欢迎访问山西大学激光光谱研究所
尹王保
发布时间:2018-05-10 浏览:
尹王保

       教授,博士生导师,三晋拔尖骨干人才,中国光学学会环境光学专委会委员,中国光学工程学会激光诱导击穿光谱专委会委员,山西省科技奉献一等奖获得者。主要从事光谱技术及应用研究,研究领域为基于吸收光谱理论的污染气体、危险气体的光学检测和基于激光诱导感生光谱的成分检测,在基础理论、激光光谱技术、高灵敏检测、自吸收免疫等领域做出了具有特色的高水平工作,主持参与国家和省部级科研项目64项,获山西省自然科学一等奖、发明一等奖各1项,获国家发明专利25项,其中实施转化8项,获科技成果鉴定2项,发表论文150余篇。主编的专著《自吸收免疫激光诱导击穿光谱理论与技术》获得了国家科学技术学术著作出版基金资助,并被列入变革光科学与技术丛书(国家十四五重大出版工程规划,国家新闻出版署)。主持设计的产品有:激光煤质分析仪、红外烟气分析仪、烟尘浓度分析仪、动态配气系统等。

  2.jpg

  办公地址: 激光光谱研究所

  邮箱:  ywb65@sxu.edu.cn

  办公室电话:0351-7018904

  





研究方向:

     自吸收免疫激光诱导击穿多光谱  激光诱导荧光光谱 高光谱传感

科研项目:

     主持国家基金委仪器专项、3项国家自然科学基金、国家863子项目、省重点研发计划、省自然科学基金、省科技攻关项目、省大型仪器改造项目、省教育厅高校科技开发项目及6项横向科研项目等共计17项。另参与国家973课题、国家自然科学基金等47项。

1. “基于激光诱导击穿光谱的煤质检测仪器研究”,国家自然科学基金科学仪器专项 61127017

2. “基于激光诱导光学薄等离子体煤质精密分析研究”,国家自然科学基金 61475093

3. “基于多能态粒子数叠加求和煤中灰分精确定量分析研究”,国家自然科学基金 61775125

4. “自吸收免疫激光诱导击穿光谱理论与应用研究”,国家自然科学基金 61975103

5. “工业源多组份气体污染排放现场监测设备”,国家863计划课题 2009AA063006

6. “面向激光器强度噪声抑制的电压参考基准研制及噪声表征技术”,山西省重点研发计划项目 202131

7. “大型仪器升级改造”,山西省大型仪器升级改造专项 2014yq04

8.“高清晰度倒像器微光夜视仪”,产学研合作项目20141002

近期论文:

[1]Measurement and analysis of species distribution in laser-induced ablation plasma of an aluminum-magnesium alloy, Plasma Sci. Technol. 24 (2022) 035005.

[2]Accuracy enhancement of LIBS-XRF coal quality analysis through spectral intensity correction and piecewise modeling, Front. Phys. 9 (2022) 823298.

[3]Numerical simulation of laser-induced plasma in background gas considering multiple interaction processes, Plasma Sci. Technol. 23 (2021) 035001.

[4]Kinetic evolution of laser ablating alloy materials, Front. Phys. 9 (2021) 812283.

[5]Ultra-repeatability measurement of the coal calorific value by XRF assisted LIBS, J. Anal. Atom. Spectrom. 35(12) (2020) 2928.

[6]Concentric multipass cell enhanced double-pulse laser-induced breakdown spectroscopy for elemental analysis, Spectrochim. Acta B 168 (2020) 105851.

[7]Resonance/non-resonance doublet-based self-absorption-free LIBS for quantitative analysis with a wide measurement range, Opt. Express 27(3) (2019).

[8]Rapid selection of analytical lines for SAF-LIBS based on the doublet intensity ratios at the initial and final stages of plasma, Opt. Express 27(22) (2019) 32184.

[9]Species distribution in laser-induced plasma on the surface of binary immiscible alloy, Spectrochim. Acta B 158 (2019) 105644.

[10]Mechanisms and efficient elimination approaches of self-absorption in LIBS, Plasma Sci. Technol. 21(3) (2019) 15.

[11]Accurate quantitative CF-LIBS analysis of both major and minor elements in alloys via iterative correction of plasma temperature and spectral intensity, Plasma Sci. Technol. 20(3) (2018) 035502.

[12]Laser-induced plasma characterization through self-absorption quantification, J. Quant. Spectrosc. Radiat. Transfer 213 (2018) 143.

[13]Homogeneous-material-based calibration method for correcting laser-induced breakdown spectroscopy measurement-error bias in the case of dust pollution, Appl. Opt. 56(35) (2017) 9644.

[14]Stability enhanced on-line powdery cement quality monitoring using laser-induced breakdown spectroscopy, IEEE Photonics J. 9(5) (2017) 6804010.

[15]Development and performance evaluation of self-absorption-free laser-induced breakdown spectroscopy for directly capturing optically thin spectral line and realizing chemical composition measurements, Opt. Express 25(19) (2017) 23024. 

[16]Investigation on spatial distribution of optically thin condition in laser-induced aluminum plasma and its relationship with temporal evolution of plasma characteristics, J. Anal. Atom. Spectrom. 32(8) (2017) 1519.