 

SA = 

(
�λ

�λ0 

)1 /α

= 

(
�λ

2 w S 

1 

n e 

)1 /α

, (3)

where α = −0.54, �λ0 ( Ǻ) is the expected FWHM of the spectral

line in optically thin conditions, �λ ( Ǻ) is the actual FWHM of the

spectral line, w s is the half-width Stark parameter, n e (cm 

−3 ) is the

electron density by measuring the Stark broadening of H α line [22] .

Once SA is obtained according to Eq. (3) , k ( λ0 ) l can be calculated

by Eq. (2) . The optical depth can also be expressed as: 

k (λ) l = π
e 2 

m c 2 
n i fλ

2 
0 lL (λ) , (4)

where e (statcoulomb) and m (g) are the charge and the mass of

the electron, respectively, f is the oscillator strength of the tran-

sition, the parameter n i l , that is area density (cm 

−2 ), is the prod-

uct of the species number density and the absorption path length

of the species along the line of sight, representing the number of

atomic or ionic species per unit area integrated along the path

length, and L ( λ) is a normalized line profile function: 

L ( λ) = 

2 

π

�λ0 

4 ( λ − λ0 ) 
2 + �λ0 

2 
. (5)

So the area density of the emitting species at the lower level i

can be obtained by simply rewriting Eq. (4) as: 

n i l = 

m c 2 

2 e 2 
�λ0 

fλ2 
0 

k ( λ0 ) l = 1 . 775 × 1 0 

4 �λ0 

fλ2 
0 

k ( λ0 ) l. (6)

On this basis, if the electron temperature is known, the total

area density of the species can be obtained according to the Boltz-

mann distribution: 

n i 

N 

= 

g i · exp (−E i / k B T ) 

Z 
, (7)

where N (cm 

−3 ) is the total number density of species in an atomic

or ionic state, E (eV) is the level energy, k B (eV ·K 

−1 ) is the Boltz-

mann constant, T (K) is the electron temperature, and Z is the
artition function. Furthermore, if the absorption path length is

nown, the absolute number density of atoms/ions in the plasma

an also be calculated. 

For electron temperature determination, the Saha-Eggert equa-

ion, which describes the degree of ionization for a plasma in ther-

al equilibrium [23] , can be merged with the Boltzmann distribu-

ion function as: 

n 

I 
i 

g I 
i 

= 

N 

I 

Z I 
exp 

(
− E I 

i 

k B T 

)
, (8a)

n 

II 
i 

g II 
i 

= 

2 (2 πm k B T ) 
3 / 2 

n e h 

3 

N 

I 

Z I 
exp [ − (E II 

i 
+ E ion − �E ion ) 

k B T 
] , (8b)

here the superscripts I and II indicate the neutral and singly ion-

zed species, respectively, E ion (eV) is the first ionization energy, k B 
ere is in erg ·K 

−1 unit, and �E ion (eV) is the reduction of ioniza-

ion energy caused by the experimental conditions. Since �E ion is

sually one to two orders lower than the sum of E i 
II + E ion in LIBS,

t can be ignored in the following equation. 

Multiplying l on both sides of Eq. (8) and then taking a loga-

ithmic operation yields a modified Saha–Boltzmann plot as: 

n 

n 

I 
i 
l 

g I 
i 

= − E I 
i 

k B T 
+ ln 

(
N 

I l 

Z I (T ) 

)
, (9a)

ln 

(
n 

II 
i 

l 

g II 
i 

)
− 1 

k B T 
ln 

(
2 (2 πm k B T ) 

3 / 2 

n e h 

3 

)]
= −

(
E II 

i 
+ E ion 

)
k B T 

+ ln 

(
N 

I l 

Z I (T ) 

)
, (9b)

here Eq. (9a) is for neutral lines and Eq. (9b) for ionic lines. Sim-

lar to the traditional Boltzmann or Saha–Boltzmann plot, the rela-

ion in Eq. (9) can deduce a linear plot versus E i , and the electron

emperature can be deduced from the slope of such a plot. 

In brief, the total area density of the emitting species can be

btained by exploiting Eq. (7) and the total area density of an el-

ment can be calculated by summing over the corresponding area

ensities of atomic and singly ionized species. For two elements a

nd b , by considering their different atomic masses, the elemen-

al concentration (in weight) ratio w a / w b in the plasma can be

hereby obtained. The absolute number density of the species in

he plasma can be calculated by dividing the area density by the

ath length l , estimated by dual-wavelength differential imaging

24,25] or space-resolved spectroscopy. 

For a more intuitive description, the flowchart of this self-

bsorption quantification method is shown in Fig. 1 . The electron

emperature, the elemental concentration ratio, and the absolute

pecies number density can be deduced from step 4, 6, and 7, re-

pectively. 

. Experimental 

The LIBS spectrum of an aluminum-lithium alloy (nominal

eight composition: Al 95.0%, Mg 1.6%, Li 0.8%, Cu 2.39%, Mn

.21%) was used to calculate the spatially-averaged electron tem-

erature, the concentration ratio between Mg and Al, and the

pecies number densities using the proposed self-absorption quan-

ification method. 

The experimental LIBS system, as we previously described in

etail [26,27] , consisted of a focused Nd: YAG laser (Innolas,

L-100, wavelength: 1064 nm, repetition rate: 10 Hz, pulse en-

rgy: 100 mJ) that generated the plasma, an echelle spectrograph

Lasertechnik Berlin GmbH LTB, ARYELLE Butterfly) that equipped

ith a time-gated ICCD (Andor, iStar DH334T), and an additional
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Fig. 1. Flowchart of the self-absorption quantification method for laser-induced plasma characterization. 
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CCD Camera (Andor, iStar DH334T) that recorded the plasma im-

ges. The laser was focused by a plano-convex lens of 200 mm fo-

al length to produce a focal spot diameter of 0.7 mm. The emis-

ion from the plasma plume was collected along the line of sight

erpendicular to the laser beam direction, above the target surface

.3 mm and then was guided to the echelle spectrograph by using

n all-silica optical fiber. Each spectrum was obtained by averaging

20 spectra with background subtracted. The acquisition delay and

ntegration times of the ICCDs were both set to 1 μs. 

. Results and discussions 

.1. Experimental results 

In LIBS, it is usually believed that the LTE condition exists in

ost plasmas obtained with metallic samples [23,28] . This as-

umption seems to be valid in our experiment. 

For step 1, the SA coefficients of four strongly self-absorbed

ines, Al I 308.21 nm, Al II 281.62 nm, Mg I 285.21 nm, and Mg II

80.27 nm were calculated. Since the instrumental line broaden-

ng exhibits a Gaussian profile, the Stark line width �λ can be

xtracted from the measured line width �λobserved by subtract-

ng the instrumental line broadening �λinstrument , by approximat-

ng �λ ≈ �λobserv ed −
�λ2 

instrument 
�λobserv ed 

[29] . In our case, �λinstrument were
.01 nm at 254 nm (corresponding to the four self-absorbed lines)

nd 0.03 nm at 546 nm (corresponding to the H α line), which were

etermined by measuring the FWHMs of the Hg lines emitted by

 standard low-pressure Hg-Ar lamp. Combined with step 2 and

, the detailed spectroscopic parameters of the four lines, together

ith their SA coefficients, optical depths, and area densities of the

mitting Al and Mg species at lower levels are listed in Table 1 .

he relative small SA coefficients indicate the existence of strong

elf-absorption behavior. 

Then for step 4, the spatially averaged electron temperature cal-

ulated by exploiting the modified Saha–Boltzmann plot is shown

s the red part in Fig. 2 . As can be seen, the electron temperatures

etermined by Mg and Al are 0.96 eV and 0.97 eV, respectively. In

rder to validate the modified Saha–Boltzmann plot, the traditional

oltzmann plot was also performed to make a comparison by using

ix Al I lines with and without self-absorption correction [17] (the

lue part of Fig. 2 ). The electron temperature after self-absorption

orrection is shown as 0.99 eV, which is in good accordance with

hat generated by the modified Saha–Boltzmann plots. 

For step 5, the area densities of emitting Mg and Al species

ere obtained by the Boltzmann distribution. After that, by ignor-

ng the second order and above ionization of plasma in this study,

he total area densities of Mg and Al elements were calculated

y summing over the corresponding area densities of neutral and

ingly ionized species according to step 6 and the calculated area



146 J. Hou et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 213 (2018) 143–148 

Table 1 

Spectroscopic parameters of the spectral lines and characteristics of the species. 

Species Wavelength λ (nm) Half-width Stark parameter ω ( ̊A) SA kl n i l (cm 

−2 ) Nl (cm 

−2 ) N (cm 

−3 ) 

Al I 308.21 2.81 × 10 −2 0.2930 3.28 2.74 × 10 14 1.10 × 10 15 5.52 × 10 15 

Al II 281.62 4.29 × 10 −3 0.3540 2.62 4.71 × 10 13 3.64 × 10 16 1.65 × 10 17 

Mg I 285.21 4.13 × 10 −3 0.1560 6.41 8.54 × 10 12 1.79 × 10 13 8.93 × 10 13 

Mg II 280.27 7.92 × 10 −4 0.0023 434.8 6.83 × 10 14 7.03 × 10 14 3.20 × 10 15 

Fig. 2. A comparison between the proposed modified Saha–Boltzmann plots for Al and Mg species and the traditional Boltzmann plots for Al species with and without 

self-absorption correction. 

Fig. 3. The dual-wavelength differential images for species Al I and Al II at 1 μs 

delay. 
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densities Nl are listed in Table 1 . Considering the atomic masses,

the weight ratio w Mg / w Al in the plasma was calculated as 0.0171,

which is in coincidence with the nominal value of 0.0150. 

For step 7, considering that in laser-induced plasma, differ-

ent species may have different spatial distributions, the dual-

wavelength differential imaging technique [24,25] was employed

to measure the exact absorption path lengths of the species. A

typical 2-D distribution of the species in a plasma is shown in

Fig. 3 , with Al I in red and Al II in green, from which the path

lengths of species Al I and Al II were estimated as 2.0 mm and
.2 mm, respectively. Regrettably, it was difficult to obtain the dif-

erential image of Mg species due to the intense interference from

djacent spectral lines. Since magnesium and aluminum have the

imilar physical and chemical properties (such as melting point,

tomic mass, chemical activity, etc.), we approximated that, in this

ork, the absorption path lengths of the Mg species were same as

hose of the Al species. Then the absolute number densities of the

pecies were obtained by dividing the area densities by these path

engths and listed in Table 1 . In our experiment, the electron den-

ity calculated from the H α line broadening was 1.72 × 10 17 cm 

−3 ,

hich is comparable with the absolute Al singly ionized number

ensities (1.65 × 10 17 cm 

−3 ). Evidently, the free electrons present

n the plasma are mainly contributed by the single ionized matrix

lement Al (with a nominal weight composition of 95%), account-

ng for more than 95.9% of contribution. In other words, the elec-

ron contribution of the other elements presented in the alloy as

ell as the air can be ignored. 

.2. Advantages and limitations 

Self-absorbed emission lines can be fruitfully used to charac-

erize the plasma. This method mainly employs the self-absorption

egree (except for the spectral intensity) of the self-absorbed lines

o directly deduce plasma characteristics including optical depth,

lectron temperature, elemental concentration ratio, and absolute

pecies number density. Therefore, not only the analysis results are

ot affected by the self-absorption effects, but also the spectral ef-

ciency calibration of the optical detection unit is not required.

his is especially important for prolonging the calibration period

f online LIBS application. 
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Fig. 4. The RSD of k ( λ0 ) l and RE of “1/ SA approximation” versus SA . 
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From Eq. (2) , the relationship between k ( λ0 ) l and SA indicates

hat the method is accurate when SA � 1. In this case, the spectral

ine is strongly affected by the self-absorption, and the k ( λ0 ) l tends

o the limit value of 1 /SA . In our experiments, the SA values of the

pectral lines were no more than 0.354, the errors between the

nverse k ( λ0 ) l values and the true ones were less than 7.8%. There-

ore, the k ( λ0 ) l can be calculated by the 1/ SA approximation. How-

ver, when SA is close to 1, the method will be no longer suited for

alculation due to the significant increase in optical depth uncer-

ainty. In this experiment, the relative standard deviation (RSD) of

A was about 5%, in which the corresponding RSD of k ( λ0 ) l and the

elative error (RE) of “1/ SA approximation” versus the SA are shown

n Fig. 4 . As can be seen, both the RSD of k ( λ0 ) l and RE of “1/ SA

pproximation” increase monotonously with SA . For k ( λ0 ) l calcu-

ation by using Eq. (2) , if the permitted RSD of k ( λ0 ) l is 10%, the

A coefficients of the selected lines should be limited to SA < 0.56.

urthermore, for k ( λ0 ) l calculation by using “1/ SA approximation”,

f the permitted RE of k ( λ0 ) l is 10%, the SA coefficients should be

imited to SA < 0.38. 

.3. Error analysis 

In summary, this self-absorption quantification method consists

f two assumptions: the plasma is homogeneous, where the tem-

erature and electron density gradients have no effects on the

pectral line profiles; the plasma is in the LTE condition, where

he energy level distribution of species follows the Boltzmann dis-

ribution law [17,21] . Under these assumptions, one can assume a

oint emission source located in the center of the plasma, which is

urrounded by uniform plasma of thickness l and absorption coef-

cient k ( λ). In addition, there are three approximations: the emis-

ion line has a normalized Lorentzian profile that depends on the

tark effect, other broadening mechanisms are neglected; for op-

ical depth calculation, the effect of stimulated emission with re-

pect to plasma absorption is neglected [9,12] ; the second- and

igher- order ionization states of species are ignored. Since this

ethod uses a number of developed theories to calculate the

lasma characteristic parameters, and each theory has its appli-

able model and corresponding approximation, it is only a semi-

uantitative analysis method. 

The analysis precision of this method was also evaluated by us-

ng the classical error propagation theory. Firstly, the SA error can
e estimated from Eq. (3) as: 

�SA 

SA 

= 

∣∣∣ 1 

α

∣∣∣
√ (

�w S 

w S 

)2 

+ 

(
�n e 

n e 

)2 

= 

∣∣∣ 1 

α

∣∣∣
√ (

�w S 

w S 

)2 

+ 

9 

4 

(
�w H 

w H 

)2 

. (10) 

Here, the w s errors for the four lines Al I 308.21 nm, Al II

81.62 nm, Mg I 285.21 nm, and Mg II 280.27 nm were 15%, 8%,

0%, and 20%, respectively [30–32] , while the w H (of H α) error was

0% [22] . Consequently, the SA errors for the four lines were calcu-

ated to be 39%, 31%, 46%, and 46%, respectively. 

Secondly, because the expression of Eq. (2) is an implicit func-

ion type, the k ( λ0 ) l error caused by SA can only be solved numer-

cally. In our experiment, the SA coefficients of the four lines were

.293, 0.354, 0.156, and 0.0023, respectively, which correspond to

 ( λ0 ) l errors of 52%, 42%, 59%, and 58%. 

Then, the n i l error can be estimated from Eq. (6) as: 

�n i l 

n i l 
= 

�k ( λ0 ) l 

k ( λ0 ) l 
. (11) 

Thus, the n i l errors equal to the k ( λ0 ) l errors . 

Next, the T error was estimated by calculating the relative error

f the slope of the modified Saha–Boltzmann plot, which is about

%. 

The Nl error can be estimated from Eq. (7) as: 

�Nl 

Nl 
= 

√ (
�n i l 

n i l 

)2 

+ 

(
�Z 

Z 

)2 

+ 

(
E i 

k B T 

)2 
(

�T 

T 

)2 

, (12) 

here the partition function error was neglected when it was

ompared to the other two higher sources of error [33] . Thus, the

l errors were found to be 52%, 44%, 59%, and 58%, respectively,

or the four species of Al I, Al II, Mg I, and Mg II. Obviously, the N

rrors equal to the Nl errors. 

The total area density N total l error of an element can be esti-

ated as: 

�N total l 

N total l 
= 

�N 

I l + �N 

II l 

N total l 
, (13) 

here N total l = N 

I l + N 

II l . The N total l errors were calculated to be 44%

or Al and 58% for Mg. 



148 J. Hou et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 213 (2018) 143–148 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

[  

 

 

 

 

[  

 

[  

 

 

 

 

 

 

[  

 

 

 

 

 

 

 

[  

 

 

 

Finally, the w Mg /w Al error can be estimated as: 

�
(
w Mg / w Al 

)
w Mg / w Al 

= 

√ (
�N total,Mg l 

N total,Mg l 

)2 

+ 

(
�N total,Al l 

N total,Al l 

)2 

, (14)

where N total,Mg l and N total,Al l represent the total area density of Mg

and Al, respectively. The w Mg /w Al error was calculated to be 73%. 

5. Conclusions 

In this work, we proposed a self-absorption quantification

method to directly obtain the plasma characteristics from the self-

absorbed spectral lines, such as optical depth, electron tempera-

ture, elemental concentration ratio, and absolute species number

density. Experimental results performed on aluminum-lithium al-

loy showed that the mean electron temperatures obtained by the

modified Saha–Boltzmann plots was 0.965 eV, which is close to

that by the traditional Boltzmann plot with self-absorption cor-

rection. The weight ratio w Mg / w Al in the plasma was calculated as

0.0171, which is approximately coincident with the nominal value

of 0.0150. The absolute singly ionized number density of matrix

element Al was 1.65 × 10 17 cm 

−3 , which was comparable with the

electron density (1.72 × 10 17 cm 

−3 ). In addition, the limitations and

the precision of the method were also discussed. For k ( λ0 ) l , the SA

coefficients in the numerical calculation and the “1/ SA approxima-

tion” were limited to less than 0.56 and 0.38, respectively. The er-

rors estimated for temperature and elemental concentration ratio

were 2% and 73%, respectively, while the errors of absolute num-

ber density of species Al I, Al II, Mg I, and MgII were 52%, 44%, 59%,

and 58%, respectively. The advantage of this method is that the

analysis results are not affected by the self-absorption effects, and

no spectral efficiency calibration is required. This self-absorption

quantification method is of great significance for semi-quantitative

LIBS analysis, especially for the CF-LIBS. 
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