PHYSICAL REVIEW A 98, 012331 (2018)

Robust quantum state transfer via topological edge states in superconducting qubit chains
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Robust quantum state transfer (QST) is an indispensable ingredient in scalable quantum information processing.
Here we present an experimentally feasible mechanism for realizing robust QST via topologically protected edge
states in superconducting qubit chains. Using superconducting Xmon qubits with tunable couplings, we construct
generalized Su-Schrieffer-Heeger models and analytically derive the wave functions of topological edge states.
We find that such edge states can be employed as a quantum channel to realize robust QST between remote qubits.
With a numerical simulation, we show that both single-qubit states and two-qubit entangled states can be robustly
transferred in the presence of sizable imperfections in the qubit couplings. The transfer fidelity demonstrates a
wide plateau at the value of unity in the imperfection magnitude. This approach is general and can be implemented

in a variety of quantum computing platforms.
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I. INTRODUCTION

To realize large-scale quantum information processing,
quantum states need to be coherently transferred between
distant nodes in a quantum network [1-3]. Several techniques
have been proposed to implement robust quantum state transfer
(QST) in various physical systems, such as photon pulse
shaping of an atom’s coupled optical cavity [4,5], transfer
via spin chains and spin-wave engineering [6—10], frequency
conversion via an optomechanical interface [11], and quantum
error correction [12,13]. However, the inevitable existence of
environmental noise and parameter imperfection can strongly
limit the fidelity of QST.

Topological phenomena, rooted in the global property of
topological matters, provide a natural protection against per-
turbation and disorder [14,15]. Non-Abelian anyons generated
in topological materials assisted with braiding operations have
been intensively explored for topological quantum computing
[16,17] . The topologically protected Hall conductance is
insensitive to disorder in the electronic systems [18,19]. More-
over, topologically protected edge states can be used for robust
disorder-immune photonic and phononic transport [20-22].
Recently, topological properties have been employed for QST
via two-dimensional chiral spin liquids and topological dipolar
lattice [23,24], which relies on the realization of controllable
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coupling between qubits and the topological systems and
is challenging to implement. Therefore, it would be highly
desirable to have a topologically protected QST that can be
implemented in practical qubit systems.

Here we present an experimentally feasible mechanism for
implementing robust QST via the topological edge states in
superconducting qubit chains. By connecting superconduct-
ing Xmon qubits into a one-dimensional chain with tunable
couplings [25-27], generalized Su-Schrieffer-Heeger (SSH)
models [28,29] are constructed, which support various topo-
logical phases. We analytically derive the wave functions of
the topological edge states in the above generalized SSH-type
qubit chains and show that they have different forms of entan-
gled states inside. More importantly, via adiabatical ramping of
the qubit couplings, we find that these topological edge states
can be used as topologically protected quantum channels to
realize robust QST of single- and two-qubit entangled states.
Using a numerical simulation, we quantitatively characterize
the topologically protected robustness of the QST against
qubit coupling disorders. Our result reveals that the QST is
topologically protected by the finite energy gap between the
bulk and the edge states and the transfer fidelities have a plateau
at the value of unity in the presence of a sizable qubit-coupling
imperfection. This protocol only requires tunable coupling
between the qubits and can be implemented in various qubit
systems, such as trapped ions [30,31], cold atoms [32,33],
nitrogen-vacancy centers [34], electronic spins [35], and op-
tomechanical systems [36].

This paper is organized as follows. In Sec. II, we present
the generalized SSH-type qubit chains. In Secs. III and IV,
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we separately study how to transfer single-qubit states and
two-qubit entangled states via the topological edge states in the
p =2 and p = 3 SSH-type qubit chains. We also investigate
their robustness to qubit coupling imperfections. In Secs. V
and VI, we give experimental discussions and a summary of
our results.

II. GENERALIZED SSH-TYPE QUBIT CHAINS

The generic setup for robust QST of single- or two-qubit
states via the topological edge states in the generalized SSH-
type qubit chains is illustrated in Fig. 1(a). This protocol is
applicable to various qubit systems, but for concreteness, here
we focus on the superconducting Xmon qubit chain [37]. As
shown in Fig. 1(b), the coupling strength J, between adjacent
Xmon qubits can be tuned smoothly by varying the current in
the coupler [25-27]. The corresponding Hamiltonian for the
Xmon qubit chain is

ZJ 66, +He, (1)

where 67 = |e), (g|. We further let the tunable qubit coupling
strength J, = go 4+ g1 cos(2nx/p 4+ 6), where gy and g; are
the coupling constants, p is the number of qubits in one unit
cell, and 6 is a control parameter. Such a Xmon qubit chain
generalizes the topological SSH model [28,29]. For p = 2,
each unit cell in the qubit chain has two qubits and the system
can be described by a standard SSH model Hamiltonian with
its topological phases characterized by winding numbers [38].
For p > 2, each unit cell has p qubits and the qubit chain is
described by a generalized SSH model Hamiltonian, where
Chern numbers are employed to characterize the topologi-
cal phases [39]. According to the bulk-edge correspondence
[14,15], when the above qubit chains are in a topological
phase, topological edge states exist in its boundaries. Since
local perturbations cannot affect the properties of the bulk

N

FIG. 1. (a) The transfer of unknown single-qubit or entangled
states from the qubits inside the left box to the qubits inside the right
box through the intermediate qubit chain. Each circle represents a
qubit. (b) The implementation of the qubit chain with superconducting
Xmon qubits. The qubits Q, and Q.. are inductively coupled by the
tunable coupler C P with the coupling strength J,.

states, the topological invariants in these models will endow
the edge states to be topologically protected against circuit
imperfections. In this work, we demonstrate that the edge
states in the above p = n SSH qubit chain can be employed
as a topological quantum channel to robustly transfer the
(n — 1)-qubit quantum state. Specifically, below we consider
the two cases p = 2 and p = 3. More importantly, we also
quantitatively investigate the effect of the coupling disorders
on the transfer fidelity of single- and two-qubit states.

III. SINGLE-QUBIT QUANTUM STATE TRANSFER
IN A p = 2 SSH CHAIN

A. Topological edge states in a p = 2 chain

Let us consider a p =2 SSH-type qubit chain with odd
number (2N — 1) qubits. Each unit cell contains two qubits
labeled by a and b, respectively. The resulting SSH-type qubit
chain is described by the following Hamiltonian:

N

A=Y "(nh6}6, + o6,  + Hc), 2)
x=1

where J; = go 4+ (—1) g, cos8 (i = 1,2)and N is the number
of unit cells. The edge states of a qubit chain with a single
excitation are exponentially localized at the boundaries. The
wave function of an edge state can be described by the
following ansatz:

N
[We©) =Y 3 (0)(ao, + Bo,))IG), 3)

x=1

where |G) = |gg - - - g) and the probability amplitude on site
x decays (increases) exponentially with the distance x when
L] < 1 (JA] > 1), corresponding to the left (right) edge state,
after the wave function is normalized. Let the eigenenergy
of an edge state be E. Substituting Egs. (2) and (3) into the
Schrodinger equation H |y g) = E|Yg), we obtain

E)Lx(oza+ + ,BU,:F)|G

[J Ax(ﬂa + a0y, ) + Jz(,BAX 10'+ +ar*tlo )]IG)

“4)

It is straightforward to find that the edge state occupies only
the a- or b-type qubits with 8 = 0 or « = 0, respectively. The
corresponding eigenenergy is £ = 0.

For a qubit chain with an odd number (2N — 1) of qubits,
the edge-state energy spectrum is plotted in Fig. 2(a), with the
topological edge state at zero energy and well separated from
the bulk states. Specifically, we find that there is one edge state
in the left end when 6 € (—m/2, 7/2) and one edge state in
the right end when 6 € (/2,37 /2). Both the left and right
edge states occupy the a-type qubits in each unit cell and are
eigenstates of t,, which leads to « = 1 and 8 = 0 in Eq. (3).
This is because the rightmost qubit is of a-type for a chain
with an odd number of qubits. With this analysis, we obtain
Ji + b =0,ie., L = —J;/J,. The edge-state wave function
then can be derived as

8 008(9)} 5 1G) 5)

Vel = Z( b |:80+81003(9)
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FIG. 2. The energy spectra of the p = 2 SSH model vs 0 for the imperfection strength (a) W = 0, (c) W = 0.6g;, and (d) W = 0.8g;. The
total qubit number is 9. (b) The fidelity of the QST vs the imperfection strength. The total qubit number is 9 (the solid line), 15 (the dashed
line), and 21 (the dash-dot line), with 2 = {0.04g;, 0.02g,, 0.01g,}. The other parameter is go = gi.

which only occupies the a-type qubits. It can be easily verified
that this edge state is localized near the left end when 6 €
(—m/2,7m/2) and |A| = |J;/J2] < 1 and is near the right end
when 0 € (/2,37 /2)and |A| = |J1/ 2] > 1.

B. Robust single-qubit quantum state transfer

At go = g1, the edge state concentrates towards the left
(right) end when 0 € (—m /2, w/2) [0 € (7 /2, 37 /2)]. In par-
ticular, at & = 0 and r, the coupling strength becomes J; = 0
and J, = 0, respectively. The leftmost and rightmost qubits are
decoupled from the rest of the qubit chain. The edge states in
this case become

L) = legg---8),
IR) = |gg---ge). (6)

At 0 =m/2 or 3 /2, the edge state is a W state, |W) =
Y, (=1)'6,1G)/ /N, with equal superposition of the exci-
tations of all a-type qubits.

An unknown single-qubit state can be transferred adiabati-
cally via the edge mode. This can be done by slowly ramping
the qubit couplings to make 6 varying linearly with time, i.e.,

0(t) = Qt, (N

where €2 is the ramping frequency. Suppose 6 is swept from
0 at r = 0 to 7 at the final time. At time ¢ = 0, the leftmost
qubit is prepared in the unknown state «|e) + B|g) and all
other qubits are in their ground states. The state of the qubit
chain is then |{;) = «|L) + B|G), which is in a superposition
of the edge state at & = 0 and the ground state |G) with no
excitation. When 6 is varied from 0 — 7/2 — 7, the state
evolves from |L) — |W) — |R), and then we realize the
single-qubit quantum state transfer

Vi) = alL) + BIG) — [¥y) = a|R) + B|G),  (8)

where the rightmost qubit is in the state «le) + Slg). To
ensure high fidelity of QST, it is required that the process
be adiabatic in the entire process; i.e., /g2 needs to be
smaller than the energy gap between the bulk and the edge
states. For example, we can choose 2 = 0.01g; for a chain
of 21 qubits, which has an energy gap larger than 0.1g,. For
superconducting Xmon qubits with g, /2w = 250 MHz, the

time of QST is 1y = 71/ = 0.2 us, much shorter than typical
qubit decoherence times [25,26].

In practice, the system parameters cannot be perfectly tuned
to exact values due to the intrinsic fluctuations in device
fabrication. In our scheme, the main imperfection resides in
the qubit coupling strengths, and it far exceeds the effect of
qubit decoherence [40,41]. This imperfection can be described
by the Hamiltonian

H, = Z 8J,656 7, +He., )

where §J, = W4, with W being the imperfection strength
and § € [-0.5,0.5] being a random number. For each §J,,
we choose 100 samples to perform the numerical simulation
throughout this work. The QST fidelity is obtained by av-
eraging over the results of all samples. Note that the time
evolution of wave functions in the qubit chain is governed
by the Schrodinger equation id |y (¢))/dt = H(®)|y (1)), with
H () being the time-dependent Hamiltonian. The numerical
simulation of this evolution can be conducted via a fourth-order
Runge-Kutta method.

In Fig. 2(b), we numerically calculate the fidelity F' =
[(R|¥(tr))| as a function of the imperfection strength. A wide
plateau at F ~ 1 appears for W < 0.1g;, where the energy
gap remains large enough to protect QST. The appearance of
the plateau is a hallmark of the topologically assisted QST,
which ensures high transfer fidelity, and the plateau can also be
observed in the two-qubit entanglement transfer studied below.
With current technology, the imperfection strength is ~5% of
the coupling constant g;. Our simulation shows that the fidelity
can exceed 0.998 for W = 0.1g; when the qubit chain size is
over 20. This clearly demonstrates that nearly perfect QST can
be achieved in practical circuits under our protocol.

This topological protection is endowed by the chiral sym-
metry of this system. Such symmetry results in a symmetric
energy spectrum with each positive eigenenergy E accompa-
nied by a negative eigenenergy — E, implying the existence of
a zero-energy edge mode. In the presence of qubit-coupling
imperfection, the system Hamiltonian still obeys the chiral
symmetry, i.e., ['(H + H)['™' = —(H + H), where [" =
I'L (6;: 6o, — 6; 0y, ) is the chiral operator [28,29]. As aresult,
the zero-energy edge state is insensitive to imperfection in
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the couplings. This is verified by our numerical calculation
in Figs. 2(c) and 2(d).

IV. ENTANGLED STATE TRANSFERINA p =3
SSH QUBIT CHAIN

A. Topological edge states in a p = 3 chain

Ina p = 3 generalized SSH-type qubit chain, each unit cell
has three qubits labeled as a, b, and ¢, and the corresponding
Hamiltonian has the following form:

N
(118,56, + 16, 6, + 3616,  +Hc), (10)

A

H =

x=1
where J; = go + g1 cos(2ms/3 +60) (s = 1, 2, 3) is the cou-
pling strength. As shown in Fig. 3(a), there exists one pair of
topological edge states in a p = 3 SSH-type qubit chain with
3N — 1 qubits and gy = 0. Here one edge state exists within
each bulk energy gap. The wave function of the edge states can
be described by the following ansatz:

N
[We©) =Y 2 ©O) (a0, + Boy) +yol)IG). (11

x=1

Denote the eigenenergy of an edge state as E. Substituting
Egs. (10) and (11) into the Schrodinger equation H|yg) =
E|Yg), we obtain

E)(0)(ao) + Bo,” +vol)IG)
= [ (ot + aoy) + haF (voyt + Bo)
+5 (ol 42 a0 ))]1G). (12)

Equation (12) can be solved for y = 0, where the c-type qubits
are not occupied. Specifically, there are two eigenstates with
|x+) = (ai + bl )/ /2 in unit cell x, and the coefficients are as
follows: @ = 1/+/2and B = £1/+/2. Substituting these values
into Eq. (12), we obtain the eigenenergies of the edge states
EL = +J, = £[go + g1 cos(2w/3 4 6)], which agree with
the numerical results in Fig. 3(a). Hence, there exist two
branches of edge states, one in the upper and one in the lower

(@ (b)
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FIG. 3. (a) The energy spectra of the p = 3 generalized SSH
model vs 6 with a chain of 8 qubits and gy = 0. (b) The fidelities of
entanglement transfer vs the imperfection strength. The total qubit
numbers are 8 (the solid line), 14 (the dashed line), and 20 (the
dash-dot line) with Q@ = {0.01g;, 0.004g;, 0.001g,}, respectively.

energy gaps between the bulk states. Using Eq. (12), for the
eigenstates | x+), we derive J, &+ JsA =0, i.e,, A = FJ»/ /5.
The corresponding wave functions of the edge states can be
expressed as

Ya) =) [:F

X

4m/3+6)] 6.5 +6,
g1 cos(4m /3 + )] %6y a3)

V2

which only occupy the a- and b-type qubits.

gjcos6

B. Robust two-qubit entangled state transfer

The above edge states concentrate near the left end when
0 € (—m/6,7/3)U (57/6,47/3) and occupy the right end
when 6 € (/3,57 /6) U (4 /3, 117 /6). Specifically, at 6 =
/6, Tm/6 and m/2, 3w /2, the coupling strength J; =0
and J, = 0, respectively. In this case, the two leftmost and
rightmost qubits are decoupled from the rest of the qubit chain.
The resulting edge states are

[Li) = Ix+)lgg - &),
[Ri) = [gg - &) x+) (14)

where |x1) = (leg) £ |ge))/\/§ are Bell states. At 6 =
/3 and 4m/3, the edge states are W states |Wi) =
Y (=16, +6,)1G)/V2N.

Suppose 0 is swept linearly as 6(¢) = 6(0) + Q¢. At time
t =0, let 6(0) = 7 /6, with the qubit chain prepared in the left
edge states |Ly), where the two leftmost qubits are prepared
in the Bell state |x.) and all other qubits are in their ground
states. To prepare this state, we set the frequencies of these
two qubits to be far off-resonance from the other qubits,
which effectively decouples these two qubits from the other
qubits. The Hamiltonian of this unit cell can thus be written as
Hy = Jo6, 6, + H.c. A driving pulse is then applied to these
qubits with the Hamiltonian V, = ﬁQo cos (wqt)(6; + 6;),
where €2p and w,; are the driving amplitude and frequency
of the applied pulse, respectively. In the rotating frame of wy,
the driving pulse becomes Vi = Qq (6, + 67')/+/2. Let these
qubits be initially in the ground state |gg). With a driving
frequency of w; = w, + J, the state | x) can be generated in a
durationof ty = /2. For Q2¢/2m = 100 MHz, the operation
time is o = 2.5 ns.

After initial state preparation, we adiabatically ramp the
qubit couplings to sweep 6. After a ramping time of 7, =
/3R, 6 = /2. During the ramping, the state evolves adi-
abatically as |Ly) — |W.) — |R4), and then we achieve the
two-qubit entangled state transfer

|ILi+) = |x+)188---8) —> |Rx) = [gg--- &)lxx), (15)

where the entangled states |x.) are thus transferred from the
left end to the right end. With g, /27 = 250 MHz, we choose
2 = 0.001g, forachain of 20 qubits, which gives t; = 0.67 us
and satisfies the adiabatic condition. We also numerically simu-
late the transfer process in the presence of finite qubit-coupling
imperfection and obtain the transfer fidelity F = [{R |y (t5))]
for the state | ). As shown in Fig. 3(b), the fidelity exhibits a
plateau at F = 1, demonstrating the high robustness against
qubit coupling imperfections. A fidelity above 0.99 can be
achieved for an imperfection strength of W < 0.07g;.
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FIG. 4. (a) The bulk-edge energy gap vs qubit number for the
p =2 (point) and p = 3 (circle) SSH models. (b) The fidelities of
the QST vs 1g[W/A]. Blue: The p =2 SSH model with 9 (circle),
15 (star), and 21 (square) qubits. Red: The p = 3 generalized SSH
model with 8 (diamond), 14 (pentagram), and 20 (triangle) qubits.
Other parameters are the same as those in Figs. 2 and 3.

V. DISCUSSIONS

For the above QST protocols to succeed, the adiabatic
condition needs to be obeyed. Denote the energy gap as A,
which is the smallest energy separation between the bulk and
the edge states in the related parameter range. The adiabatic
theorem requires that |d H/dt| < A?. For the SSH models,
this corresponds to /g1€2 < A. The current state of art for
superconducting circuits only can produce a medium-sized
superconducting quantum computer with qubit numbers of
50-100 [42,43]. For a chain of 50 qubits, A ~ g;/10 and
a ramping rate of Q2 < 0.01g; is required. When the qubit
number is further increased, the gap near 6 = 0.57 will
become much smaller, and one can apply the shortcut-to-
adiabaticity method [44,45] to pass this point and realize the
adiabatic quantum state transfer. One also can assemble many
medium-sized qubit chains into a large-scale quantum network
and use the topological edge states in each medium-sized
qubit chain as quantum channels to realize a large-scale robust
quantum state transfer.

Furthermore, we study the transfer fidelity of the single-
qubit state and entanglement as a function of the parameter

disorder Ig[W/A]. In Fig. 4(b), the transfer fidelities for qubit
chains with different sizes are plotted, which fall near a single
curve for a given transfer regardless of the size of the chain size.
Both curves have a wide plateau with high fidelity exceeding
0.99 when W < 0.1A. Our result verifies that the QST via the
edge states is topologically protected and insensitive to small
perturbations in the Hamiltonian.

Our system can be implemented with current technology of
superconducting quantum devices. A chain of 9 Xmon qubits
[37] and a chain of 15 flux qubits [46] have been realized
in experiments and the implementation of longer chains is
promising in the near future [42,43]. With a typical coupling
strength of g;/2m = 250 MHz, the ramping time for QST
can be achieved in submicron seconds, much shorter than the
decoherence times for the Xmon qubits [40,41].

VI. SUMMARY

In summary, we have presented an experimentally realistic
mechanism for implementing robust QST via topological
edge states in superconducting qubit chains. The topological
protected robustness of QST has been quantitatively demon-
strated against qubit coupling imperfections with a numerical
simulation. Our result indicates that high-fidelity QST between
remote edge qubits can be achieved even in the presence of
sizable qubit coupling imperfections. Our method can also lead
to future studies of long-range edge-to-edge quantum entan-
glement [47] or scalable quantum networks with topologically
protected quantum channels.
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