欢迎访问山西大学激光光谱研究所
首页 / 研究人员 研究人员
马杰
发布时间:2024-01-16 浏览:
马杰  
教授,博导  

现任山西大学党委常委、副校长。国家高层次人才入选者,山西省模范教师,山西省青年五四奖章获得者,三晋英才,山西省十佳优秀科技工作者。20097月山西大学物理电子工程学院/激光光谱研究所(量子光学与光量子器件国家重点实验室)原子与分子物理专业博士研究生毕业,获理学博士学位。2011年香港中文大学物理学系博士后。长期从事超冷原子分子物理的实验研究,在超冷原子玻色爱因斯坦凝聚、超冷分子密集制备、高灵敏光谱技术及其应用等方面开展了系列研究工作。主持国家自然科学基金重大研究计划、重点国际合作项目等科研项目10余项,在Nature Phys., Nature Commun., Phys Rev Lett., Light Sci Appl., J. Phys. Chem. Lett., Appl. Phys. Lett. , Phys. Rev. A等刊物上发表SCI论文110余篇,授权国家发明专利15项,出版专著1部,相关成果获山西省科学技术奖励一等奖2项,山西省教学成果特等奖2项。

 

deedbe4c21404be3ba23d38a3fb37b69.png

办公地址:光电大楼529室

电子邮箱:mj@sxu.edu.cn

办公电话:0351-7010122

 

 

主要社会兼职:

中国物理学会原子与分子物理专委会委员,全国光学青年学术论坛副主席,山西省物理学类教指委秘书长,山西省学科评议委员会委员,山西省大学生物理学术竞赛委员会副主任等。任《Optics Letters》、《中国物理快报》等杂志审稿人。


近期代表性论文:

32. “Observation of frustrated chiral dynamics in an interacting triangular flux ladder”, Nature Communications (2023) 14,7560.

31. “Testing universality of Feynman-Tan relation in interacting Bose gases using high-order Bragg spectra”, Light: Science & Applications (2023) 12,50.

30. “Rational design of graphite carbon nitride-decorated zinc oxide nanoarrays on three-dimensional nickel foam for the efficient production of reactive oxygen species through stirring- promoted piezo–photocatalysis”, Journal of Colloid and Interface Science (2023) 632,271–284.

29. “Recognition and Evaporation Monitoring of Micro-Droplet VOCs Based on CVD-Grown Monolayer MoS2 through a Dielectric Screening Effect”, The Journal of Physical Chemistry C (2022) 126, 15864-15872.

28. “Observation of Interaction-Induced Mobility Edge in an Atomic Aubry-Andr´e Wire”, Physical Review Letters (2022)129, 103401.

27. “Atom-optically synthetic gauge fields for a noninteracting Bose gas”, Light:Science & Applications (2022)11,13.

26. “Piezotronics boosted plasmonic localization and hot electron injection of coralline-like Ag/BaTiO3 nanoarrays for photocatalytic application”, Journal of Materials Chemistry C (2021)9,12596.

25. “Direct Z-scheme heterojunction of ZnO/MoS2 nanoarrays realized by flowing-induced piezoelectric field for enhanced sunlight photocatalytic performances”, Applied Catalysis B: Environmental (2021) 285,119785.

24. “Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy”, Nature Physics (2020) 16, 911.

23. “Hyperfine structure of the NaCs b3Π2 state near the dissociation limit 3S1/2 6P3/2 observed with ultracold atomic photoassociation”, Physical Chemistry Chemical Physics (2020) 22, 3809.

22. “Saturation of photoassociation in NaCs dark magneto-optical trap”, Journal of Quantitative Spectroscopy & Radiative Transfer (2020) 240,106678.

21. “Experimental study of the state 6 1Σ+ g of the rubidium dimer”, Physical Review A (2019) 99, 052511.

20. “Fano effect in an ultracold atom-molecule coupled system”, Physical Review A (2019) 99, 022702.

19. “Method for studying diatomic rovibrational spectra at a given vibrational state”, Science China Physics, Mechanics & Astronomy (2019) 62, 943011.

18. “Observation of photoassociation of ultracold sodium and cesium at the asymptote Na (3S1/2) + Cs (6P1/2)”, Journal of Chemical Physics (2018) 148, 174304.

17. “Manipulation of photo association of ultracold Cs atoms with tunable scattering length by external magnetic fields” Scientific Reports (2017) 7, 13677.

16. “Re-examination of the Cs2 ground singlet X1 Σ+ g and triplet a3Σ+ ustates”, Journal of Chemical Physics (2017) 147,104301.

15. “Experimental observation and determination of the laser-induced frequency shift of hyperfine levels of ultracold polar molecules”, Physical Review A (2017) 96,022504.

14. “Observation and analysis of the hyperfine structure of near-dissociation levels of the NaCs c3Σ+ state below the dissociation limit 3S1/2 + 6P3/2”, Physical Review A (2016) 94,032518.

13. “Observations and analysis with the spline-based Rydberg–Klein–Rees approach for the 31Σ+ gstate of Rb2”, Journal of Chemical Physics (2016) 144, 024308.

12. “Magnetic levitation for effective loading of cold cesium atoms in a crossed dipole trap”, Physical Review A (2015) 91, 053604.

11. “Control of laser-induced frequency shift in ultracold cesium molecules by an external magnetic field”, Optics Letters (2015) 40, 2241.

10. “Enhanced Raman sideband cooling of caesium atoms in a vapour-loaded magneto-optical trap”, Laser Physics Letters (2015) 12, 055501.

9. “New observation and combined analysis of the Cs2 0g- , 0u+ and 1gstates at the asymptotes 6S1/2+6P1/2 and 6S1/2+6P3/2”, Journal of Chemical Physics (2014) 141, 244310.

8. “Accurate determination of the rotational constants of ultracold molecules using double photoassociation spectroscopy” Optics Express (2014) 22, 3754.

7. “Experimental Determination of the Rotational Constants of high-lying vibrational levels of ultracold Cs2inthe0- g purely long range state” Journal of Physical Chemistry Letters (2013) 4, 3612.

6. “Experimental observation of the lowest levels in the photoassociation spectroscopy of the 0g- purely-long-range state of Cs2Physical Review A (Rapid Communications) (2013)87, 030503(R)

5. “Direct measurement of laser-induced frequency shift rate of ultracold cesium molecules by analyzing losses of trapped atoms” Applied Physics Letters (2012) 101, 131114.

4. “High sensitive determination of laser-induced frequency shifts of ultracold cesium molecules” Optics Letters (2011) 36, 2038.

3. “High sensitive trap loss spectroscopic detection of the lowest vibrational levels of ultracold molecules” Physical Chemistry Chemical Physics (2011)13, 18921

2. “Determination of the rotational constant of the Cs2 0- g (6s1/2 + 6p3/2) state by trap loss spectroscopy” Optics Express (2010)18, 17089.

1. “Absolute frequency stabilization of a diode laser to cesium atom-molecular hyperfine transitions via modulating molecules” Applied Physical Letters (2007) 91, 161101