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type coal quality prediction
accuracy with fusion spectra and classification
models using NIRS and XRF techniques

Zhedong Zhang,ab Jiaxuan Li,ab Rui Gao,ab Yang Zhao,c Yan Zhang,d Lei Zhang, *ab

Zefu Ye,e Zhujun Zhu,e Peihua Zhang,a Wangbao Yin*ab and Suotang Jiaab

The various analytical indices of coal are important criteria for evaluating the quality of commercial coal.

Coals of different qualities exhibit different physical and chemical characteristics in their utilization. In the

case of multiple coal types, the spectral characteristics of different coals may overlap within certain

wavelength ranges, or be affected by interference or noise from other coal types, leading to low

accuracy in coal quality prediction. Rapid and accurate coal quality testing is of great significance for

improving industrial production efficiency and enhancing corporate profitability. This study employs

near-infrared spectroscopy (NIRS) and X-ray fluorescence spectroscopy (XRF) combined techniques to

explore the accuracy and feasibility of predicting coal quality based on coal type classification models. In

terms of classification algorithms, coal samples are identified and classified using Support Vector

Machine (SVM) based on fusion spectra. Regarding the modeling approach, Partial Least Squares (PLS) is

utilized to establish both an overall model for all coal samples and individual classification models

corresponding to each coal type. The results show that the precision, accuracy, recall, and F1 score of

this classification algorithm reached 96.49%, 97.50%, 95.83%, and 96.41%, respectively. The

determination coefficients (R2) for the classification model's predictions of ash, volatile matter, and sulfur

in coal quality indicators reached 0.992, which represents improvements of 1.85%, 5.31%, and 10.10%

over the overall model. The root mean square errors of prediction (RMSEP) for these indicators were

0.062, 0.080, and 0.008, showing reductions of 0.24%, 0.68%, and 0.05% compared to the overall

model. It indicates that the method of first identifying the coal type and then predicting coal quality

indicators using the corresponding classification model can significantly improve the accuracy of coal

quality detection in complex coal type scenarios.
1 Introduction

Coal is one of the most important energy sources in the world,
widely used in power generation, steel production, cement
manufacturing, and other elds. It is closely related to national
economic development.1,2 At the same time, as an energy
reserve coal plays an indispensable role in ensuring the stable
development of the national economy and strategic security.3

However, the quality of coal varies widely.4 Coal chemical
enterprises oen face the challenge of multiple coal types with
signicant differences in their physical and chemical
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properties. Therefore, it is particularly important to nd
methods that can quickly and reasonably classify coal and
perform multi-parameter analysis.5,6. Currently, coal quality
testing still relies on national standard methods based on
traditional physical and chemical principles. However, there are
issues such as complex procedures, lengthy processes, and
susceptibility to human interference.7,8 Therefore, developing
rapid and accurate coal quality testing technologies capable of
simultaneously detecting multiple analysis indicators is of great
value for improving industrial production efficiency and
enterprise benets.

With the increasing maturity of analytical techniques,
various rapid coal quality analysis technologies and instru-
ments have emerged in the market. These include Prompt
Gamma Neutron Activation Analysis (PGNAA), Laser-Induced
Breakdown Spectroscopy (LIBS), Near-Infrared Spectroscopy
(NIRS), X-ray Fluorescence Spectroscopy (XRF), and others.
Among them, PGNAA utilizes neutron beam radiation to acti-
vate coal, causing different isotopes in coal to interact with
neutrons and produce high-energy prompt characteristic
J. Anal. At. Spectrom., 2024, 39, 2433–2442 | 2433
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gamma rays. Coal quality multi-index analysis is achieved by
analyzing the energy spectrum.9 However, the use of such
equipment is limited due to its radioactive hazards, which
restrict its widespread application. LIBS utilizes high-energy
pulsed lasers to generate high-temperature plasma. By detect-
ing the specic wavelength radiation emitted when atoms and
ions in the plasma transition from excited states to the ground
state, qualitative or quantitative analysis of coal samples can be
performed.10 However, the measurement repeatability of this
technology is constrained by Rayleigh–Taylor instability and
self-absorption effects.11,12

NIRS is a non-destructive analytical method based on the
absorption characteristics of near-infrared light in samples. It
utilizes the absorption of specic wavelength ranges caused by
the vibration, rotation, and interatomic vibration of molecules
to perform quantitative analysis.13 Due to its rapid, non-
destructive nature, and the absence of sample pre-treatment
requirements, NIRS has been successfully applied in the anal-
ysis and assessment of coal quality. For example, Wang14 et al.
proposed a near-infrared spectroscopy method for measuring
coal industrial indicators based on the synergistic adaptive
moving window PLS genetic algorithm. The root mean square
error (RMSE) for caloric value and volatile matter were 0.964
MJ kg−1 and 0.889%; Begum15 et al. utilized ve absorption
bands within the visible to near-infrared range to establish
a multiple linear regression model for predicting the caloric
value of coal. The coefficients of determination (R2) and mean
absolute percentage error were 0.92 and 4.84%; Gao16 et al.
proposed a novel technique for the ultra-reproducible
measurement of coal caloric value using a combination of
near-infrared spectroscopy (NIRS) and X-ray uorescence spec-
troscopy (XRF). They established a comprehensive-segmented
prediction model based on partial least squares (PLS). The
root mean square error of prediction (RMSEP), average relative
error (ARE), and standard deviation (SD) for predicting coal
caloric value were reported as 0.71 MJ kg−1, 1.18%, and 0.07
MJ kg−1. NIRS demonstrates high repeatability in measure-
ments, but its capability is limited to detecting coal caloric
value and volatile matter indicators that are positively corre-
lated with organic functional groups such as C and H.

The working principle of XRF involves using high-energy X-
rays to excite the atoms in the sample, causing the atoms to
release energy in the form of uorescence. By detecting and
analyzing the uorescence radiation, the composition elements
and content of the sample can be determined.17 For instance,
Hicks18 et al. employed XRF for measuring the ash content of
coal, achieving an SD value of 1.7%. Similarly, Ma19 et al.
utilized XRF for measuring the repeatability of ash-forming
elements such as Si, Al, Fe, Ca, Mg, Na, K, and Ti in coal,
which was signicantly lower than the requirements of national
standard analysis. XRF demonstrates excellent measurement
repeatability, but it also has some limitations. For example, it
cannot effectively excite low atomic number elements such as C
and H in coal, thus primarily used for measuring coal ash
content or high atomic number element concentrations. We
previously developed a coal quality analysis technique by NIRS-
XRF,20 achieving comprehensive detection of organic and
2434 | J. Anal. At. Spectrom., 2024, 39, 2433–2442
inorganic components in coal. The detection accuracy for coal
caloric value reached an R2 of 0.98, RMSEP of 0.19MJ kg−1, and
MARDP of 0.95%. However, in practical applications, the wide
variety and diversity of coal sources in coking and other
industries have signicantly reduced the measurement accu-
racy and applicability of this technique due to the matrix effect.

In response to the above challenges, this study proposes
a classication-based coal quality analysis method and
conducts experimental verication, aiming to enhance the
capability of NIRS-XRF combined spectroscopic analysis tech-
nique to handle complex coal types. This method rst utilizes
SVM algorithm to identify the coal types of samples, and then
predicts their ash content, volatile matter, sulfur content, and
other indicators using the corresponding PLS regression
models for each coal type.
2 Experiment
2.1 Samples

The experiment gathered 187 coal samples from the coal
preparation plant of Yangguang Coking Group in Shanxi Prov-
ince. According to the Classication of coal in China (Chinese
national standard GB/T 5751-2009), these samples are classied
into four types of coal: gas coal, fat coal, coking coal, and lean
coal. To ensure consistency, all samples underwent the stan-
dard general analysis coal preparation process, involving
crushing, blending, sizing, dewatering, and grinding to
a particle size of 0.2 mm. The coal preparation plant tests the
coal quality to obtain standard values for ash, volatile matter,
and sulfur according to Proximate analysis of coal (Chinese
national standard GB/T 212-2008) and Determination of total
sulfur in coal (Chinese national standard GB/T 214-2007).

To build and validate the model, the 187 samples were
randomly divided into two subsets using a 7 : 3 ratio: one is the
training set, consisting of 130 samples used to collect spectral
data and build the coal quality prediction model; the other is
the test set, consisting of 57 samples used to verify the accuracy
and stability of the model. The coal quality indicators for the
samples in the training and test set are shown in Table 1.
2.2 Experimental setup

The experimental NIRS-XRF setup for coal analysis is shown in
Fig. 1. The experimental setup mainly consisted of the NIRS
module, XRF module, delivery module and control module.

In the NIRS module, a halogen light source (AvaLight-HAL-S-
Mini, Avantes, Netherlands) with a wavelength range of 360 to
2500 nm is used. The near-infrared spectrometer is a Fourier-
transform type (C15511-01, HAMAMATSU, Japan), covering
the wavelength range of 1100 to 2500 nm in the near-infrared
region, with a spectral resolution of 5.7 nm. A reective ber
optical probe (FCR-7UVIR200, Avantes, Netherlands) is
employed, containing 7 cores of 200 mm each: 6 cores connect to
the light source and 1 core connects to the spectrometer. The
probe is positioned perpendicular to the sample surface, and
the spectrometer outputs the spectral data to a computer for
further processing. The reference tile (WS-2, Avantes) is placed
This journal is © The Royal Society of Chemistry 2024
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Table 1 Statistics of coal quality indices for 187 samples categorized by coal types

Coal type Ash (%) Volatile matter (%) Sulfur (%)
Number of samples in
training set

Number of samples in
test set

Gas coal 4.20–11.64 35.15–42.28 0.30–0.86 18 12
Fat coal 4.47–13.92 26.44–34.92 0.30–0.90 47 18
Coking coal 8.07–11.18 18.04–23.98 0.38–0.89 38 17
Lean coal 9.00–11.15 12.56–17.54 0.38–0.62 27 10
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in front of the sample to facilitate absorbance calculations
during each measurement. During the experiment, each coal
sample is scanned 4000 times, and the average of these 4000
spectra is taken as its near-infrared spectral data.

The XRF module is based on energy-dispersive X-ray uo-
rescence (ED-XRF). In the X-ray tube (VF-50J-45°, VAREX, USA),
a high voltage power supply (MNX50W, SPELLMAN, USA)
generates a high voltage applied between the lament and the
target. Electrons emitted from the lament are accelerated by
the electric eld and collide with the target material. The
collision of accelerated electrons with the anode target
produces X-rays, which serve as the radiation source to excite
the sample. The X-rays pass through a beryllium window at the
bottom and irradiate the coal sample, causing the emission of
secondary X-rays, which are detected by the silicon dri detector
(SDD, VICO-DV H20, KETEK, Germany). The measured energy
spectrum is then subjected to quantitative analysis by
a computer. During the experiment, the voltage and current of
the X-ray tube are set to 16 kV and 0.6 mA, respectively. The
lament voltage and current are set to 1.5 V and 2.5 A, respec-
tively. The time constant for the SDD is 2 ms. A hydrogen
generator (RH-300, Tengzhou Rapp Analytical Instrument,
China) is used to ll the chamber with hydrogen gas, elimi-
nating the absorption of low-energy X-ray uorescence by the
air.
Fig. 1 Experimental NIRS-XRF setup for coal analysis (FOP: fiber optical p
high-voltage power supply; BW: beryllium window; PLC: programmable

This journal is © The Royal Society of Chemistry 2024
The delivery module features a linear guide rail with
a translation stage, on which the coal sample is placed in
a sample holder. During measurements, a stepper motor driver
controls the movement of the translation stage, allowing the
sample to pass sequentially beneath the XRF detection module
and the NIRS detection module. The computer collects the XRF
and NIRS spectra respectively. Aer measurements are
completed, the translation stage returns to its initial position.

The control module consists primarily of a PLC and
a computer. The PLC is used to control the operating sequence of
other modules, including the translation stage and high voltage
power supply, while the computer is used for spectral analysis.

2.3 Spectral pretreatment

Spectral pretreatment is a crucial component of chemometric
measurements, as it directly impacts the nal robustness and
reliability of the model. To enhance the features of the target
analytical components in the spectra, spectral preprocessing is
necessary. Here, we rst employ the Savitzky–Golay convolution
smoothing method to eliminate random noise interference.
Then, we use the Standard Normal Variate (SNV) trans-
formation method to eliminate the impact of scattering effects
on spectral information caused by the uneven particle size of
coal samples. Subsequently, the NIRS spectra and XRF spectra
data are concatenated and standardized to a range of [−1, 1],
robe; HG: hydrogen generator; SDD: silicon drift detector; HV power:
logic controller).

J. Anal. At. Spectrom., 2024, 39, 2433–2442 | 2435
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Table 2 Schematic illustration of confusion matrix concepts

Predicted positive Predicted negative

Actual positive True positive (TP) False negative (FN)
Actual negative False positive (FP) True negative (TN)
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ensuring data consistency and comparability, thus obtaining
the NIRS-XRF fusion spectra for subsequent modeling. These
spectral preprocessing steps help improve the quality and
stability of our analysis model, ensuring accurate analysis and
prediction.

2.4 Recognition algorithm

To achieve precise identication of the coal types to which the
samples belong, this study employed the Support Vector
Machine (SVM) algorithm. The training process of SVM involves
nding the optimal parameters for the hyperplane, which can
be achieved by solving an optimization problem. Lagrange
multiplier is commonly used to solve this problem.21 Aer
training, SVM can be used to classify new data points.

In this study, the RBF kernel was selected, which has the
advantage of nonlinear mapping. We optimized the penalty
coefficient C and the kernel parameter g. Parameter tuning is an
important step to ensure that SVM achieves optimal perfor-
mance and generalization ability. To optimize the hyper-
parameters of the SVM, we used grid search combined with K-
fold cross-validation. First, we dened the value ranges for
parameters C and g, covering the parameter space using loga-
rithmic values based on 2. The value ranges for log2 C and log2 g
were both set to [−10, 0.2, 10]. Then, a matrix was initialized to
store the accuracies for different parameter combinations.
During the grid search process, 5-fold cross-validation was used
to evaluate the performance of each parameter set and calculate
its average accuracy. Next, the parameter combination with the
best performance on the validation set and its corresponding
accuracy were identied. This method effectively selects the
optimal SVM parameters for a given dataset and specic task,
thereby maximizing the classier's performance. Ultimately,
the optimal values of C and g were determined to be 73.5167
and 0.1436, respectively.

2.5 Classication prediction model

NIRS data and XRF data are both high-dimensional data. To
reduce the dimensionality of the spectral data matrix and
eliminate the adverse effects caused by multicollinearity
between spectra, partial least squares (PLS) regression
modeling method is employed here. PLS, as a multivariate
statistical method, combines multiple linear regression,
canonical correlation analysis, and principal component anal-
ysis, and can be used for regression analysis of problems with
multiple dependent and independent variables.22 For example,
Leng23 et al. utilized the PLS regression method to establish
a quantitative model for certain chemical components based on
near-infrared diffuse reectance spectroscopy. They achieved
a correlation coefficient R2 of 0.9366 and reduced the root mean
square error of prediction (RMSEP) to as low as 3.15%. In PLS
modeling, the NIRS-XRF fused spectra were used as the inde-
pendent variables for PLSR, with the certied values of Aad, Vad,
and S as the dependent variables. 130 samples were used to
build the model, while 57 samples were reserved for predictions
using the newly established model. The optimal number of
components for PLS regression was selected through cross-
2436 | J. Anal. At. Spectrom., 2024, 39, 2433–2442
validation. A 10-fold cross-validation was set up, with
a random seed to ensure the reproducibility of the results. Data
was randomly assigned to different cross-validation folds. For
each possible number of components, cross-validation was
performed and the mean absolute error (MAE) was calculated.
The number of components that resulted in the smallest MAE
was chosen as the optimal number of components.

To validate the robustness of the current PLS model,
different calibration, segmentation, and prediction samples are
used. The basic principle is to establish a linear regression
model Y = A × X + B between the independent variables and the
dependent variables, where Y is the response matrix containing
m variables and n sample points, X is the input matrix con-
taining p variables and n sample points, A is the regression
coefficient matrix, and B is the correction coefficient.

In this study, two distinct prediction models were developed
using PLS. The rst model, termed the ‘overall model’, utilizes
all coal samples for regression analysis. The second model,
referred to as the ‘classication model’, performs regression
analysis based on the determined coal sample classication
strategy, serving as a basis for comparison.
2.6 Evaluation indexes

2.6.1 Evaluation of prediction model. The evaluation
metrics for the segmented coal prediction model in this study
include the coefficient of determination (R2) and the root mean
squared error (RMSEP), calculated as follows:

R2 ¼ 1�
Pm
i¼1

ðyi � ŷiÞ2

Pm
i¼1

ðyi � yiÞ2
; (1)

RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i

ðyi � ŷiÞ2

n

vuuut
; (2)

where yi is the standard value of the sample assay indexes, ŷi is
the predicted value of the sample assay indexes, �yi is the average
value of the sample assay indexes, m is the number of samples
in the training set, and n is the number of samples in the test
set. The closer R2 is to 1, the better the linearity of the model on
the training set; the closer RMSEP is to 0, the closer the pre-
dicted values are to the true values, indicating a higher accuracy
of the prediction model.

2.6.2 Evaluation of classication algorithm. The experi-
ment validates the classication performance through a confu-
sion matrix and calculates R2 and RMSEP for both the overall
model before classication and the segmented model aer
classication, thus evaluating themodels. The confusionmatrix
This journal is © The Royal Society of Chemistry 2024
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is a metric used to measure and assess the performance of
machine learning classication models. In this study, the
confusion matrix is used to measure the predictive results of
SVM.

In a typical binary classication problem, the confusion
matrix consists of the following four important elements: (1)
True Positives (TP), the model correctly classies positive
samples as positive; (2) False Positives (FP), the model incor-
rectly classies negative samples as positive; (3) True Negatives
(TN), the model correctly classies negative samples as nega-
tive; and (4) False Negatives (FN), the model incorrectly clas-
sies positive samples as negative. These elements are typically
arranged as shown in Table 2.
Fig. 2 NIRS spectra of lean, coking, fat and gas coal, (a) the raw NIRS sp

Fig. 3 XRF spectra of lean, coking, fat and gas coal, (a) the raw XRF spe

This journal is © The Royal Society of Chemistry 2024
The confusion matrix can be used to calculate various
performance metrics for classication algorithms, including:

(1) Accuracy: accuracy is the proportion of samples correctly
classied by the model to the total number of samples, which
was dened as:

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
� 100%; (3)

(2) Precision: precision represents the proportion of samples
correctly classied as positive by the model among those pre-
dicted as positive, which was dened as:
ectra, (b) the NIRS spectra after pre-processing.

ctra, (b) the XRF spectra after pre-processing.

J. Anal. At. Spectrom., 2024, 39, 2433–2442 | 2437
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Precision ¼ TP

TPþ FP
� 100%; (4)

(3) Recall: recall represents the proportion of samples
correctly predicted as positive by the model among those that
are actually positive, which was dened as:

Recall ¼ TP

TPþ FN
� 100%; (5)

(4) F1 score: F1 score is a metric that combines precision and
recall, which was dened as:

F1 ¼ 2� ðprecision� recallÞ
precisionþ recall

� 100%; (6)
Fig. 4 Comparison between the predicted and certified values of Aad

by the overall prediction model.

Fig. 5 Comparison between the predicted and certified values of Vad

by the overall prediction model.

2438 | J. Anal. At. Spectrom., 2024, 39, 2433–2442
3 Results and discussion
3.1 NIRS and XRF spectra of coal

Fig. 2 and 3 display typical NIRS and XRF raw spectra of lean
coal, coking coal, fat coal and gas coal, as well as the spectra
aer SG smoothing and SNV pre-processing. In Fig. 2, distinc-
tive absorptions are evident in the NIRS spectra of each coal type
at specic wavelengths, notably around 6000 cm−1, 5200 cm−1,
and 4400 cm−1. These peaks may originate from the asymmetric
stretch of CH2 or CH3, free water combination band, and
asymmetric stretch of C–H or symmetric bend of C–C.24

From Fig. 3, it can be observed that there are signicant
differences in the spectral line intensities of inorganic elements
in the XRF spectra of these four types of coal. The spectral line
intensities of Fe are higher in the gas coal spectrum, those of Ca
and Fe are higher in the fat coal spectrum, those of Si, Cu, Zn,
and Ti are higher in the coking coal spectrum, while the spectral
line intensity of Ti is higher in the lean coal spectrum. Addi-
tionally, elements such as Mg, Al, K, Cr, and Co show relatively
small differences in intensity in the spectra. These signicant
differences in the spectral line intensities of inorganic elements
Fig. 6 Comparison between the predicted and certified values of S by
the overall prediction model.

Table 3 Comparison of predictive performance of PLS models using
different spectra

Method Properties R2 RMSEP (%)

NIRS Ash 0.768 0.887
Volatile matter 0.754 3.1872
Sulfur 0.800 0.471

XRF Ash 0.861 0.738
Volatile matter 0.873 0.943
Sulfur 0.825 0.158

NIRS-XRF Ash 0.974 0.297
Volatile matter 0.942 0.757
Sulfur 0.901 0.055

This journal is © The Royal Society of Chemistry 2024
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reect the different compositions of gas, fat, coking, and lean
coal.
3.2 Results of the overall model

The NIRS-XRF fusion spectra of 130 training set coal samples were
utilized as independent variables, while their certied values of
Aad, Vad, and S were respectively recorded as dependent variables.
The Partial Least Squares (PLS) method was employed to construct
an overallmodel. Subsequently, theNIRS-XRF fusion spectra of the
coal samples in the test set were inputted into the established
overall model for prediction. The results are presented in Fig. 4–6.
The ndings indicate that R2 of Aad, Vad, and S, based on the overall
model, are 0.974, 0.942, and 0.901 respectively, with corresponding
RMSEP of 0.297%, 0.757%, and 0.055%.

Compared to single-spectrum techniques, the combination of
two complementary spectroscopic methods can provide more
comprehensive and accurate information about samples. Using
fused spectra can lead to improved classication or prediction
results.25 Table 3 compares the predictive performance of PLS
models using single spectra versus fused spectra. It can be seen that
the model using fused spectra shows signicant improvements
across all metrics compared to the single-spectrum model.
Table 4 Evaluation metrics of SVM on test set%

Classication
algorithm Accuracy Precision Recall F1 score

SVM 96.49 97.50 95.83 96.41
3.3 Results of the classication model

Fig. 7 shows the confusion matrices for the classication results
of the coal samples into different coal types using SVM on the
training set (a) and the test set (b). Here, 1 represents lean coal,
2 represents coking coal, 3 represents fat coal, and 4 represents
gas coal. From this confusion matrix, it can be seen that 130
Fig. 7 Classification confusion matrix for training set (a), test set (b) coal
gas coal).

This journal is © The Royal Society of Chemistry 2024
coal samples in the training set were correctly classied, with
a classication accuracy of 100%; and 55 coal samples in the
test set were correctly classied, with a classication accuracy of
96.49%. The evaluationmetrics of SVM on the test set are shown
in Table 4. The results indicate that high classication accuracy
can be achieved using only spectral data, suggesting that
spectral information indeed captures the differences between
different coal types. In this experiment, coal was classied into
four major categories for further analysis.

The comparison between the predicted values and the
certied values of ash, volatile matter, and sulfur for the coal
samples in the test set using the corresponding PLS classica-
tion models is shown in Fig. 8–10. The specic data are listed in
Table 5. It can be observed that the average R2 for ash, volatile
matter, and sulfur predicted by these classication models for
the four types of coal samples are 0.992, with corresponding
average RMSEP of 0.062%, 0.080%, and 0.008%, respectively.
Compared to the overall model, the R2 of the classication
models have increased by 1.85%, 5.31%, and 10.10%, while the
RMSEP have decreased by 0.24%, 0.68%, and 0.05%. Aer
classication, the prediction performance for lean coal is the
best, with R2 for ash, volatile matter, and sulfur increasing by
samples. (1–4 values correspond to lean coal, coking coal, fat coal, and

J. Anal. At. Spectrom., 2024, 39, 2433–2442 | 2439
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Fig. 8 The comparison between the predicted values and the certified values of Aad by the classification model.

JAAS Paper

Pu
bl

is
he

d 
on

 0
6 

A
ug

us
t 2

02
4.

 D
ow

nl
oa

de
d 

by
 S

ha
nx

i U
ni

ve
rs

ity
 o

n 
10

/4
/2

02
4 

2:
02

:5
0 

A
M

. 
View Article Online
2.36%, 5.94%, and 10.65% compared to the overall model, and
RMSEP decreasing by 0.25%, 0.71%, and 0.05%. These experi-
mental results conrm that in coal quality analysis, the
prediction accuracy of various indicators of coal quality is
signicantly improved by performing coal type identication
and classication prediction compared to the overall model.
Fig. 9 The comparison between the predicted values and the certified
values of Vad by the classification model.

2440 | J. Anal. At. Spectrom., 2024, 39, 2433–2442
4 Summary

In this study, we investigated the modeling approach and
classication algorithm for predicting properties of complex
coal types based on NIRS-XRF coal quality analysis technology.
Firstly, we employed PLS regression for overall modeling
Fig. 10 The comparison between the predicted values and the
certified values of S by the classification model.

This journal is © The Royal Society of Chemistry 2024
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Table 5 Coal quality PLS analysis results after support vector machine classification

Model type Classications Properties R2 RMSEP (%)

Overall model — Ash 0.974 0.297
Volatile matter 0.942 0.757
Sulfur 0.901 0.055

Classication model Lean coal Ash 0.997 0.045
Volatile matter 0.998 0.048
Sulfur 0.997 0.005

Coking coal Ash 0.976 0.044
Volatile matter 0.986 0.113
Sulfur 0.997 0.009

Fat coal Ash 0.995 0.066
Volatile matter 0.996 0.084
Sulfur 0.996 0.010

Gas coal Ash 0.999 0.092
Volatile matter 0.986 0.075
Sulfur 0.978 0.010
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performance, with R2 values of 0.974, 0.942, and 0.901 for ash,
volatile matter, and sulfur, respectively, and corresponding
RMSEP values of 0.297%, 0.757%, and 0.055%. Secondly, to
explore better prediction results, we applied SVM for the clas-
sication of complex coal samples. SVM was applied to the
fusion spectra, classifying coal into fat coal, coking coal, lean
coal, and gas coal. The results showed that the classication
accuracy of this method reached 96.49%. Finally, we validated
the performance of this strategy using the test set samples. The
classication model achieved R2 values of 0.992 for ash, volatile
matter, and sulfur, with corresponding RMSEP values of
0.062%, 0.080%, and 0.008%, respectively. Compared to
modeling the complete sample set, the classication-based PLS
regression model yielded better results, with R2 values
increasing by 1.85%, 5.31%, and 10.10%, and RMSEP values
decreasing by 0.24%, 0.68%, and 0.05%. Among these, the
prediction performance for lean coal was the best aer classi-
cation. Therefore, applying SVM classication before PLS
regression can improve the accuracy of the analysis. The study
demonstrated that classifying coal types before PLS regression
for coal quality prediction is feasible, and the predicted values
of assay indicators obtained can meet the needs of coal chem-
ical enterprises. In future work, we will further investigate other
classication algorithms and modeling approaches based on
NIRS-XRF fusion spectra analysis to be applicable to various
types of coal, and expand the analysis properties, such as
caloric value, to achieve more comprehensive and accurate
coal quality analysis.
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