欢迎访问山西大学激光光谱研究所
董磊
发布时间:2018-05-10 浏览:
董  磊  
教授、博导  

 2002年山西大学电子系本科毕业;2007年山西大学物电学院光学专业获理学博士学位。20086月至201112月,美国莱斯大学电子计算机工程系博士后;20149月至201510月,美国莱斯大学激光科学组访问学者。2016年获“国家优秀青年科学基金”资助。

 

       长期以来主要从事基于激光光谱的传感技术研究,在新型光声光热光谱领域,尤其是石英增强光声光谱(Quartz-Enhanced Photoacoustic SpectroscopyQEPAS)用于痕量气体检测方面取得了系列重要成果。解决了高灵敏的石英增强光声光谱从近红外向长波中红外和太赫兹波段应用拓展及与大功率光源结合的关键技术问题;发展了基于音叉式石英晶振用于新材料研究的传感新技术。主持国家自然科学基金4项,省部级基金3项,共发表SCI论文70余篇,其中在Nat. Commun.Sens Actuators BChem.Appl. Phys. Lett.Opt. Lett.Opt. Express等高影响力的国际刊物上发表学术论文30余篇。发表的唯一通讯作者总论文被他人正面引用已达105次,单篇他引最高次数为52次。以第一发明人授权发明专利11项。

研究方向

光声光谱,光学气体检测,光学传感,激光光谱技术

 

主要学术兼职:

       美国光学学会会员,任《Applied Physics Letters》、《Sensors and Actuators B: Chemical》、《Optics Express》、《Optics Letters》、《Applied Optics》、《Applied Physics B》、《Optics Communications》等杂志审稿人。

 

 

办公地址:激光光谱研究所108-1室

电子邮箱:donglei@sxu.edu.cn

办公电话:0351-7097220

 

 

 

近期代表性的论文

1.   “Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring” Nature Communications 2017Vol. 8, 15331.

2.   Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning forkApplied Physics Letters 2017, Vol. 110, 121104.

3.   “Double antinode excited quartz-enhanced photoacoustic spectrophone” Applied Physics Letters, 2017, Vol. 110, 021110.

4.   “Development and field deployment of a mid-infrared methane sensor without pressure control using interband cascade laser absorption spectroscopy”, Sensors and Actuators B, 2017, Vol. 244, 365-372.

5.  “Compact CH4 sensor system based on a continuous-wave, low power consumption, room temperature interband cascade laser”, Applied Physics Letters, 2016, Vol. 108, 011106.

6.  “Overtone resonance enhanced single-tube on-beam quartz enhanced photoacoustic spectrophone ” Applied Physics Letters, 2016, Vol. 109, 111103.

7.  “Scattered light modulation cancellation method for sub-ppb-level NO2 detection in a LD-excited QEPAS system”, Optics Express, 2016, Vol. 24, A752.

8.  “Compact TDLAS based sensor design using interband cascade lasers for mid-IR trace gas sensing”, Optics Express, 2016, Vol. 24, A528.

9.    “Single-tube on-beam quartz-enhanced photoacoustic spectroscopy”, Optics Letters, 2016, Vol. 41, 978.

10.  “Impact of humidity on quartz-enhanced photoacoustic spectroscopy based CO detection using a near-IR telecommunication diode laser”, Sensors, 2016, Vol. 16, 162.

11.  “Compact TDLAS based optical sensor for ppb-level ethane detection by use of a 3.34 um room-temperature CW interband cascade laser” Sensors and Actuators B, 2016, Vol. 232, 188–194.

12.  “Ppb-level mid-infrared ethane detection based on three measurement schemes using a 3.34-μm continuous-wave interband cascade laser” Applied Physics B, 2016, Vol. 122, 185.

13.  “Quartz–enhanced photoacoustic spectrophones exploiting custom tuning forks: a review”, Advances in Physics: X, 2016, Vol. 2, 169-187.

14.  Infrared Dual-Gas CH4/C2H6 Sensor Using Two Continuous-Wave Interband Cascade Lasers” , 2016, IEEE photonics Technology Letters, Vol.28, 2351-2354.

15.  Analysis of overtone flexural modes operation in quartz-enhanced photoacoustic spectroscopy”, Optics Express, 2016, Vol. 24, A682-A692.

16.  “Mid-infrared dual-gas sensor for simultaneous detection of methane and ethane using a single continuous-wave interband cascade laser”, Optics Express, 2016, Vol. 24, 16973-16985.

17.  “Mid-IR laser-based sensor for hydrogen peroxide detection”, SPIE Newsroom, 2016, 10.1117/2.1201601.006295.

18.  “Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing”, Sensors and Actuators B, 2016, Vol. 227, 539-546.

19.  “Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell”, Optics Express, 2015, Vol. 23, 19821.

20.  “Quartz enhanced photoacoustic H2S gas sensor based on a fiber-amplifier source and a custom tuning fork with large prong spacing”, Applied Physics Letters, 2015, Vol. 107, 111104.

21.  “Quartz-enhanced conductance spectroscopy for nanomechanical analysis of polymer wire”, Applied Physics Letters, 2015, Vol. 107, 221903.

22.  “Enhanced near-infrared QEPAS sensor for sub-ppm level H2S detection by means of a fiber amplified 1582 nm DFB laser”, Sensors and Actuators B, 2015 Vol. 221, 666.

23.  “Position effects of acoustic micro-resonator in quartz enhancedphotoacoustic spectroscopy”, Sensors and Actuators B, Vol. 206, 364.

24.  “Ppb-level QEPAS NO2 sensor by use of electrical modulationcancellation method with a high power blue LED”, Sensors and Actuators B, 2015, Vol. 208, 173.

25.  “Fiber-amplifier-enhanced QEPAS sensor for simultaneous trace gas detection of NH3 and H2S”, Sensors, 2015, Vol.15, 26743.

26.  “Near-IR telecommunication diode laser based double-pass QEPAS sensor for atmospheric CO2 detection”, Laser Physics, 2015, Vol. 25, 125601.

27.  “Design and optimization of QTF chopper for quartz-enhanced photoacoustic spectroscopy”, International Journal of Thermophysics, 2015, Vol. 36, 1289.

28.  “Optical detection technique using quartz-enhanced photoacoustic spectrum” International Journal of Thermophysics, 2015, Vol. 36, 1297.

29.  “Multi-quartz enhanced photoacoustic spectroscopy with different acoustic microresonator configurations”, Journal of Spectroscopy, 2015, 218419.

30.  “Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes”, Applied Physics Letters, 2015, Vol. 107, 231102.

31.  “Compact sound-speed sensor for quartz enhanced photoacoustic spectroscopy based applications”, Review of Scientific Instruments, 2015, Vol. 86, 044903.

32.  “Double acoustic microresonator quartz-enhanced photoacoustic spectroscopy”, Optics Letters, 2014, Vol. 39, 2479.

33.  “Ultra-sensitive carbon monoxide detection by using EC-QCL based quartz-enhanced photoacoustic spectroscopy”, Applied Physics B, 2012, Vol. 107, 275.

34.  “Compact QEPAS sensor for trace methane and ammonia detection in impure hydrogen”, Applied Physics B, 2012, Vol. 107, 459.

35.  “Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor”, Optics Express, 2011, Vol, 19, 24037.

36.  “QEPAS spectrophones: design, optimization and performance”, Applied Physics B, 2010, Vol. 100, 627.

37.  “Modulation cancellation method for isotope 18O/16O ratio measurements in water”, Optics Express, 2012, Vol. 20, 3401.

38.  “Modulation cancellation method for measurements of small temperature differences in a gas”, Optics Letters, 2011, Vol. 36, 460.

39.  “Modulation cancellation method in laser spectroscopy”, Applied Physics B, 2011, Vol. 103, 735.

40.  “QEPAS for chemical analysis of multi-component gas mixtures”, Applied Physics B, 2010, Vol. 101, 649.

41.  “NO trace gas sensor based on quartz enhanced photoacoustic spectroscopy and external cavity quantum cascade laser”, Applied Physics B, 2010, Vol. 100, 125.

42.  “QEPAS detector for rapid spectral measurements”, Applied Physics B, 2010, Vol. 100, 173.

43.  “Development of an apparatus for on-line analysis of unburned carbon in fly ash using laser-induced breakdown spectroscopy (LIBS)”, Applied Spectroscopy, 2011, Vol. 65, 750.

44.  “Design of a laser-induced breakdown spectroscopy system for on-line quality analysis of pulverized coal in power plants”, Applied Spectroscopy, 2009, Vol. 63, 865.

45.  “Laser-induced breakdown spectroscopy for determination of the organic oxygen content in anthracite coal under atmospheric conditions”, Applied Spectroscopy, 2008, Vol. 62, 458.

46.  “Analysis of the influence of various effects on frequency shifts of the acetylene saturated absorption lines”, Chinese Physics B, 2008, Vol. 17, 1674.

47.  “High-Sensitivity, large-dynamic-range, auto-calibration methane optical sensor using a short confocal Dabry-Perot cavity”, Sensors and Actors: B. chemical, 2007, Vol. 127, 350.

48.  “A novel control system for automatically locking a diode laser frequency to a selected gas absorption line”, submitted to Measurement Science and Technology, 2008, Vol. 18, 1447.