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Magnetic order in a Fermi gas induced by cavity-field fluctuations
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We show that cavity-field fluctuations can induce interesting magnetic phases and phase transitions in an
atom-cavity coupled system. Adopting a numerical density-matrix-renormalization-group method, we study the
steady state of a two-component Fermi gas subject to cavity-assisted Raman coupling in a one-dimensional
lattice at half filling. The cavity-enhanced atom-photon coupling introduces a dynamic long-range interaction
in the atoms, which competes with the short-range on-site interactions and leads to a rich phase diagram with a
variety of magnetic orders. Importantly, as all the phase transitions take place outside the superradiant regime,
the magnetic orders are associated with cavity-field fluctuations with a vanishing number of photons on the

mean-field level.
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I. INTRODUCTION

Coherently driven atomic gases inside optical cavities have
attracted much research interest of late [1]. In these systems,
as the atoms serve as a nonlinear media between the external
pumping and the cavity field, cavity photons feed back on the
atomic degrees of freedom, effectively imposing a dynamic
potential on atoms. These dynamic potentials are responsible
for interesting nonequilibrium collective dynamics and exotic
steady states, which are the subjects of intensive experimental
and theoretical study [2-38] .

Recently, a series of seminal experiments has demonstrated
the impact of various dynamic potentials on atomic gases
inside cavities [2-8]. A prominent example is the observation
of the supersolid phase transition in a transversely pumped
Bose-Einstein condensate coupled to a cavity [2—4]. In the
experiment, as the cavity field becomes superradiant, the
back action of the photons induces a dynamic superlattice
potential and drives atoms into a self-organized steady state.
Further, it has been predicted theoretically [9-14] and sub-
sequently experimentally verified [5—8] that cavity-induced
dynamic long-range interactions can lead to a rich phase di-
agram for a Bose-Hubbard model inside a cavity. Meanwhile,
much theoretical effort has been dedicated to the study of
cavity-assisted dynamic gauge potentials, both Abelian [15—
19] and non-Abelian [20-26], in atom-photon ensembles,
with the prospect of generating anomalous nonequilibrium
dynamics [15-17] or steady states with exotic phases and
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correlations [18-24]. Whereas most previous studies focus on
the superradiant regime, where the cavity field is essentially in
a coherent state, the cavity-field fluctuations become crucial
away from superradiance. An intriguing question is then
the clarification of the impact of cavity-field fluctuations on
atoms.

In this work, we show that fermions coupled to a cavity can
develop interesting magnetic phases under the dynamic long-
range interaction driven by cavity-field fluctuations. We focus
on the steady state of a two-component Fermi gas in a one-
dimensional optical lattice coupled to a cavity via the Raman
transition. The fermions can be effectively described by an
extended Hubbard model with both on-site and dynamic long-
range interactions [27]. As the long-range interaction features
spin-flipping processes, it competes with the spin-conserving
on-site interactions and leads to the emergence of magnetic
correlations and, consequently, various magnetic orders in the
steady state.

Adopting the numerical density-matrix-renormalization-
group (DMRG) method, we map out the steady-state phase
diagram and demonstrate that, as the cavity parameters are
tuned, the system is driven from an antiferromagnetic state
to a ferromagnetic state, with various anisotropic magnetic
orders lying in-between. As magnetic phase transitions take
place in an effectively blue-detuned cavity in the absence
of superradiance, they are driven by cavity-field fluctua-
tions rather than the superradiance. Our work is therefore in
sharp contrast to previous theoretical and experimental studies
[2-12,15-38], where the focus has been on the phenomena
induced by the superradiance.

The work is organized as follows. In Sec. II, we describe
the proposed system configuration and present the effective
Hamiltonian. In Sec. IIl, we calculate the phase diagram
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FIG. 1. (a) Fermions in a one-dimensional lattice potential are
loaded into a high-finesse optical cavity, which is subject to a linearly
polarized transverse pumping laser. (b) The pumping laser and the
cavity field couple two hyperfine states in two separate Raman
processes. See the main text for the definitions of the labels.

and characterize the effects of cavity-induced long-range in-
teractions using the DMRG approach. We discuss in detail
the fluctuation-induced magnetic phases in Sec. IV, and we
summarize in Sec. V.

II. MODEL

We consider a two-component Fermi gas in a quasi-one-
dimensional optical lattice potential inside a high-finesse opti-
cal cavity. As shown in Fig. 1, while the lattice and the cavity
are aligned along the x axis, the atoms are tightly confined
in the transverse directions so that only the atomic motion
along the x direction is relevant. The cavity is subject to
a transverse pumping laser, which, together with the cavity
field, couples the two hyperfine states ({| |), | 1)}) of the
fermions in two separate Raman processes (we take the z
direction as the quantization axis). The cavity frequency .
is close to that of the pumping laser w,, both of which are
red-detuned from the electronically excited states ({|1), |2)})
with large single-photon detuning A > g and 2. Here g is the
single-photon Rabi frequency of the cavity field, and €2 is the
Rabi frequency of the pumping laser.

By adiabatically eliminating the excited states and adopt-
ing the tight-binding approximation, the Hamiltonian of the
system can be written as (see Appendix A for details, i = 1
throughout)

afa — 1y (@l ¢410 +He)

J.o
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+ (@’ +a)Moy (1) @he;y +ét e
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where (a,a') are the field operators for the cavity pho-
tons in the frame rotating with the frequency w,, c;a (Cjo)
creates (annihilates) a fermion with spin o (o =1, |) on
site j, and the density operator 7, = éj.aé jo- The cav-
ity detuning is given by A. = w. — w,, and the effective
pumping strength n = vgQ/A, with the constant v com-
ing from transverse integrals [22]. U; and t are respec-
tively the on-site interaction strength and the lattice hopping
rate. We also have M| = % fde;k cosz(kox)Wj and M, =
[ dxW¢ cos(kox )Wy, where W; is the Wannier function cen-
tered at site j and kg is the wave vector of the cavity field.
Here we have assumed that the background lattice potential
is much deeper than cavity-field shifts, such that the Wannier
functions as well as U, and ¢ are approximately static. We
have also neglected the Zeeman terms of the hyperfine spins,
which corresponds to a vanishing external magnetic field. We
have checked that our main results are robust under a small
Zeeman field (see Appendix B).

Taking the cavity decay into account, we derive the steady-
state solution d;a@ = O from the Heisenberg equations

nMy

a= —
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J

where « is the cavity decay rate, the effective cavity detuning
§ = NM; — A., and N is the total atom number. The factor
(—1)/, also appearing in Hamiltonian (A7), derives from the
spatial dependence of the Raman potential associated with
My, which has twice the period of the background lattice
potential. The Raman potential and hence the on-site spin-
flipping terms have opposite signs on adjacent sites (see
Appendix A).

Importantly, the steady-state cavity field a is associated
with the antiferromagnetic spin correlations along the x di-
rection, as a Zj(—l)jé';axéj, where o, is the corre-
sponding Pauli matrix and C; = (cj4, ¢j;)”. Whereas such a
relation plays a key role in driving fermions into the magnet-
ically ordered phases, this point becomes immediately clear
if we adiabatically eliminate the cavity field in the large-
decay limit [27], where the energy of the atomic motion is
much smaller than that of photons. The resulting effective
Hamiltonian of fermions is essentially an extended Hubbard
model with both on-site and dynamic long-range interactions:
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Here U;/L = |17M0|2S/(S2 + «?), where L is the total num-
ber of lattice sites. Note that while # and U can be tuned
by adjusting lattice parameters, the long-range interaction
strength U; can be tuned over a wide range by adjusting
parameters such as €, §, and g. Note that we are working
in the regime with x > n, where dissipative processes play a
minor role [33].

The competition of the spin-preserving on-site interac-
tions (characterized by Uy) and the spin-flipping long-range
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interactions (characterized by Uj) can give rise to interesting
magnetically ordered phases. This is particularly true if we
consider a repulsive on-site interaction with Uy > 0, where
it is well known that an isotropic antiferromagnetic order is
favored at half filling when U; = 0 [39-43]. In contrast, for
large and positive U;, the formation of an antiferromagnetic
order along the x direction would be hindered, and the system
should favor a ferromagnetic order along the x direction.
Therefore, a quantum phase transition should occur between
these limiting cases. Further, as the dynamic long-range in-
teraction breaks the SO(3) symmetry of the original Hubbard
model into an SO(2) rotational symmetry around the x axis,
the magnetic orders should in general be anisotropic.

To clarify the impact of the dynamic long-range interaction
on the magnetism of the steady state, in the following, we
perform numerical simulations using the DMRG calculations,
for which we retain 150 truncated states per DMRG block and
perform 20 sweeps with a maximum truncation error ~1075.
We focus on a half-filled lattice (N/L = 1) with repulsive
on-site interactions U; > 0 under open boundary conditions.

III. EFFECT OF THE DYNAMIC LONG-RANGE
INTERACTION

The existence of the magnetic order can be characterized
by the static spin structure factor [44-47]

1 ik(l—j) a0 ac
Sulk) = Z;e KD (spse), “

where §j‘ = %Cjoacj and o, (¢ = x, y, z) are the Pauli ma-
trices. As the position of peaks in S, (k) characterizes the
spatial variation of spin orientations projected into the o
direction, peaks at k = &7 and k = O represent respectively
antiferromagnetic and ferromagnetic orders in the correspond-
ing direction [44—47]. Alternatively, we can characterize the
magnetic order using the spin correlation function

1
Calr) = 7 D757 ®)

I

where r is the distance between different sites. The advantage
of C,(r) is that it offers an intuitive picture of the spatial
distribution of the spin correlations [46-54]. More specifi-
cally, for an antiferromagnetic state, the sign of C,(r) should
alternate as r increases; while for phases with dominantly
ferromagnetic correlations, C, () should become purely pos-
itive [47-53].

We first study the variation of S,(k) (¢ = x,z) with
different values of U; at a fixed ¢/U, = 0.1. As illustrated
in Figs. 2(a) and 2(b), when U; =0, S,(k) and S, (k) peak
identically at k = £, which is consistent with the existence
of an isotropic antiferromagnetic order in the ground state
of a repulsive Hubbard model at half filling. This is further
confirmed by the spin correlations, as C,(r) and C, (r) oscil-
late identically around zero as r increases [see Figs. 2(c) and
2(d)]. For finite U; however, the system is only isotropic in
the transverse directions, which is reflected in the drastically
different peak structures along the x direction and the z
direction when U; # 0.
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FIG. 2. Spin structure factors (a) S, (k) and (b) S,(k) and spin
correlation functions (¢) C,(r) and (d) C,(r) for systems with
t/Us = 0.1, L = 64, and a varying U,/ U;.

For U; < 0, the system features anisotropic antiferromag-
netic orders along the x direction and the z direction, as
S, (k) and S, (k) still peak at k = 7 but with different peak
structures. The spin correlations also behave differently along
the two directions. Whereas the oscillations in C,(r) exhibit a
power-law decay, C,(r) appears to be undamped, suggesting
long-range antiferromagnetic order. Note that, as the dynamic
interaction is of infinitely long range, the emergence of long-
range correlations in one dimension is understandable.

As U; becomes positive, a new peak at k = 0 immediately
emerges in S;(k), which suggests the building up of ferro-
magnetic correlations. The peak at k = 0 eventually becomes
higher than that at k = 7, as Uj is increased beyond a critical
value of U;/ U, ~ 16, which we associate with a transition
from antiferromagnetism to ferromagnetism in the transverse
direction. Such a transition can be confirmed by the spin
correlations, as C,(r) becomes purely positive beyond the
critical Uj.

The situation along the x direction is more complicated.
As soon as U; becomes positive, the peak in S, (k) is shifted
away from k = m. This suggests that the spin orientations
become noncollinear in the x direction, which we identify
as an incommensurate antiferromagnetic order [55]. In the
incommensurate antiferromagnetic state, C,(r) still features
oscillations around zero, but with periods incommensurate
with that of the lattice. At larger U;, the competition between
the on-site and the long-range interactions gives rise to mul-
tiple peaks in S, (k), which eventually merge into a single
one at k = 0 when U, is increased above a critical value of
U;/Us =~ 27. Therefore, when the long-range interaction is
strong enough, the system becomes ferromagnetic along both
the x direction and the transverse directions, where both C,(r)
and C, (r) become purely positive.

With the understanding above, we map out the phase
diagram of the system in the U;-t plane. The magnetic orders
are identified from the peak locations in the corresponding
structure factors (see Table I for detailed descriptions). For
example, the phase boundaries for the ferromagnetic orders
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TABLE I. The correspondence between v, and different mag-
netic phases, where ¥, denotes the position of the highest peak in
Sy (k) (¢ = x and 7).

Position of peak AF FM AF.-IAF, FM_-IAF,
A +r 0 +r 0
Uy + 0 #0, £ #0, 7

are determined by requiring the peak at k = 0 be equal in
height to the highest peak elsewhere. Phase boundaries deter-
mined from peaks in the spin structure factors are consistent
with those calculated from the signs of the spin correlation
functions (see Appendix C).

As shown in Fig. 3, in the transverse directions, the system
changes from an antiferromagnetic phase to a ferromagnetic
phase at positive U;. While in the x direction, the steady
state is antiferromagnetic for U; < 0, incommensurate anti-
ferromagnetic for intermediate U;, and ferromagnetic in the
large U; limit. The magnetic order is indeed anisotropic in
general. Note that as the phase diagram is obtained for a
finite-size lattice, we have numerically confirmed its validity
in the thermodynamic limit L — oo using a finite-size-scaling
analysis (see Appendix D).

IV. CAVITY-FIELD FLUCTUATIONS

As the cavity field is associated with the antiferromagnetic
correlations according to Eq. (2), it serves as the driving force
behind magnetic transitions. To further clarify the role and the
behavior of cavity photons throughout the phase transitions,
in Fig. 4, we plot the number of cavity photons (afa) in the
steady state with varying U;. For comparison, we also show
the square of the mean cavity field |(@)|>, which should be
close to (aa) when the mean-field approximation a ~ (a) is
valid.
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FIG. 3. The phase diagram in the U,;-t plane for a system with
L = 64. AF, FM, and IAF correspond to antiferromagnetic state,
ferromagnetic state, and incommensurate antiferromagnetic state,
respectively, with the subscripts indicating the direction of the
magnetic order. The definitions of the different phases are listed in
Table L.
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FIG. 4. (a) The cavity photon number and (b) the cavity-field
fluctuation (8a'8a)/(ata) as a function of U, where we have taken
t/Uy, =0.1,8/U, = 1,and L = 64.

In Fig. 4(a), at a first glance, we can identify a superradiant
transition, where |(a)|> becomes finite, for an effectively
red-detuned cavity (5 < 0,U; < 0). As U, decreases further,
|(@)|* increases and rapidly approaches (a'a). This indicates
that the cavity field can be described by a coherent state when
the system is in the superradiant regime.

In contrast, in the region where the cavity is effectively
blue-detuned (8§ > 0, U; > 0) and where all the magnetic
phase transitions take place, the cavity is not superradiant,
as |(a)|> remains vanishingly small. This is consistent with
a recent experiment [38], where the absence of superradiance
has been reported for a blue-detuned cavity. In this region, the
cavity is dominated by fluctuations as |(@)|> deviates consid-
erably from the photon number (a'a). In Fig. 4(b), we char-
acterize cavity-field fluctuations with (8a'sa)/(ata) (sa =
a — (a)), which vanishes in a coherent state and approaches
unity in the case of large cavity fluctuations. Apparently, both
the incommensurate antiferromagnetic and the ferromagnetic
orders are induced by the cavity-field fluctuations instead of
superradiance.

With increasing Uj, the cavity photon number undergoes a
nonmonotonic change, with a peak situated at U;/U; =~ 5.5.
To understand this behavior, we can relate the cavity photon
number to the structure factor:

<wm=4%&w=ny (6)

According to Eq. (6), the steady-state photon number is col-
lectively determined by both U; and the static structure factor
Sy (k = m). Therefore, an antiparallel spin configuration will
feed back positively on the cavity photon number and vice
versa. In the absence of the atom-photon coupling (U; = 0),
the photon number is equal to zero, and the fermions are
in the antiferromagnetic state. A small and positive U; is
not sufficient to break the intrinsic antiferromagnetic order
of the system, which in turn gives rise to an increase of the
photon number. By increasing U; further, the ferromagnetic
configuration starts to dominate, which will then decrease
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the photon number. In the large-U; limit, the average photon
number monotonically approaches zero, as the steady state
acquires an anisotropic ferromagnetic order. While the lack of
superradiance for U; > 0 is consistent with mean-field results
with U; = 0 (see Appendix E), the characterization of the
steady-state in this region is clearly beyond the mean-field
approach.

Finally, as the long-range cavity-induced interaction U
drives ferromagnetic phase transitions, transition tempera-
tures can be estimated using the values of U; on the corre-
sponding phase boundaries in Fig. 3. Importantly, the value of
U, can be quite large under typical experimental parameters.
For example, adopting typical parameters of °Li atoms and
fixing the transverse harmonic confinement frequency, the
recoil energy, and the hopping rate as o, , = 2w x 22.5 kHz,
E, =73.7 kHz, and t/U; = 0.1, respectively, the estimated
transition temperature for FM,-IAF, is ~6 K, while that for
FM is ~10 K. These temperatures are quite accessible under
current experimental conditions for fermions in optical lattice
potentials [45,52,56].

V. CONCLUSION

We have shown that magnetic phases and phase transitions
can be induced by cavity-field fluctuations away from the
superradiant regime. Such a behavior is drastically different
from previous studies focusing on the effects of superra-
diance, where the mean-field approach is applicable. Mag-
netic phase transitions lead to signals in the spin dynamic
structure factor, which can be detected by measuring the
photons leaking out of the cavity [57]. Alternatively, magnetic
orders can be probed by constructing the spin correlation
function from spin-resolved in sifu measurements [51,56].
In a very recent experiment [58], spin textures have been
probed in the steady state of a quantum gas inside the
cavity, which indicates that experimental tools for prob-
ing magnetism in atom-cavity hybrid systems are already
available.
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APPENDIX A: EFFECTIVE HAMILTONIAN

In this section, we provide more details on the derivation
of Hamiltonian (1) in the main text. We start by considering
the coupling of internal states of a single atom, as illustrated

in Fig. 1(b) in the main text. The Hamiltonian can be written
as HD = A" + A", where

A= > wli)il +wa'a, (A1)
i=1,2,1.4
H" = — Q)] + [2) (e Hho)
— g@IN{1a+12)(tlal +He.  (A2)

In the Hamiltonians (A1) and (A2), w; denotes the eigen-
frequency of the atomic state |i) (i =1, 2, 1, and |). The
field operator a describes the annihilation of a cavity photon
with the frequency w.. The Raman channels are driven by
the two circularly polarized components of the transverse
pumping laser with the frequency w, and the single-photon
Rabi frequency €2. The space-dependent atom-cavity coupling
is given by g(x) = gcos(kox) (j = 1 and 2), where g; is the
coupling constant and k is the cavity-field wave vector. H.c.
denotes the Hermitian conjugation.

We introduce a time-dependent unitary transformation,
U(t) = exp [i(X,—s,, l0) (o] + a'a)w,t], under which A®
becomes

AY = Acala+ A1) + A2)(2] — [g cos(kox)| 1)(} |
+ g cos(kox)[2)(11a + Q1) (1] + 212) (4] + Hee]
+m (1) (1] = )LD (A3)

where A, = w. — w,, is the cavity detuning, A = w; — w, ~
w; — w, denotes the single-photon detuning, and m, = (wy —
w})/2 is the Zeeman energy. We work in the limit of large
single-photon detuning |A| > {|2], |g|, |A.|}, which allows
us to adiabatically eliminate the excited states |1) and |2). The
resulting effective Hamiltonian is given as

AY = wa'a + ny costkox)(|L) (M + 1) (L@ +a)
+m (I = 1D, (A4)

where @ = A, — ecos?(kox) and 1y = gQ/A, with ¢ =
gI*/A.

To describe the dynamics of N atoms in a background
lattice potential and with inter-atomic interactions, we extend
the single-particle Hamiltonian A to the second-quantized
form

H=Ada+) / d%@(r)[% + (Vo —eata)
x cos?(kox) + VR(r):| U, (r) + no cos(kox )@ + @)
X / e[ () + ¥ 0¥ ()
T / Pyl o¥] 0, 0 1)

+m, / RO AOER NGOG NS
where \ilg (r) denotes the field operator for annihilating an
atom with spin o (0 =1 and |) at position r, and Uy =
4magh®/m models a two-body short-range interaction, with
a, being the s-wave scattering length. In Eq. (AS), be-
sides the kinetic-energy term p?/2m, the background opti-
cal lattice V cos?(kox) (Vo < 0) and the transverse trapping
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FIG. 5. Spin structure factors and spin correlation functions for systems with /U, = 0.2, L = 64, and a varying U,. The top panels [panels
(a)—(d)] correspond to m,/ U, = 0.01 and the bottom panels [panels (e)—(h)] correspond to m_ /U, = 0.05.

potential Vg (r) are added. We further assume Vg(r) is strong
enough so that the atomic motion in the transverse direc-
tion is frozen to the ground state. This enables us to inte-
grate out the transverse degrees of freedom using W, (r) =
2/, (x) exp [—(¥? + z2%)/p?], where p is a trans-
verse characteristic length. The simplified one-dimensional
Hamiltonian thus reads

)
A = AC&TEH—Z”:/dxg?fi(x)[é)—;+(Vo—s&T&)cos2(kox):|
~ U o N o ~
<o)+ 5 [ i imiw
+ 1 cos(kox)(a'+a) / dx[ ) () + 9 0 ()]

+m, f dx [} () () — P oy (), (A6)

where U = Uy/(p?) and n = v, with v = exp(—k§p2/8).

Assuming a deep background lattice potential with |Vy| >
e(a'a), we expand the field operator Vo (x) in terms of
the lowest-band Wannier functions W(x — x;) of the back-
ground lattice potential: ¥, (x) = Zj(, Cjo W(x — x;), where

Cio (6;(,) is the operator annihilating (creating) an atom in the
lowest band at site j. Keeping only on-site interactions and
neglecting the higher-order corrections to the tunneling by the
self-consistent cavity lattice [7,27], we obtain the single-band
tight-binding Hamiltonian

A=|ac—m i, |ata—1) @,e500 +He)
jo jo
+n(a’ +a)Moy (=1 (@},¢;, +¢},¢50)
J

U, R R R
+ j;an”ji + mz;(”m —7j)), (A7)

where  fijq = ¢l 810, t = [dxW*(x —x;)[p2/2m + Vo
cos?(kox)IW(x — xj+1), My = [dxW*(x — x;)cos?(kox)
W(x — x;), My = [dxW*(x — xo) cos(kox)W (x — xp),

and U; = dex|W(x —xj)|4. The factor (—1)7 in above
equation results from the spatial dependence of the Raman
potential [the last term in Eq. (A5)], which has twice the
period of the background lattice potential. The Raman
potential and the on-site spin-flipping terms hence have
opposite signs on adjacent sites. In the limit of the vanishing
Zeeman field m,, Eq. (A7) reduces to Hamiltonian (1) in the
main text.

APPENDIX B: MAGNETIC ORDERS UNDER A FINITE
ZEEMAN FIELD

We show the impact of a finite Zeeman field m, on the
spin structure factors and spin correlation functions. As shown
in Fig. 5 (top row), when the Zeeman field is small, signals
of all phases in Fig. 3 are still present. The phase diagram
is therefore robust against a small Zeeman field. However,
when the Zeeman field becomes larger, as illustrated in Fig. 5
(bottom row), the spins get polarized along the z direction,
such that the system remains ferromagnetic even for U; < 0.
The magnetic correlations along the x direction are more
robust and persist at the larger Zeeman field.

APPENDIX C: DETERMINATION OF THE
PHASE BOUNDARY

In the main text, we identify different magnetic orders
using the position of the highest peak in the spin structure
factor. As we discuss in the main text, the phase boundaries
determined in this manner agree well with the sign of the spin
correlation function C, (r) (¢ = x and z), i.e., C,(r) oscillates
around O in phases with antiferromagnetic correlations or in-
commensurate antiferromagnetic correlations but stays purely
positive in phases with ferromagnetic correlations.
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FIG. 6. The nearest-neighbor correlation C,(r =1) (¢ =x
and z) as a function of the interaction strength U; calculated for
different t/ U,.

The validity of this criterion is further supported by the
sign of the nearest-neighbor correlation function Cy(r = 1)
(¢ = x and z), as recently discussed in Refs. [49,53]. In
Fig. 6, we show the evolution of C,(r = 1) as a function of
U;/ U for two representative values of t/U,;. Compared to
corresponding points in the phase diagram shown in Fig. 3, it
is clear that positions of the sign change in C, (r = 1) coincide
with the phase boundaries between the ferromagnetic phase
boundaries.

APPENDIX D: FINITE-SIZE SCALING

We show the finite-size scaling of four representative
points in the phase diagram in Fig. 7. It is apparent that
the critical points remain finite in the thermodynamic limit
L — oo, which confirms the validity of the phase diagram
in the main text.

120
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100 s
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FIG. 7. The finite-size scaling of the critical interaction strength

U, calculated for two different values of ¢/ U,. The scaling function
is a second-order polynomial in 1/L.
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FIG. 8. Comparison of the cavity photon number |«|? from the
mean-field (MF) calculation (blue), as well as the square of the
cavity field |(@)|? (red) and the photon number (afa) (black) from the
DMRG calculations. We focus on the case with & /t =10, Uy =0,
and L = 64.

APPENDIX E: SELF-CONSISTENT MEAN-FIELD
CALCULATION OF THE CAVITY FIELD

In the absence of the on-site interaction (U, = 0), the
superradiance of the cavity field can be characterized under
the mean-field approximation.

We start from the tight-binding Hamiltonian (1) in the
main text. Employing the local unitary transformation ¢ —
(—1)/¢;4, the Hamiltonian becomes

A =-8ata—1y (@l 510 +He)
j.o
+n(a" + a)MOZ(e}@N +éh,8p).  (ED)
J
The Heisenberg equation for & is
da = (8 —x)a—inMey @hej +el e, (B
J

where the parameter § is defined in the main text. Under the
mean-field approximation (@) = « and using the steady-state
condition 0, = 0, we have
nMo At A At A
o = iK_i_SZ(CjTle_‘_Cj‘LCjT). (E3)
J

Note that the cavity is assumed to be in a coherent state
under the mean-field approximation, with the average photon
number given by |a|?.

The cavity field o can be calculated self-consistently as
the following: (i) diagonalize the Hamiltonian ( (E1)) from an
initial value of the cavity-field «y; (ii) determine the chemical
potential from the number equation N = ZN (éjﬂé jo)s (ii1)
update the cavity field o with Eq. (E3); and (iv) replace
oo with the current value of o and repeat steps (i)—(iii)
until « converges. In Fig. 8, we show the calculated average
photon number |a|?> (blue). For comparison, we have also
plotted |(a)|* (red) and the photon number (a'a) (black) from
the DMRG calculations. From the mean-field results, it is
apparent that the system is superradiant for U;/t < —0.3.
In the superradiant regime, the mean-field average photon
number |«|> agrees well with both |(@)|*> and (a'a) from
the DMRG calculations. However, for U; > 0, the system is
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not superradiant, as both |«|?> and |(@)|? vanish while (a'a)
remains finite. The finite photon number (a'a) is the result
of cavity-field fluctuations, whose effects on the fermions are

beyond the mean-field description. We note that the overall
picture here is consistent with Fig. 4 in the main text, where a
finite on-site interaction is considered.
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